Some Expansions in Theta Functions

L. Carlitz
Department of Mathematics, Duke University, Durham, North Carolina
Submitted by Richard Bellman

1. Consider the product

$$
\begin{equation*}
F(a, x, q)=\prod_{-\infty}^{\infty}\left(1+a x^{2 n} q^{n^{2}}\right) \tag{1}
\end{equation*}
$$

where $|q|<1$. Clearly the product is convergent for all a and all $x \neq 0$. We may put

$$
\begin{equation*}
F(a, x, q)=\sum_{n=0}^{\infty} a^{n} A_{n}(x, q) . \tag{2}
\end{equation*}
$$

It follows from (1) that

$$
\begin{equation*}
F\left(a x^{2} q, x q, q\right)=F(a, x, q) \tag{3}
\end{equation*}
$$

But by (2)

$$
F\left(a x^{2} q, x q, q\right)=\sum_{n=0}^{\infty} a^{n} x^{2 n} q^{n} A_{n}(x q, q)
$$

so that

If we put

$$
\begin{equation*}
x^{2 n} q^{n} A_{n}(x q, q)=A_{n}(x, q) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}(x, q)=\sum_{r=-\infty}^{\infty} x^{2 r} C_{r}^{(n)} \tag{5}
\end{equation*}
$$

where $C_{r}^{(n)}=C_{r}^{(n)}(q)$, then it follows from (4) that

$$
x^{2 n} q^{n} \sum_{r=-\infty}^{\infty} x^{2 r} q^{2 r} C_{r}^{(n)}=\sum_{r=-\infty}^{\infty} x^{2 r} C_{r}^{(n)}
$$

so that

$$
\begin{equation*}
C_{r}^{(n)}=q^{2 r-n} C_{r-n}^{(n)} . \tag{6}
\end{equation*}
$$

It is evident from (1) that $A_{0}(x, q)=1$ so that

$$
\begin{equation*}
C_{0}^{(0)}=1, \quad C_{r}^{(0)}=0 \quad(r \neq 0) \tag{7}
\end{equation*}
$$

Also it is clear from (1) that

$$
\begin{equation*}
A_{1}(x, q)=\sum_{r=-\infty}^{\infty} x^{2 r} q^{r^{2}} \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
C_{r}^{(1)}=q^{r^{2}} . \tag{9}
\end{equation*}
$$

For $n=2$, (6) implies

$$
C_{2 r}^{(2)}=q^{4 r-2} C_{2 r-2}^{(2)}, \quad C_{2 r+1}^{(2)}=q^{4 r} C_{2 r-1}^{(2)}
$$

from which it follows that

$$
\begin{gather*}
C_{2 r}^{(2)}=q^{2 r^{2}} C_{0}^{(2)} \tag{10}\\
C_{2 r+1}^{(2)}=q^{2 r(r+1)} C_{1}^{(2)} \tag{11}
\end{gather*}
$$

These formulas hold for all values of r.
Next, from (2) and (5), C_{0} is the coefficient of $a^{2} x^{0}$ in $F(a, x, q)$ while $C_{1}^{(2)}$ is the coefficient of $a^{2} x^{2}$. Hence, by (1),

$$
\begin{align*}
& C_{\mathbf{0}}^{(2)}=\sum_{r=1}^{\infty} q^{2 r^{2}} \tag{12}\\
& C_{\mathbf{1}}^{(2)}=q \sum_{r=0}^{\infty} q^{2 r(r+1)} . \tag{13}
\end{align*}
$$

It follows that

$$
\begin{equation*}
A_{2}(x, q)=C_{0}^{(2)} \sum_{r=-\infty}^{\infty} x^{4 r} q^{2 r^{2}}+C_{1}^{(2)} \sum_{r=-\infty}^{\infty} x^{4 r+2} q^{2 r(r+1)} \tag{14}
\end{equation*}
$$

To evaluate $C_{r}^{(n)}$ for arbitrary n we again use (6). Replacing r by $m+s$ we get

$$
C_{r n+s}^{(n)}=q^{(2 r-1) n+2 s} C_{(r-1) n+s}^{(n)},
$$

which implies

$$
\begin{equation*}
C_{r n+s}=q^{r(r n+2 s)} C_{s}^{(n)} . \tag{15}
\end{equation*}
$$

