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D Logic programs are considered as abductive programs with negative liter- 
als as abductive hypotheses. A simple framework for semantics of logic 
programming is introduced based on the notion of acceptable hypotheses. 
We show tha t  our framework captures, generalizes, and unifies different 
semantic concepts (e.g., well-founded models, stable models, s ta t ionary se- 
mantics, etc.) in logic programming. We demonstrate  that  our framework 
accommodates  in a natural  way both the minimalism and maximalism in- 
tuit ions to semantics of logic programming. Further, we show tha t  Eshghi 
and Kowalski 's procedure is a proof procedure for the abductive seman- 
tics. We also give sufficient conditions for the coincidence between different 
semantics. 

I N T R O D U C T I O N  

For a successful application of logic programming as a paradigm for knowledge 
representation, it is necessary to clarify the semantic problems of negation in logic 
programming and its relations to nonmonotonic logic. This paper  presents a con- 
t r ibut ion to the s tudy of this problem. Our goal is to reveal the inherent, relations 
between abduction and logic programming. 

To a first approximation,  the semantics of a logic program may be defined by 
its Clark 's  completion [5, 28]. Given a logic program P,  the completion of P, 
comp(P) ,  consists of some equality axioms plus a completed definition of each 
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predicate symbol. Roughly, this completed definition is obtained by replacing the 
"if" by "iff." However, the Clark's completion does not always capture the intended 
meaning of logic programs. For example, let P consist of the single clause p ~ p. 
Intuitively, we expect that  any meaningful semantics of P would imply that  p is 
false. But since comp(P)  is p *-* p, we cannot conclude from comp(P)  that  p is 
false. Let us consider one more example. 

Example 1 [35]. Let P be 

edge(a, b) ~- 

edge(c, d) ~- 

reachable(a) *- 
reachable(x) *-- 

unreachable(x) ~- 
reachable(y), edge(y, x) 
~reachable(x) 

P can be illustrated by the following picture: 

. . . . . .  at-% 

c(%d 

We obviously expect vertices c, d to be unreachable, and indeed, Clark's semantics 
implies tha t  c, d are unreachable, i.e., 

comp(P)  ~- unreachable(c)and 

comp(P) t- unreachable(d). 

Now, adding to P the clause edge (d, c) will result in a new program P~ which is 
illustrated by the following picture: 

. . . . . .  arab 

Although it still appears to be expected from the given information that  c, d are 
unreachable, the Clark's semantics of P~ could not imply that  c, d are unreachable, 
i.e., 

comp(P')  Y unreachable(c)and 

comp(P ~) V unreachable(d) 

So it is necessary to find new ways for specifying the semantics of logic pro- 
grams. Two approaches are proposed: The stable model semantics [20] and the 
well-founded model semantics [19]. 

The stable semantics of a program is defined by the set of its stable models. 
The problem of stable semantics is that  it is not defined for every logic program, 
e.g., the program consisting of the only clause p ~-- ~ p, has no stable models. To 
illustrate the seriousness of this problem, let us consider one more example. 

Example 2 (The Barber 's paradox). "Beardland is a small city where the barber 
Noel shaves every citizen who does not shave himself. 
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Does Noel shaves the mayor Casanova'? 
Does Noel shave himself?" 

The  problem can be represented by a logic program consisting of the clauses 

shave(Noel, t) ~- ~shave(t, t) 

mayor(Casanova) ~- 

Despite the confusion about  who shaves Noel, we expect that  Noel shaves the 
mayor Casanova. But this program has no stable model, i.e., we could not conclude 
anything with respect to the stable semantics. [] 

The idea of well-founded semantics is negation as (possibly infinite) failure, i.e., 
the failure (possibly in infinitary) to prove a fact (a ground atom) to be true leads 
to the acceptance of this fact being false. Formally, the well-founded semantics 
is defined by the well-founded model which is defined as the least fixed point; of 
a monotonic operator [19]. In contrast to the stable semantics, the well-founded 
semantics is defined for every logic program. Its major shortcoming is its inability 
to handle conclusions which can be reached only by "proof by cases." The following 
example illustrates this problem. 

Example 3. Let P be 

a e -  ~ b  

b ~ ~ a  

c e-- a 

c~- - -b  

It is reasonable to expect tha t  c holds. But with respect to the well-founded seman- 
tics, all a, b, c, are unknown. Note tha t  in this case, the stable semantics provides 
the expected conclusions. [] 

The diversity of different approaches in semantics of negation suggests tha t  there 
is probably not a unique intended semantics for logic programs. Which semantics 
should be used depends on concrete applications. To be able to choose the "right" 
semantics among different ones, it is of great importance to understand the inherent 
relations between them. 

One of the well-known and simple approaches to nonmonotonic reasoning is 
abduction. In the simplest case, it has the form 

From A and A ~ - B  

infer B as a possible "explanation" of A. 

Abduction has been the focus of intensive research lately [7, 6, 4, 8, 16, 14, 26, 
24, 34]. The relationship between abduction and negation as failure has been studied 
lately by Eshghi and Kowalski [14], who have pointed out tha t  by viewing negative 
literals in a logic program as abductive hypotheses, an abductive characterization 
of stable model semantics can be obtained. Eshghi and Kowalski [14] have also 
given an abductive procedure for computing abductive explanations. But  they left 
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the question of what is the semantics of their procedure unanswered. Another 
open question is about the relations between abduction and other semantics (e.g., 
well-founded semantics) of logic programming. 

