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1. Consider the product

F(a, %, q) = H 1+ axzngnz),

1)

where |g| << 1. Clearly the product is convergent for all @ and all x 5~ 0,

We may put

o0

F(a, x, q) = 2 a"A,(x, g).

n=0
It follows from (1) that
Flax*q, xq, q) = Fla, , ).

But by (2)
Flax*q, xq, q) = D, a"x*q" A, (xq, )
n=0
so that
xqr A, (xq, q) = A (x, 9).
If we put

00

An(x, q) = E xZTC;”’,

r=—0m

where C™ = C{")(g), then it follows from (4) that

0 o)
xann E x21’92rcin) — E xZTC;n),

P=—00 P=—00

so that
Cﬁn) — qz'r—nC(n)

It is evident from (1) that A4(x, ¢) = 1 so that
P =1, C®=0 (0).
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Also it is clear from (1) that

0

Ayx, q) = D, #q", ®)
so that
cw =g, 9)

For n = 2, (6) implies
O = e, O, =0y

27 +1 2r—17

from which it follows that

Céi) — qzrzcc('z), (1())
Clfy = g Cp. (1)

These formulas hold for all values of r.
Next, from (2) and (5), C, is the coefficient of a%+? in F(a, x, g) while C{
is the coeflicient of a%x2. Hence, by (1),

C = ¢, (12)
r=1
CI(Z) — qzqzu¢+1)_ (13)
=0
It follows that
A x, g) = C® 2 atrger® | c@ 2 xdr2ger(rl), (14)
F=—m F=——o

To evaluate C™ for arbitrary # we again use (6). Replacing 7 by r# + s
we get

(n) — L@r—1)nt2s( ()
Crn+s =4 C(’I‘—I)’VH—S’

which implies

C,.. = ¢ HIC, (15)

T

This formula holds for all values of 7. Thus (5) becomes

n=—1 a0

A(x q) = 2 cw Z 22y (rmt2s), (16)
5=0

P=—00
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It remains to determine C™ for s =0, 1, -, # — 1. It is clear from (D
that the coefficient of a"x° in F(a, x, ) is equal to

2 fi+"'+r:
q s

i+ tr,=0
< <,

where each 7, ranges from — oo to oo, Therefore

co = E qri+---+r;
S (17)
Ly et
r+ -t r,=0
1'1<"'<Tn

More generally the coefficient of a"x?¢ in F(q, s, ¢) is equal to

2 ri+...+,:
q b

it trg=s
Fy <<y,

where each 7; ranges from — o to o, It follows that

2 2
[ 4
Cs(”) — 2 ql n

rit b rp=s
<<y,

(18)

2 2 2

— R A (s~r1_ "—"11—1)

== q .
ittt =S

Py <y,

If we let N,_,(, s) denote the number of solutions of the equation

r=rid e F g =S+ 1),
subject to the conditions
A, =5, Ty < <7y,

then (18) becomes

Cm = g* N, _(r,s) ¢ (19)

r=0
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Returning to (16) it is clear from the foregoing that we may express A4,(x, g)
as a linear combination of theta funétions. Indeed put

«©
x = eniu’ q= efn"r, 19.3(”, q) — 2 equiug’rE
r=—m

in the usual notation for theta functions. Then (16) becomes

n—=1 ]

A (e, q) = E cw 2 g2min(rnts) garsmitgrin
s=0 r=—"00
n—1 [ee]

- Cé’n ) 2smin provi (nu-st )qrzn,
§=0 F=—00
so that

n~1

A (e, q) = 2 Cimetsmi - G (nu 4 57, g*). (20)
s=0

2. In place of (1) we may consider the product

Gla, ) =] (1 — antng) @)

which evidently satisfies

G(ax?q, xq, q) = G(a, x, q). (22)
Thus, if

G(a, %, q) = 2, a"B,(x, ) (23)

n=>0

we get

x*q"B,(xq, q) = B,(x, q). - (24)
Hence, if we put

B,(x q) = Y, «*D™, (25)

where D’ = D!"(g), it follows from (24) that

D;n) — q2r—nD (n) (26)

r—n"
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Then
Déo) =1, D® =0 (r #0), 27)
while
Bl(x, q-) — E xwgrz’ (28)
so that
D;l) — qrz_ (29)

For arbitrary #, it follows from (26) that

D» — 9(27—1)n+25D:n)

rn+s r—1)n+s
so that
D;:)-e—s — qr(m+23)D;n)_ (30)
Thus (25) becomes
n—1 O
B,(s,q) = 2 DI 2 whmig i, (31)
5=0 r=—00

Comparing (31) with (16) we see that the only difference is in the coef-
ficients D™, where 0 < s < n. For n = 0, 1 we have from (7), (9), (27), (29)

DO =CO, DM=CH (=0+1+2-) (32

but for » > 1 this is no longer the case. For example it is easily verified that

D® =1+ 2 =14 C®, (33)
r=1
D =¢° +¢ 2, ¢ = ¢ + . (34)
=0

If we rewrite (21) as
G(a, %, q) = H 1+ axrgn® - adingin® o)

it follows readily that
2 .. 2
D;n) _ 2 qk1r1+ +km1’m (35)



SOME EXPANSIONS IN THETA FUNCTIONS 321

where the summation is over all
rj:())j:l):i:zvul; kj:11273"“; m:1’2:3!".

such that
¥y LTy < <Py k11’1+"' -—I—kamZS.