This formula holds for all values of r. Thus (5) becomes

$$
\begin{equation*}
A_{n}(x, q)=\sum_{s=0}^{n-1} C_{s}^{(n)} \sum_{r=-\infty}^{\infty} x^{2 r n+2 s} q^{r(r n+2 s)} . \tag{16}
\end{equation*}
$$

It remains to determine $C_{s}^{(n)}$ for $s=0,1, \cdots, n-1$. It is clear from (1) that the coefficient of $a^{n} x^{0}$ in $F(a, x, q)$ is equal to
where each r_{j} ranges from $-\infty$ to ∞. Therefore

$$
\begin{align*}
C_{0}^{(n)} & =\sum_{\substack{r_{1}+\cdots+v_{n}=0 \\
r_{1}<\cdots<r_{n}}} q^{r_{1}^{2}+\cdots+r_{n}^{2}} \tag{17}\\
& =\sum_{\substack{r_{1}+\cdots+r_{n}=0 \\
r_{1}<\cdots<r_{n}}} q^{r_{1}^{2}+\cdots+r_{n-1}^{2}+\left(r_{1}+\cdots+r_{n-1}\right)^{2} .}
\end{align*}
$$

More generally the coefficient of $a^{n} x^{2 s}$ in $F(a, s, q)$ is equal to

$$
\sum_{\substack{r_{1}+\cdots+r_{n}=s \\ r_{1}<\cdots<r_{n}}} q^{r_{1}^{2}+\cdots+r_{n}^{2}},
$$

where each r_{j} ranges from $-\infty$ to ∞. It follows that

$$
\begin{align*}
C_{s}^{(n)} & =\sum_{\substack{r_{1}+\cdots+r_{n}=s \\
r_{1}<\cdots<r_{n}}} q^{r_{1}^{2}+\cdots+r_{n}^{2}} \tag{18}\\
& =\sum_{\substack{r_{1}+\cdots+r_{n}=s \\
r_{1}<\cdots<r_{n}}} q^{r_{1}^{2}+\cdots+r_{n-1}^{2}+\left(s-r_{1}-\cdots-r_{n-1}\right)^{2} .} \\
&
\end{align*}
$$

If we let $N_{n-1}(r, s)$ denote the number of solutions of the equation

$$
r=r_{1}^{2}+\cdots+r_{n-1}^{2}-s\left(r_{1}+\cdots+r_{n-1}\right)
$$

subject to the conditions

$$
r_{1}+\cdots+r_{n}=s, \quad r_{1}<\cdots<r_{n}
$$

then (18) becomes

$$
\begin{equation*}
C_{s}^{(n)}=q^{s^{2}} \sum_{r=0}^{\infty} N_{n-\mathbf{1}}(r, s) q^{2 r} . \tag{19}
\end{equation*}
$$

Returning to (16) it is clear from the foregoing that we may express $A_{n}(x, q)$ as a linear combination of theta furctions. Indeed put

$$
x=e^{\pi i u}, \quad q=e^{\pi i \tau}, \quad \vartheta_{3}(u, q)=\sum_{r=-\infty}^{\infty} e^{2 r r i u} q^{r^{2}}
$$

in the usual notation for theta functions. Then (16) becomes

$$
\begin{aligned}
A_{n}\left(e^{\pi i u}, q\right) & =\sum_{s=0}^{n-1} C_{s}^{(n)} \sum_{r=-\infty}^{\infty} e^{2 \pi i u(r n+s)} e^{2 r s \pi i t} q^{r^{2} n} \\
& =\sum_{s=0}^{n-1} C_{s}^{(n)} e^{2 s \pi i u} \sum_{r=-\infty}^{\infty} e^{2 r \pi i(n u+\varepsilon \tau)} q^{r^{2} n},
\end{aligned}
$$

so that

$$
\begin{equation*}
A_{n}\left(e^{\pi i u}, q\right)=\sum_{s=0}^{n-1} C_{s}^{(n)} e^{2 s \pi i u} \cdot \vartheta_{3}\left(n u+s \tau, q^{n}\right) . \tag{20}
\end{equation*}
$$

2. In place of (1) we may consider the product

$$
\begin{equation*}
G(a, x, q)=\prod_{-\infty}^{\infty}\left(1-a x^{2 n} q^{n^{2}}\right)^{-1} \tag{21}
\end{equation*}
$$

which evidently satisfies

$$
\begin{equation*}
G\left(a x^{2} q, x q, q\right)=G(a, x, q) . \tag{22}
\end{equation*}
$$