The two major semantic intuitions for knowledge representation are the mini- 
malism and maximalism, also known in the literature as skepticism and credulism, 
respectively. A skeptical reasoner refuses to draw conclusions in ambiguous situa- 
tions where a credulous (belief-hungry) reasoner tries to conclude as much as possi- 
ble [42]. In our framework, the semantics corresponding to these two intuitions are 
defined by the well-founded extension and the preferred extensions, respectively. 
While SLS-resolution (with the SLDNF-resolution as an approximation) [37, 33] 
has been recognized as an appropriate proof procedure for the minimalism seman- 
tics; it is still open what is the corresponding proof procedure for the maximalism 
semantics. 

The goal of this paper is to study these open problems. 
In Part  1 of this paper, we give a simple and intuitive declarative semantics for 

logic programming with "negative literals as abductive hypotheses." We show that  
the new semantics captures, generalizes, and unifies in a simple way the different 
semantic concepts (e.g., well-founded semantics, stable semantics, etc.) in logic 
programming. We also give sufficient conditions for the coincidence of different 
semantics. In Part  2, we show that  Eshghi and Kowalski's abductive procedure 
provides the proof theory for the abductive semantics of logic programming. To 
demonstrate the practical applicability of this procedure, we apply it to solve a 
modified version of the well-known stable marriage problem. 

L I S T  O F  C O N T E N T S  

Part  1: Declarative Semantics 
1.1. Acceptable Hypotheses and Preferred Extensions 
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P A R T  I: D E C L A R A T I V E  S E M A N T I C S  

The idea of abduction is that,  to predict the expected observations from an in- 
complete knowledge base, the user supplies a set of hypotheses as a part of an 
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explanation to the expected observations. This explanation is considered as a log- 
ical theory based on a restricted set of possible hypotheses. An explanation .can 
also be viewed as a scenario in which some goal is true. The user provides which 
hypotheses are acceptable in such scenarios [34]. 

In general, the theory of abductive reasoning is based on the notion of a b d u c t i o n  
f r a m e w o r k s  [a4, 14] defined as triples {KB, IC, H) where {KB) is a first-order 
theory representing the knowledge base, H is a set of first-order formulae repre- 
senting the possible hypotheses, and IC is a set of first-order formulae representing 
the integrity constraints used to determine the admissible explanations. 

Given an abduction framework {KB, IC, H}, a set of hypotheses E c_ H is an 
abductive solution for a query Q iff 

KB u EF-Q and 

KB U E satisfies IC 

Thus, any theory for abductive reasoning has to provide answers to the following 
two questions: 

Wha t  does "KB U E satisfies IC" mean? (declarative semantics) 

How can we compute the abductive solutions? (operational semantics) 

Since our goal in this paper  is to s tudy the relations between abduction and logic 
programming,  we restrict ourselves on a special class of abduction frameworks cor- 
responding to logic programs. 

We assume the existence of a fixed finite alphabet  L, big enough to contain 
all constants,  function symbols, and predicate symbols occurring in any program 
considered in this paper. The H e r b r a n d  b a s e  of L is denoted by H B .  A logic 
p r o g r a m  is a set of clauses of the form A +-- L1 A . . .  A L~ where A is an a tom 
and Lis are literals. To define the class of abduction frameworks corresponding 
to logic programs, we introduce for each predicate symbol p contained in L a new 
predicate symbol n o t - p  of the same arity. The new predicates are called ab -  
d u c i b l e  p r e d i c a t e s .  Atoms of the abducible predicates are called a b d u e i b l e  
a t o m s .  Ground abducible atoms are called h y p o t h e s e s .  The set of all hypotheses 
is denoted by H Y .  Atoms in HB are called o r d i n a r y  a t o m s .  For every ordi- 
nary a tom A = p ( t l , . . .  , t , ) ,  n o t - A  denotes the corresponding abducible a tom 
n o t - p ( t l , . . . ,  t, d.  

An a b d u c t i v e  p r o g r a m  over the language L is an abduction framework (KB, 
IC, H) such tha t  

K B  is a definite Horn theory over L U {not-p I P is a predicate symbol in L} 
with no abducible predicates appearing in the heads of its clauses. 
IC = { ~  p(z)A not-p(z) I P is a predicate symbol in L} 1 
H = H Y  

R E M A R K  1. Since the set of hypotheses and integrity constraints are fixed for 
all abductive programs over the fixed language L, we often write shortly K B  for 
the abductive program {KB, IC, HY). 

1All variables occurring in any clause of K B  U I C  are universally quantified at the front of this 
clause. 
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R E M A R K  2. For the sake of convenience and without loss of generality, we as- 
sume that  all programs considered in Part  1 are ground. 

A logic program P is transformed into an abductive program P* by replacing 
every negative literal -~p(t l , . . .  ,tn) in each clause body by no t -p( t l , . . .  , tn). For 
example, let P be {p ~-- ~q}. Then P* is {p ~-- not-q}. 

1.1. Acceptable Hypotheses and Preferred Extensions 

The semantics of abductive programs is based on the notions of scenario and ex- 
tension [34] recalled in the following definition. 

Definition 1. A scena r io  of an abductive program K B  is a first-order theory 
K B  U H where H C_ H Y  such that K B  U H U I C  is consistent. 

An e x t e n s i o n  of an abductive program K B  is a maximal (with respect to 
set inclusion) scenario of K B .  [] 

For any set of hypotheses H C_ HY ,  let Con(H, K B )  = {A c H B  I K B U H  ~- A}.  

Lemma O. Let K B  be an abductive program, and let H be a set of hypotheses. 
Then K B  U H U I C  is consistent iff Con(H, K B )  U H U I C  is consistent. 

PROOF. " ~ " .  Let T = Con(H, K B ) .  Then it is clear that  I = T U H is the least 
Herbrand model of K B  U {not-A *--I not-A E H}. Assume that  K B  U H U I C  is 
inconsistent. Then I is not a model of IC .  That means that I U I C  is inconsistent. 
Contradiction !!" ~ "  Obvious. [] 

In general, not every extension specifies an expected semantics of an abductive 
program. For example, let K B  = {p ~- not-q}. K B  has two extensions C1 = 
K B  U {not-q},C2 = K B  U {not-p}. But it is clear that  only C] captures the 
expected semantics of K B .  