If we compare (23) with (2) we get
2 (— 1 A 9) Bixg) =0 (=1)
=0
By means of this relation it is easily verified that (24) is equivalent to (4).

3. The results obtained above can be generalized by considering the
product ‘

h K
D(a, b, c, x,q) = HF(abi, %, q) H G(ac;, , q), (36)
=1 j=1

where F(a, x, q), G(a, x, q) are defined by (1) and (21), respectively. It follows
at once from (3) and (22) that

D(ax?q, b, ¢, xq, q) = D(a, b, c, x, q). 37
Hence if we put

a0

D(a, b, ¢, %, q) = 2 a"A,(b, c, x, q),

n=0
we have
x*gnA,(b, ¢, xq, g) = A,(b, c, x, q). (38)
Now put
A b, c,x,q) = 3, 2CM(b, ¢, q). (39)
Using (38) we get
Ci™N(b, ¢, q) = g7 C")(b, c, g). (40)

Then as above we find that

Chidbs e, q) = grmt2ICin(b, ¢, g), (41)
so that (39) becomes

n~1 o]

An(b’ ¢, %, q) = 2 an)(b’ ¢ q)- 2 K2t asgr (rnat2s) (42)

$=0 T=—m
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Thus again, comparing (42) with (16) and (31), the only difference is in
the coefficients C™(b, ¢, ), 0 < s < n. It is evident that Ayb, ¢, x, q) =1
and

h 14 @
46,09 = (Sb+ Se) 3w
i=1 j=1 r=—00
so that
n k
CHh, e, q) = ¢ (E b+, %-) -
=1 =1

It is not difficult to verify that C"(b, ¢, ¢) is 2 homogeneous polynomial
in &, ¢; of degree n; moreover it is symmetric in the 5, and the ¢; separately.
A formula like (18) can be stated but it is too complicated to be of much
interest, However a somewhat simpler formula can be obtained that expresses
C™(b, ¢, q) in terms of C{(g). For example, when no ¢; are present, we have

C@(b, %, ) = 2, bib(1 +2C(g) + D, BCA(g)
2
= 2 bb, + (2 bl) CP(q)
2
Cb, %, g) = 2 3, 8,5,C(q) + 2, B0 — (2,3,) C(g)-

4. The product (1) can be generalized in another way. Put (cf. [1, p. 64])

n e Wy Wy T Wi

Hy F) Wy Wy T Wop
n=1|.1, z2=1 .1, W= . R

Ny 2 W Wgz T Wy

where the #; are integers while the #; and w;, are complex numbers. We also

put

Wy

Waj
Wyj

the jth column of W. It will be assumed that ¥ is a symmetric matrix whose
imaginary part is positive.
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We define
Fa, 2, W) =] ] [1 + aexp Quin'z + min' W,)], (43)

where ' is the transpose of # and the product is extended over all n; from

— o to oo,
Let e; denote the vector whose jth component is equal to 1 while all the
other components are 0. Since

(n+e) Wn+e) =nWn 4 2e;W, + wy;,
it is easily verified that

Fa, exp (2miz; + miwy;), W)

=]1 {1 + aexp [2ni(n + &)z + mi(n + &) W(n + ep)}}

=T] [t + aexp Qmin'z + min'W,)].

We have therefore
F(a, exp (2miz; + miwy), 2 + w; W) = F(a, 2, W). (44)
If we put
Fla,z, W) = i a4, (z, W)
it follows from (44) that "

exp (2mmiz; + mmiw;;) A, (2 + w; W) = A,(z, W). (45)
We now put
Ayl W) =3, etmirsCim, (46)
where
71
Fa
C™ = Cm(WW) and r=|.
"

The summation on the right side of (46) is over all 7, from — oo to co. Applying
(45) to (46) we get

C!™ = exp (2mir' w; — mmiw,;) C7) 47)

r—tme;"
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It should be noted that in (45), (46), (47) m is a nonnegative integer (not a
vector).
Replacing 7 by rm + s, where

(47) becomes

Cq(-z—)l—s = €xp [27Ti(7m + ) w; — mﬂiwﬁ] : C:":::-s—fmej-
It follows that

Clm), = exp (mmir' Wr + 2mir' Ws) Cm), (48)

rm+$
Substituting from (48) in (46) we get

4,(2, W) =Y, emiesCtm) -3 exp (muir' Wr + 2mir' Ws -+ 2mmir's);

8§ r

the outer sum is over s, -, 5, =0, 1, -, m — 1. If we put

Hz, W) = E exp (2mir'z + mir' Wr),

r

it follows that

A (2, W)= Z e Cm) Y(mz + Ws, mW). (49)
Therefore
Fla, 2, W)=, > & C™) H(mz + Ws, mWV). (50)
m=0 s
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