Thus, if

$$
\begin{equation*}
G(a, x, q)=\sum_{n=0}^{\infty} a^{n} B_{n}(x, q) \tag{23}
\end{equation*}
$$

we get

$$
\begin{equation*}
x^{2 n} q^{n} B_{n}(x q, q)=B_{n}(x, q) . \tag{24}
\end{equation*}
$$

Hence, if we put

$$
\begin{equation*}
B_{n}(x, q)=\sum_{r=-\infty}^{\infty} x^{2 r} D_{r}^{(n)} \tag{25}
\end{equation*}
$$

where $D_{r}^{(n)}=D_{r}^{(n)}(q)$, it follows from (24) that

$$
\begin{equation*}
D_{r}^{(n)}=q^{2 r-n} D_{r-n}^{(n)} . \tag{26}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{0}^{(0)}=1, \quad D_{r}^{(0)}=0 \quad(r \neq 0) \tag{27}
\end{equation*}
$$

while

$$
\begin{equation*}
B_{1}(x, q)=\sum_{r=-\infty}^{\infty} x^{2 r} q^{r^{2}} \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
D_{r}^{(1)}=q^{r^{2}} . \tag{29}
\end{equation*}
$$

For arbitrary n, it follows from (26) that

$$
D_{r n+s}^{(n)}=q^{(2 r-1) n+2 s} D_{(r-1) n+s}^{(n)}
$$

so that

$$
\begin{equation*}
D_{r n+s}^{(n)}=q^{r(r n+2 s)} D_{s}^{(n)} . \tag{30}
\end{equation*}
$$

Thus (25) becomes

$$
\begin{equation*}
B_{n}(x, q)=\sum_{s=0}^{n-1} D_{s}^{(n)} \sum_{r=-\infty}^{\infty} x^{2 r r n+2 s} q^{r(r n+2 s)} . \tag{31}
\end{equation*}
$$

Comparing (31) with (16) we see that the only difference is in the coefficients $D_{s}^{(n)}$, where $0 \leqslant s<n$. For $n=0,1$ we have from (7), (9), (27), (29)

$$
\begin{equation*}
D_{r}^{(0)}=C_{r}^{(0)}, \quad D_{r}^{(1)}=C_{r}^{(1)} \quad(r=0, \pm 1, \pm 2, \cdots) \tag{32}
\end{equation*}
$$

but for $n>1$ this is no longer the case. For example it is easily verified that

$$
\begin{align*}
& D_{0}^{(2)}=1+\sum_{r=1}^{\infty} q^{2 r^{2}}=1+C_{0}^{(2)}, \tag{33}\\
& D_{1}^{(2)}=q^{2}+q \sum_{r=0}^{\infty} q^{2 r(r+1)}=q^{2}+C_{1}^{(2)} . \tag{34}
\end{align*}
$$

If we rewrite (21) as

$$
G(a, x, q)=\prod_{-\infty}^{\infty}\left(1+a x^{2 n} q^{n^{2}}+a^{2} x^{4 n} q^{2 n^{2}}+\cdots\right)
$$

it follows readily that

$$
\begin{equation*}
D_{s}^{(n)}=\sum q^{k_{1} r_{1}^{2}+\cdots+k_{m} r_{m}^{2}} \tag{35}
\end{equation*}
$$

where the summation is over all

$$
r_{j}=0, \pm 1, \pm 2, \cdots ; \quad k_{j}=1,2,3, \cdots ; \quad m=1,2,3, \cdots
$$

such that

$$
r_{1}<r_{2}<\cdots<r_{m}, \quad k_{1} r_{1}+\cdots+k_{m} r_{m}=s .
$$

If we compare (23) with (2) we get

$$
\sum_{r=0}^{n}(-1)^{r} A_{r}(x, q) B_{r}(x, q)=0 \quad(n \geq 1)
$$

By means of this relation it is easily verified that (24) is equivalent to (4).
3. The results obtained above can be generalized by considering the product

$$
\begin{equation*}
\Phi(a, b, c, x, q)=\prod_{i=1}^{h} F\left(a b_{i}, x, q\right) \cdot \prod_{j=1}^{k} G\left(a c_{i}, x, q\right) \tag{36}
\end{equation*}
$$

where $F(a, x, q), G(a, x, q)$ are defined by (1) and (21), respectively. It follows at once from (3) and (22) that

$$
\begin{equation*}
\Phi\left(a x^{2} q, b, c, x q, q\right)=\Phi(a, b, c, x, q) . \tag{37}
\end{equation*}
$$