The problem we are facing here is to determine those extensions, called preferred 
extensions, which specify the intended semantics of an abductive program. In other 
words, we have to specify when a hypothesis is acceptable. 

Intuitively, it is clear that  a h y p o t h e s i s  is a c c e p t a b l e  if t h e r e  is no  e v i d e n c e  
to  t h e  c o n t r a r y .  Let us take a closer look at this plausible rule. 

It is clear that  the contrary of a hypothesis not-A is the ordinary atom A. Hence, 
an evidence to the contrary of not-A can be considered as an evidence of A. 

Definition 2. Let / ( B  be an abductive program. A set of hypotheses E c H Y  is 
called an e v i d e n c e  of an atom A E H B  wrt K B  if K B  U E ~- A. [] 

At first look, it seems appropriate to view the inconsistency of E U S U I C  for 
each evidence E of A as the formal interpretation of the condition that there exists 
no evidence to the contrary of not-A wrt a scenario S. But unfortunately, this 
cannot go well, as the following example shows. 

Example 4. Let K B  : p ~-- not-p. Let S be the scenario K B  U 0. The only 
evidence of p is {not-p}. It is obvious that S' U {not-p} U I C  is inconsistent. Thus, 
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the hypothesis not-p would have no evidence to the contrary. So not-p should be 
acceptable. But it is clear that  not-p could not be accepted since S U {not-p} U [C 
is inconsistent. [] 

How could we interpret the condition "No Evidence to the Contrary" in the 
plausible rule? 

We say that  an evidence E of an atom A is defeated by a scenario S if there is 
not-B E E such that  S ~- B. So a hypothesis is acceptable iff each evidence to its 
contrary is defeated. 

Definition 3. A hypothesis not-A is said to be a c c e p t a b l e  wrt a scenario S if  for 
every evidence E of A, there is not-B E E such that S ~- B.  [] 

It is clear that  we are only interested in scenarios whose hypotheses are accept- 
able. Hence, the following definition. 

Definition 4. A scenario S = K BU H is a d m i s s i b l e  if  each hypothesis not-A ~! H 
is acceptable wrt S. [] 

Definition 5. A p r e f e r r e d  e x t e n s i o n  of an abductive program K B  is a maximal 
(wrt set inclusion) admissible scenario of K B .  [] 

Example 5. Let K B  = {p *- not-q}. $1 = K B  U {not-q}. $2 = K B U  {not-p} are 
two extensions of K B .  Since q has no evidence, not-q is acceptable wrt $1. So $1 
is admissible. Since {not-q} is an evidence of p and S2~Zq, not-p is not acceptable 
wrt $2. Thus, $2 is not admissible. Hence, $1 is the unique preferred extension of 
K B .  [] 

Example 6. Let K B  be p *- not-p. The only admissible scenario wrt K B  is 
K B  tJ O, which is also its unique preferred extension. [] 

Example 7 (Continuation of Example 2). Let us consider again the  abduct ive  pro- 
gram 

shave(Noel, t) ~ not-shave(t,t) 

mayor(Casanova) ~-- 

It is not difficult to see that  S = K B  U {not-shave(c, c) I c ¢ Noel} is the only 
preferred extension. Thus, S ~- shave(Noel, c) for each c ¢ Noel. That  means that  
our new semantics implies that  Noel shaves every person except himself. Thus, 
Noel shaves the mayor Casanova. [] 

The following lemma shows the correctness of the above definitions. 

Lemma 1 (Fundamental Lemma).  Let S be an admissible scenario, and let not-A, 
not-B be acceptable with respect to S. Then 

1) S'  = S t2 {not-A} is admissible 
2) not-B is acceptable with respect to S I. 
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PROOF. 1) Let S = K B  U H and H '  = H U {not-A}. We need only to prove that  
H t U K B  U I C  is consistent. Assume the contrary. Hence, from Lemma 0, there is 
an atom B such that K B  U H '  F- B and not-B E H' .  Thus, H '  is an evidence of B. 
Since not-B is acceptable with respect to S, there is not -X E H '  such that S F- X. 
Since H U K B  U I C  is consistent and H t = H U {not-A}, it follows that  X = A. 
Therefore, H is an evidence of A. Hence, there is not-Z E H such that S F- Z. It 
follows that  S U I C  is inconsistent. Contradiction !! So K B  U H~U I C  is consistent. 

2) Obvious. [] 

Let us denote the set of all admissible scenarios of K B  by AS~:B. The existence 
of at least one preferred extension for every program K B  is guaranteed by the 
following theorem. 

Theorem 1. 1) (ASKB,  C_) is a complete partial order, i.e., every directed subset 
of ASKB has a least upper bound. 2) For every admissible scenario S, there is 
at least one preferred extension K such that S C K .  

PROOF. 1) Let ~t be a directed subset of ASKB.  Let S = U{S' I S '  E gt}. We 
want to show that S is an admissible scenario. First, we have to show that  S U I C  
is consistent. Assume the contrary. Hence, there exists an ordinary atom A s.t. 
S t- A and not-A E S. Therefore, there exists S'  E ~ s.t. S t ~- A and not-A E S ~. 
Contradiction. Now, we want to show that each hypothesis not-A E S is acceptable 
wrt S. Let E be an evidence of an arbitrary atom A with not-A ~ S. From the 
definition of S, there is S ~ E ~ such that  not-A E S'. Therefore, there is not-B E E 
such that  S t ~- B. Hence, S F- B. So S is an admissible scenario. It is clear that  S 
is the least upper bound of ~t wrt set inclusion. 