Hence if we put

$$
\Phi(a, b, c, x, q)=\sum_{n=0}^{\infty} a^{n} A_{n}(b, c, x, q)
$$

we have

$$
\begin{equation*}
x^{2 n} q^{n} A_{n}(b, c, x q, q)=A_{n}(b, c, x, q) . \tag{38}
\end{equation*}
$$

Now put

$$
\begin{equation*}
A_{n}(b, c, x, q)=\sum_{r=-\infty}^{-1} x^{2 r} C_{r}^{(n)}(b, c, q) \tag{39}
\end{equation*}
$$

Using (38) we get

$$
\begin{equation*}
C_{r}^{(n)}(b, c, q)=q^{2 r-n} C_{r}^{(n)}(b, c, q) . \tag{40}
\end{equation*}
$$

Then as above we find that

$$
\begin{equation*}
C_{r n+s}^{(n)}(b, c, q)=q^{r(r n+2 s)} C_{s}^{(n)}(b, c, q), \tag{41}
\end{equation*}
$$

so that (39) becomes

$$
\begin{equation*}
A_{n}(b, c, x, q)=\sum_{s=0}^{n-1} C_{s}^{(n)}(b, c, q) \cdot \sum_{r=-\infty}^{\infty} x^{2 r n+2 s} q^{r(r n+2 s)} \tag{42}
\end{equation*}
$$

Thus again, comparing (42) with (16) and (31), the only difference is in the coefficients $C_{s}^{(n)}(b, c, q), 0 \leqslant s<n$. It is evident that $A_{0}(b, c, x, q)=1$ and

$$
A_{1}(b, c, x, q)=\left(\sum_{i=1}^{n} b_{i}+\sum_{j=1}^{k} c_{j}\right) \sum_{r=-\infty}^{\infty} x^{2 r} q^{r^{2}}
$$

so that

$$
C_{r}^{(\mathbf{1})}(h, c, q)=q^{q^{2}}\left(\sum_{i=1}^{h} b_{i}+\sum_{j=\mathbf{1}}^{k_{i}} c_{j}\right) .
$$

It is not difficult to verify that $C_{r}^{(n)}(b, c, q)$ is a homogeneous polynomial in b_{i}, c_{j} of degree n; moreover it is symmetric in the b_{i} and the c_{j} separately. A formula like (18) can be stated but it is too complicated to be of much interest. However a somewhat simpler formula can be obtained that expresses $C_{r}^{(n)}(b, c, q)$ in terms of $C_{t}^{(s)}(q)$. For example, when no c_{j} are present, we have

$$
\begin{aligned}
C_{0}^{(2)}\left(b,{ }^{*}, q\right) & =\sum b_{1} b_{2}\left(1+2 C_{0}^{(2)}(q)\right)+\sum b_{1}^{2} C_{0}^{(2)}(q) \\
& =\sum b_{1} b_{2}+\left(\sum b_{1}\right)^{2} C_{0}^{(2)}(q), \\
C_{1}^{(2)}\left(b,{ }^{*}, q\right) & =2 \sum b_{1} b_{2} C_{1}^{(2)}(q)+\sum b_{1}^{2} C_{1}^{(2)}(q)=\left(\sum b_{1}\right)^{2} C_{1}^{(2)}(q) .
\end{aligned}
$$

4. The product (1) can be generalized in another way. Put (cf. [1, p. 64])

$$
n=\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{k}
\end{array}\right], \quad z=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right], \quad W=\left[\begin{array}{cccc}
\omega_{11} & \omega_{12} & \cdots & \omega_{1 k} \\
\omega_{21} & \omega_{22} & \cdots & \omega_{2 k} \\
\vdots & & & \\
\vdots & & & \\
\omega_{k 1} & \omega_{k 2} & \cdots & \omega_{k k t}
\end{array}\right]
$$

where the n_{j} are integers while the z_{j} and $\omega_{j s}$ are complex numbers. We also put

$$
\omega_{j}=\left[\begin{array}{c}
\omega_{i, j} \\
\omega_{2 j} \\
\vdots \\
\omega_{k j j}
\end{array}\right] \quad(j=1,2, \cdots, k),
$$

the j th column of W. It will be assumed that W is a symmetric matrix whose imaginary part is positive.