2) Obvious. [] 

1.2. Relations to Stable Semantics 

Let KB be an abductive program. 2 A set M C_ H B  is called a stable model of K B  
iff M is the least Herbrand model of the program K B M  obtained by 1) deleting 
each clause in K B  whose body contains an abducible atom not-A s.t. A E M, and 
2) deleting all abducible atoms in the bodies of the remaining clauses [20]. 

In the following, we introduce the notion of stable extension. This notion has 
been used by Eshghi and Kowalski [14] (under another name) to relate negation as 
failure to abduction. 

A s t ab l e  e x t e n s i o n  is a scenario S such that for every ordinary atom A E H B ,  
either S F- A or not-A e S holds. 

Eshghi and Kowalski [14] have proved the following lemma. 

Lemma 2. Let K B  be an abductive program and let M be a set of ground ordinary 
atoms. Then M is a stable model of K B  if  and only i f  there is a stable extension 
S of K B  such that M = {A I A is an atom and S F- A}.  [] 

It is easy to see. 

2See Remark 2. 
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Theorem 2. Every stable extension, is a preferred extension, but not vice versa. 
[] 

Theorem 1, 2 show tha t  the preferred extension semantics generalizes stable se- 
mantics while overcoming its shortcoming. Now, it is interesting to ask the question 
as to under which conditions preferred extension and stable semantics coincide. 

1.3. Coincidence Between Stable and Preferred Extension Semantics 

Similar to the stable semantics, the Clark's completion semantics is not defined 
for every logic program. So much attention has been paid in the li terature to 
find sufficient conditions for the consistency of Clark's predicate completion [27, 
38]. Among the proposed conditions, Sato's order-consistency [38] is the most 
general one. Later,  Dung and Fages [10, 17] have showed tha t  order-consistency 
also guarantees the existence of at least one stable model. In this section, we 
will show tha t  order-consistency is sufficient for the coincidence between preferred 
extension and stable semantics. Later,  we will give also sufficient conditions for the 
coincidence among preferred extension, well-founded, and stable semantics. 

The atom dependency graph of an abductive program K B  is defined as follows. 
The  nodes of the graph consist of ground ordinary atoms in H B .  There is a positive 
(resp. negative) edge from an a tom A to an a tom B iff there is a ground clause in 
K B  whose head is A and whose body contains B (resp. not-B). 

The  binary relations ~+1, ~--1 are defined as follows: A ~+1 B(resp. A >_  t B) 
iff there is a pa th  from A to B containing an even (resp. odd) number of negative 
edges in the dependency graph. Further define 

A>>>B iff A >-_+1 B and A P--1 B 

A _ B iff there is a path  fromA to B containing at least one negative edge. 

An abductive program is said to be order-consistent if >>> is a well-founded 
relation [38]. An abductive program is said to be locally stratified if ~ is well- 
founded [31]. 

I t  is not difficult to see tha t  locally stratified programs are order-consistent, but 
not vice versa. 

The following theorem shows tha t  preferred extension semantics and stable se- 
mantics coincide for order-consistent programs. 

Theorem 3. The preferred extensions of order-consistent programs are stable. 

PROOF. See Appendix A. [] 

Example 8. Let K B : 

>>> = {(p,  q), ( ; ,  r )} .  
consistent. K B  indeed has exactly two preferred extensions which are stable. 

P ~ - - q  

P ( - - r  

r ~- not-q 

q ~-- not-r  

It  is clear >>> is well-founded. Hence, K B  is order- 
[] 
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1.4. Well-Founded and Complete Extension Semantics 

We will show in this section how the idea of well-founded semantics of logic pro- 
gramming can be captured in our framework. 

Let us denote the least admissible scenario K B  U 0 of an abductive program K B  
by $KB- 

An abductive program may have different semantics which can be defined as 
certain sets of admissible scenarios. An interesting question is whether or not 
there is a general characterization of these semantics. Since every semantics of an 
abductive program represents in some sense a possible world of the program, we 
expect that  this world is complete in the sense that every acceptable hypothesis 
must be accepted. Thus, the class of scenarios in which all acceptable hypotheses 
are accepted is to special interest to us. 

Definition 6. An admissible scenario S is called a c o m p l e t e  e x t e n s i o n  if  every 
acceptable hypothesis wrt S is accepted in S. In other words, an admissible sce- 
nario S is a complete extension if for any hypothesis not-A if not-A is acceptable 
wrt S then not-A E S. [] 

From the definition of preferred extensions as maximal admissible scenarios, it 
follows immediately: 

Theorem 4. Preferred extensions are complete extensions, but not vice versa. [] 

An example for the existence of a complete extension which is not a preferred 
extension is the least scenario of the program K B  = {p ~-- not-q, q ~-- not-p}. 

Let CEKB be the class of all complete extensions of K B .  
Each admissible scenario S has a c o m p l e t e  c losu re  which is the least (wrt 

set inclusion) complete extension containing S. We give now a construction for 
computing the complete closure of a scenario S. 

Let S E ASKB.  Define VKB : ASKB ---+ ASKB by VKs(S)  -- S UACCKB(S) 
where ACCKB(S) is the set of all acceptable hypotheses wrt S. 3 

The complete closure of an admissible scenario S can be constructed as the limit 
of the following sequence (S~)i of scenarios. 

So = S  

S~ = t2{Sj I J < i} for limit ordinal i 

S~+1 --- VK.(Si)  

It is not difficult to see that  (S~)~ is an increasing sequence (wrt set inclusion). 
Hence, it has a limit S* at some countable ordinal. From the fundamental lemma 
and Theorem 1, it follows immediately. 

Lemma 3. S* is the complete closure of S, i.e., S* is a complete extension, and 
for every complete extension R if  S c R,  then S* C R. [] 

Definition 7. The complete closure of the least admissible scenario is called the 
w e l l - f o u n d e d  e x t e n s i o n  denoted by WFE (i.e., W F E K B  = $*KB)" [] 

3The correctness of the definition follows directly from the fundamental lemma. 
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Theorem 5. 1) (CEKB,C) is a complete semilattiee. 4 2) WFE~:B is the least 
element of (CEKB,  C). 

PROOF. 1) From Theorem 1 and Lemma 3, it follows immediately that  (CEKB, C) 
is a complete partial order. We need only to show that every nonempty subset 
of CEKB has an inf. Let R be a nonempty subset of complete extensions. Let 
! tS  = {S  c ASKB [ S C_ E for each E E R}. It is clear that  R S  is not empty and 
directed. Let S E  = sup(_RS). It is clear that  S E  ~ RS.  Hence, SE* c R,S. Thus, 
SE* = SE.  So S E  is clearly the infimum of R in (CEKB, C). 

2) Obvious. [] 

The following theorem shows the coincidence between Van Gelder et al.'s well- 
founded model [19] and our well-founded extension. 

Theorem 6. Let K B  be a logic program and W F M I z B  be the well-founded model 5 
of K B .  Then 

W F M K B  = {A I A E H B  and W F E K B  b A} 

U{not-A I not-A c WFE~cB} 

PROOF. See Appendix B. [] 

From the coincidence between well-founded semantics and stable semantics for 
locally stratified programs [20, 19], it follows immediately that  

Theorem 7. Locally stratified programs have exactly one preferred extension which 
is stable and well-founded. [] 

A more general class of programs for which the preferred extension and well- 
founded semantics coincide can be found in [10]. 

As a program may have different semantics (represented by some complete ex- 
tensions) representing the different views peoples may draw from the program, it 
is meaningful to ask whether all of these different views may have something in 
common. From Theorem 5, it follows immediately that the well-founded seman- 
tics defined by well-founded extension represents the common ground for different 
semantics of a program. In other words, well-founded semantics is some kind of a 
skeptical semantics. 

1.5. Relations to Other Approaches 

To overcome the shortcoming of stable model semantics, Przymusinski has proposed 
the (three-valued) stable models [32] and the stationary semantics [36]. Sacca' and 
Zaniolo [40] have also introduced the partial stable models for the same purpose. 

4A partial order (R, E_) is a complete semilattice if every nonempty subset of R has an inf and 
every nonempty directed subset of R has a sup. 

5See Appendix B for a formal definition of the well-founded model. 
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Although based on totally different concepts, it turns out that  partial stable models 
are equivalent to preferred extensions [23]. Later, Brogi et al. [2] showed the equiv- 
alence between complete extensions and stationary expansions of logic programs 
(due to the fact that  the well-founded model coincides with the least s tat ionary 
expansion, this equivalence result is another proof for Theorem 6). Thus, we can 
say that  our framework provides a simple and intuitive framework for semantics of 
logic programming unifying different intuitions and approaches. 

Our approach is based on the notion of evidence defined in Definition 2. Kakas 
and Mancarella [22] argue that  this notion of evidence is too strong in the sense 
that  it views a set of hypotheses H satisfying the condition K B  U H ~- A, as an 
evidence of an atom A even if K B  U H U I C  is inconsistent. Their idea can be 
illustrated by the following example: 

Example. Let K B  be 

r ~-- not-p 
p ~ - - - q  

q ~-- not-q 

The only complete extension of K B  is KBUO, i.e., nothing could be concluded from 
this program. But consider the scenario K B  U {not-p}. The only could-be evidence 
to the contrary of not-p is K = {not-q}. But since K B  U K U I C  is inconsistent, 
K should not be considered as evidence to the contrary of not-p. So K B  U {not-p} 
should be admissible. That  means that  r should be concluded in this example. [] 

Based on the above illustrated idea, Kakas and Mancarella [22] have proposed 
a modification of preferred extension semantics allowing more information to be 
drawn from a program than our semantics. Interesting results related to this idea 
can also be found in [41]. Later, Pereira et al. [30] further developed Kakas and 
Mancarella's idea and proposed the O-semantics. Further, Dung et al. [13, 12], 
and recently Alferes et al. [1], have demonstrated that  the framework proposed 
in this paper can be generalized to provide a natural framework for the study of 
logic programming with "classical" negation. In another development, Kakas et 
al. [21] have pointed out that  our abductive framework embodies in fact an argu- 
mentational approach to semantics of logic programming. This is a fundamental 
insight. Generalizing this idea, in a recent work [11], we developed a simple and 
general theory for argumentation, and showed that  logic programming as well as 
nonmonotonic reasoning are just different forms of argumentation. A simple general 
and unifying argument-based framework for nonmonotonic reasoning has also been 
developed recently by Bondarenko et al. [3]. These new works give a qualitative 
new insight into the nature of logic programming and nonmonotonic reasoning. 

S U M M A R Y  

The results in Part  1 can be illustrated in the following picture: 

We can say that  the set of complete extensions, CEKB,  represents the universe of 
possible semantics of an abductive program in which well-founded semantics corre- 
sponds to the "minimalism" semantics where only things which hold in all possible 
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STABLE EXTENSIONS 

ADMISSIBLE SCENA 

• PREFERRED EXTENSIONS 
I 

I 

EXTENSIONS 

worlds are "believed," while the preferred extension semantics corresponds to the 
"maximalism" semantics where each preferred extension represents a "belief world" 
of an agent who tries to conclude as much knowledge as possible from an abduc- 
tive program considered as an incomplete knowledge base. In that  sense, complete 
extensions represent a "moderate" point of view which somehow lies between the 
two extreme positions of minimalism and maximalism. 