We define

$$
\begin{equation*}
F(a, z, W)=\prod_{n}\left[1+a \exp \left(2 \pi i n^{\prime} z+\pi i n^{\prime} W_{n}\right)\right] \tag{43}
\end{equation*}
$$

where n^{\prime} is the transpose of n and the product is extended over all n_{j} from $-\infty$ to ∞.

Let e_{j} denote the vector whose j th component is equal to 1 while all the other components are 0 . Since

$$
\left(n+e_{j}\right)^{\prime} W\left(n+e_{j}\right)=n^{\prime} W n+2 e_{j}^{\prime} W_{n}+\omega_{j j}
$$

it is easily verified that

$$
\begin{aligned}
& \quad F\left(a, \exp \left(2 \pi i z_{j}+\pi i \omega_{j j}\right), W\right) \\
& =\prod_{n}\left\{1+a \exp \left[2 \pi i\left(n+e_{j}\right)^{\prime} z+\pi i\left(n+e_{j}\right)^{\prime} W\left(n+e_{j}\right)\right]\right\} \\
& =\prod_{n}\left[1+a \exp \left(2 \pi i n^{\prime} z+\pi i n^{\prime} W_{n}\right)\right] .
\end{aligned}
$$

We have therefore

$$
\begin{equation*}
F\left(a, \exp \left(2 \pi i z_{j}+\pi i \omega_{j j}\right), z+\omega_{j}, W\right)=F(a, z, W) \tag{44}
\end{equation*}
$$

If we put

$$
F(a, z, W)=\sum_{m=0}^{\infty} a^{m} A_{m}(z, W)
$$

it follows from (44) that

$$
\begin{equation*}
\exp \left(2 m \pi i z_{j}+m \pi i \omega_{j j}\right) A_{m}\left(z+\omega_{j}, W\right)=A_{m}(z, W) \tag{45}
\end{equation*}
$$

We now put

$$
\begin{equation*}
A_{m}(z, W)=\sum_{r} e^{2 \pi i r^{\prime} z} C_{r}^{(m)} \tag{46}
\end{equation*}
$$

where

$$
C_{r}^{(m)}=C_{r}^{(m)}(W) \quad \text { and } \quad r=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right]
$$

The summation on the right side of (46) is over all r_{j} from $-\infty$ to ∞. Applying (45) to (46) we get

$$
\begin{equation*}
C_{r}^{(m)}=\exp \left(2 \pi i r^{\prime} \omega_{j}-m \pi i \omega_{j j}\right) C_{r-m e_{j}}^{(m)} \tag{47}
\end{equation*}
$$

It should be noted that in (45), (46), (47) m is a nonnegative integer (not a vector).

Replacing r by $r m+s$, where

$$
s=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{k}
\end{array}\right]
$$

(47) becomes

$$
C_{r m+s}^{(m)}=\exp \left[2 \pi i\left(r m+s^{\prime}\right) \omega_{j}-m \pi i \omega_{j j}\right] \cdot C_{r m+s-m e_{j}}^{(m)} .
$$

It follows that

$$
\begin{equation*}
C_{r m+s}^{(m)}=\exp \left(m \pi i r^{\prime} W r+2 \pi i r^{\prime} W s\right) C_{s}^{(m)} . \tag{48}
\end{equation*}
$$

Substituting from (48) in (46) we get

$$
A_{m}(z, W)=\sum_{s} e^{2 \pi i s^{\prime} z} C_{s}^{(m)} \cdot \sum_{r} \exp \left(m \pi i r^{\prime} W r+2 \pi i r^{\prime} W s+2 m \pi i r^{\prime} z\right)
$$

the outer sum is over $s_{1}, \cdots, s_{k}=0,1, \cdots, m-1$. If we put

$$
\vartheta(z, W)=\sum_{r} \exp \left(2 \pi i r^{\prime} z+\pi i r^{\prime} W r\right),
$$

it follows that

$$
\begin{equation*}
A_{m}(z, W)=\sum_{s} e^{2 \pi i s^{\prime} z} C_{s}^{(m)} \vartheta(m z+W s, m W) . \tag{49}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
F(a, z, W)=\sum_{m=0}^{\infty} \sum_{s} e^{2 \pi i s^{\prime} z} C_{s}^{(m)} \vartheta(m z+W s, m W) \tag{50}
\end{equation*}
$$

Reference

1. Bellman, R. "A Brief Introduction to Theta Functions." Holt, Rinehart and Winston, New York, 1961.