P A R T  I h  C O M P U T I N G  A B D U C T I V E  S O L U T I O N S  

A set of hypotheses E is called an a b d u c t i v e  s o l u t i o n  for a query Q wrt an 
abductive program K B  iff 

K B  U E~-Q and 

K B  U E is admissible. 

It  is clear tha t  if there exists an abductive solutions E for Q wrt KB,  then there 
exists a preferred extension K B U H  of K B  such tha t  E C_ H.  Hence, any procedure 
for computing abductive solution is also a proof procedure for preferred extension 
semantics. 

The  main goal of this part  is to show that  the procedure given by Eshghi and 
Kowalski in [14] is a procedure for computing abductive solutions. 

From now on, we call Eshghi and Kowalski's abductive procedure simply the 
EK-procedure  for short. 

2.1. Eshghi and Kowalski's Abductive Procedure 

The abductive procedure can be viewed as an extension of the SLDNF-resolution 
consisting of two interleaving activities: (a) reasoning backward for a refutation and 
collecting the required hypotheses, as shown inside an ordinary box in Example  9, 
and (b) checking tha t  the collected hypotheses are consistent, as shown in the bold 
boxes in Example  9. 

Let K B  be an abductive program. Let R be a safe computat ion rule (one tha t  
selects an abducible a tom only if it is ground). 

An a b d u c t i v e  d e r i v a t i o n  from (G1, Ha) to (G~, Hn) is a sequence 

(G~, H~), (G~, H2),..., (cn, H,~) 
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such that ,  for each i, 0 < i < n, Gi has the form ~ l, l ~ where (wi thout  loss of 
generali ty) R selects l, and 1 / is a (possibly empty)  collection of atoms, Hi is a set 
of hypotheses ,  and 

a b l )  if 1 is not  abducible 

then Gi+l  = C  and H i + l = H i  

where C is the resolvent of some clause in K B  with the clause Gi on the  
selected literal l. 
a b 2 )  If l abducible and l E Hi 

then  Gi+l =*--- l r and Hi+l  = Hi 

a b 3 )  If l is abducible (l = not-k) and 1 ¢ Hi and there  is a consis tency 
derivat ion from ({*- k}, Hi U {l}) to (0, H ' )  

then Gi+l =~--1 t and Hi+l = H ~ 

An a b d u c t i v e  r e f u t a t i o n  is an abduct ive  derivation to a pair ([], H~). 
A c o n s i s t e n c y  d e r i v a t i o n  from (F1, H1) to (Fn, H~) is a sequence 

(F1, H1), (F2, H 2 ) , . . . ,  (Fn, H~) 

such that ,  for each i, 0 < i < n, Fi has the  form {*- l, l'} U Fit, where (wi thout  loss 
of generali ty)  the  clause *-- l, l ~ has been selected (to continue the search), R selects 
l, and 

c o l )  If l is not  abducible 

then Fi+l  = C ' t A F ~  and Hi+l  = H i  

where C ~ is the set of all resolvents of clauses in K B  with the selected clause 
on the selected literal, and [] ~ C .  

co2)  If 1 is abducible,  l E Hi and l ~ is not  empty  

then  Fi+t  = {~-- l'} U F~ and H~+I = Hi  

co3) If l is abducible  (l = not-k) and l ¢ Hi 
then  if there  is an abduct ive  derivation from (~-- k, Hi)  to ([~, H' )  

then Fi+I = F~ and Hi+t = H '  

else if l I is not  empty  

then  Fi+l = {e---  l '} U F~ and Hi+l  = Hi.  6 

Example  9. Let  K B  be the following program: 

p ~- not-q 

q ~-- not-p 

6In the original definition of this procedure [14],Hi+1 = Hi t2 {l}, which is a minor error. See 
Appendix D for more details. 
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<-- p. ~ 
i 

not-q. 

{ not-q } 

{<-- ql, {not-q} I 

{~--- not-p}, {not.q} 

p, {not-q I 
t 

e-- not-q, { not-q } i 

~I. {not-q } 

~. {not-q} 

F I G U R E  1 

The search space for the goal (~- p, O) is given in Figure 1.~ 

The correctness of the abduction procedure for an abductive program K B  means 
that  whenever there exists an abductive derivation from (~- A, 0) to ([], H)  for 
A q H B ,  then H is an abductive solution of A. 

Theorem 8 (Soundness of the abductive procedure). Let (~- A,  0), . . . ,  ([], I t )  be 
an abductive refutation. Then K B U H  is an admissible scenario and K B U H  ~- A.  

PROOF. See Appendix C. [] 

In general, the EK-procedure given above is not complete, as the following ex- 
ample shows. 

Let K B  be the following program: 

p ~ not-q 
q ~ - - - q  

It is clear tha t  E = {not-q} is an abductive solution for p, but there is no abdnctive 
refutation for the goal ~ p (due to the loop caused by the second clause). 

To have a complete procedure, several problems have to be addressed. First, a 
mechanism for loop checking is needed. Second, a form of constructive negation 
is needed to overcome the floundering problem. The second question has been 
addressed in a recent paper of Kakas and Mancarella [25]. 

Another kind of completeness of the EK-procedure has been recently studied by 
Giordano et al. [18]. Instead of extending the EK-procedure to provide a complete 
procedure for computing abductive solutions, they have changed the semantics 
to fit the EK-procedure. A three-valued semantics has been proposed, and the 
completeness of the EK-procedure with respect to this semantics has been shown 
for ground programs [18]. 
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2.2. EK-Procedure and the Stable Marriage Problem 

The stable marriage problem is a special case of the graph matching problem which 
has been studied extensively in the literature due to its wide applicability 7 [39]. 
In [29], Marek et al. have shown that there is a close relation between the stable 
marriage problem and nonmonotonic reasoning. Later, in [11], we show that  the 
stable marriage problem can best and most naturally be viewed as a problem of 
argumentation. In this section, we will demonstrate how the EK-procedure can be 
applied to solve a modified version of the stable marriage problem in a natural way. 

Assume that we have N men and M women who have expressed mutual prefer- 
ence (each man must say how he feels about each woman and vice versa). Let A 
be one of the men and let B be one of the women. Let us imagine further that,  due 
to some hidden reason, you want to arrange a marriage between A and B. Now, 
the problem is that  A may prefer someone to B or B may prefer someone to A. 
For example, A may prefer C to B. So to prevent A from running away with C, 
you would have to arrange a marriage for C with someone whom she prefers to A. 
In short, to create a stable marriage between A and B, you have to create a stable 
marriage for all those whom A (resp. B.) prefers to B (resp. A). 

The above problem can be represented by the following logic program P = 
P1 U P2 with 

P1 : smarriage(X, Y) ~-- ~ umarriage(X, Y) 
umarriage(X, Y) *-- prefer(X, Z, Y), smarriage(X, Z) 

umarriage(X, Y) ~- prefer(Y, Z, X),  smarriage(Z, Y) 

P2 : a set of facts about the preference of the involved individuals 

where smarriage(X, Y) means that  a marriage between X, Y is stable, umarriage 
(X, Y) means that a marriage between X, Y is unstable, and prefer(X, Z, Y) means 
that  X prefers Z to Y. 

Let K B  be the corresponding abductive program of P. It is not difficult to see 
that  the task of arranging a stable marriage between A and B can be reduced to 
the task of finding an admissible scenario K B  U H of K B  s.t. K B  tJ H ~- smarriage 
(A, B).  Such a scenario can be found by applying the EK-procedure to the query 
*-smarriage(A, B). Let assume, for example, that  we have three men and three 
women with the following lists of preference: 

A B C a b c 
b a b A B A 
a b c B A C 
c c a C C B 

We want to arrange a marriage between A and b. Since b prefers B to A, we have to 
get B married to someone whom he/she prefers to b to avoid b running away with 
B. Since B prefers a to everybody, it seems the best solution is to get a to agree 
to marry B. a prefers only A to B, but A prefers b to a, so there is not chance for 

7For example, in the U.S., a quite complicated system has been set up to place graduating 
medical students into hospital residency positions. Each student lists several hospitals in order 
of preference, and each hospital lists several students in order of preference, The problem is to 
assign the students to positions in a fair way, respecting all the stated preferences. 
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a to get A, and since B is the second best choice for a, it is clear tha t  a agrees to 
mar ry  B. Thus, to make the marriage between A and b stable, we have helped B 
mar ry  a and this marriage is also stable. 

The corresponding abductive program is 

smarr iage(X,Y)  ~ not-umarriage(X, Y) 

umarr iage(X,Y)  ~-- prefer(X, Z ,Y) ,  smar r iage(X,Z)  

umarr iage(X,Y)  ~- prefer(Y,Z, X) ,  smarriage(Z, Y) 

prefer(A, b, a) ~- 

prefer(A, a, c) ~- 

prefer(A, b, c) ~- 

prefer(B,a ,  b) ~- 

prefer(B, b, c) ~-- 

prefer(B, a,c) ~- 

prefer(a, A, B) ~- 

prefer(a, B, C) ~- 

prefer(a, A, C) 

prefer(b,B, A) ~-- 

prefer(b, A, C) ~-- 

prefer(b ,B,~ ' )  ~- 

The  search space for the query ~-- smarriage(A, b) is given in Figure 2. s 

C O N C L U S I O N  

We have shown tha t  the abductive framework provide a simple basis for declarative 
and operational semantics of logic programs. We have introduced the notions of 
admissible scenarios, preferred, and complete extensions, and have demonstrated 
how these new notions provide a unified framework which captures and generMizes 
different semantic concepts (e.g., well-founded models, stable models) in logic pro- 
gramming.  The key step is the way we interpret the plausible rule that  a hypothesis 
is acceptable if there is no evidence to the contrary. 

We argue that ,  in general, well-founded semantics is a minimalism semantics and 
preferred extension semantics is a maximalism semantics, while complete extensions 

SDue to space constraints, we write sm for smarriage and um for umarriage. Further, we often 
omit to writing down explicitly the set of hypotheses Hi+l in a derivation step if Hi = Hi+l.  
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<--sm(A.b), O 
I 

*---no~-um(A.b) 

{ <-- um(A,b)}, /nor-lun(A,b)/ 

j { ".--p~ fer¢ A.Z,b },sm~ A.Z). *.-prefen b.Z.A ),sm~ Z.b) } 
I 

[ { <-.-prefer{ b,Z,A),sm(Z.b) } 

J [ ~--$m(B,b)} 
i 

I (~-not-um(B.b) } 

<,-um(B,b). [not-um~A.b)/ 
i 

<--p~ fer( B,Z.b),sm( B ,Z) 

~sm(B,a)  

~--aot-um(B,a) 

(<--um(B,a) }, fnor-um{A,b),not-u~B,a)/ 

{ <---pre f~'fB .Z.a~.sm(B .Z), 
~prefen~a.Z,B),sm(Z,a) } 
I 

{ ~pre fcr(a.Z,B ),sm(Z,a) } 
l 

I 

{ ~sm(A,a) } 
l 

{ <---not-um(A,a) } 

<----um(A,a), {not-um(A.b),not-lunIB.a)/ 
l 

~--prefer(A,Z,a).sm(A.Z) 
I 

<---sm(A,b) 
l 

i 

<--not-um(A.b) 
I 

~. {notoumiA,b),not-luniB, a)/ 

~]. {not-um(A.b),not-um(B,a)] 

~, not-um{A.bLnor.um(B,a)/ 

~]. [nor-umtA.b).not-um(B,a// 

F I G U R E  2 
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form a kind of a "moderate"  semantics. Further,  we have shown tha t  for the class 
of order-consis tent  programs,  preferred extensions and stable semantics coincide. 

A P P E N D I X  A 

A set I c_ H B  U H Y  of ground ordinary and abducible a toms is consistent if there is 
no a tom A s.t. bo th  A and not-A belong to I .  In [10, 17], the following proposi t ion 
is proved: 

Proposition 1. If  K B  is an order-consistent  program, then K B  has at least one 
stable extension. [] 

Proposition 2. Let K B  be an arbi t rary  abduct ive program, and let S = K B  U H 
be an a rb i t ra ry  preferred extension of K B .  Further,  let C be a clause with head 
A in K B  such tha t  no t -A E H. Then  body(C)  U H is inconsistent.  

PROOF. Assume the contrary. So each ordinary a tom B c body (C)  has an 
evidence EB such tha t  for each no t -X  E E B , S F X .  Let E = U{EB i B E 
body (C)  N H B }  U(body(C)  N H Y ) .  E is an evidence of A. Since not-A c H,  
there is no t -B  E E such tha t  S F B. Contradic t ion !! [] 

Theorem 3. The preferred extensions of order-consistent programs are stable. 

PROOF. Let S = K B  U H be an arbi t rary  preferred extension of A'B.  Let Q 
be the program obtained from K B  by 1) deleting each clause C s.t. body (C)  U 
H is inconsistent,  and 2) deleting all occurrences of abducible a toms no t -B  E 
H in the remaining clauses. It  follows immediately  tha t  Q is again an order- 
consistent  program. From Proposi t ion 1, Q has at least one stable extension. From 
Proposi t ion  2, it follows tha t  none of the hypotheses in H appears  in Q z~nd for 
no ordinary  a tom A appear ing in Q, not -A appears  in H.  Let S ~ = Q u H '  be a 
stable extension of Q. It  is (,.lear t ha t  H is a subset of H t. We want  to show tha t  
K B  U H ~ is a stable extension of K B .  First,  from the consistency of Q u H '  u IC  
immedia te ly  follows the consistency of K B  U H'  U IC. Further,  it is clear t ha t  for 
each A E H B ,  either K B U H  ~ I- A or not -A ~ H ~. In other  words, K B U H  ~ is 
stable. From the assumpt ion  tha t  K B  U H is a preferred extension, it follows tha t  
H = H ' .  So S is a stable extension of K B .  [] 

A P P E N D I X  B 

A set I C H B  U H Y  of ground ordinary  and abducible a toms is consistent if there 
is no a tom A s.t. bo th  A and not -A belong to I .  A partial  in terpreta t ion is a 
consistent  set of ord inary  and abducible atoms. Given a part ial  in terpreta t ion I ,  a 
set S of ground ord inary  a toms is called an unfounded set of an abduct ive  p rogram 
K B  wrt  I iff for each a tom A E S, for each clause C in K B  whose head is A, 9 one 

9Note that we assume that KB is ground. 
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of the following conditions holds: 

1) body(C) U I is inconsistent 
2) There is at least one ordinary atom B in the body of C such that  B E S. 

It is clear that  the union of unfounded sets is again unfounded. Hence, there always 
exists a greatest unfounded set wrt partial interpretation I. This set is denoted by 

au(o. 
Define 

TKB(I) ~- {A I 3C E K B  s.t. A = head (C) and the body of C is true wrt I} 

WKB(I) : TKB(I) O {not-A I A E GU(I)} 

The well-founded model of KB,  denoted by WFMKB, is defined as the least fixed 
point of the monotonic operator WKB[19]. 

For the proof of the coincidence between well-founded model and well-founded 
extension, we need the following notion of proof trees. 

1) If A ~- is a clause in KB,  then the tree 

A 

l 
[] 

is a proof tree of A. 
2) If A ~- no t -A1, . . . ,  not-An is a clause in KB,  then the tree 

A 

J \  
not-A1. . ,  not-An 

is a proof tree of A. 
3) If A ~ A1 , . . . ,  An, not-An+i, • • •, not-An+m is a clause in KB,  and T1,. •. ,  Tn 

are proof trees of A1, . . . ,  An, respectively, then the tree 

A 

T 1 ~ + 1  . ~ . .  not-An+,~ 

is a proof tree of A. 

Lemma 4. Let K B  be an abductive program, and let S = K B  U H be an ad- 
missible scenario of KB.  Further, let I be a partial interpretation defined by 
I = Con(H, KB)  U H. Then for each ordinary atom A ~ HB,  not-A is accept- 
able wrt S iff A E GU(I). 

PROOF " ~ "  Let A E GU(I). Assume that  not-A is not acceptable wrt S, i.e., 
there is an evidence E of A such that  for each not-B E E,  SIZB. Then there exists 
a proof tree Tr of A wrt K B  whose terminal nodes belong to E U {C?}. We first 
prove the following proposition. 
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Proposition. There is a path in Tr from the root A to a terminal node not-B such 
that  all the positive literals on this path belong to GU(I) and B E I. 

PROOF. By induction on the height (the length of the longest path from the root 
to a terminal node) of Tr. 

Base case: The height of Tr is 1. The proposition follows directly from the fact 
that  GU(I) is an unfounded set. 

Induction case: Let the height of Tr be n. Let C be the clause such that  body 
(C) is the set of all children of A in Tr. Since GU(I) is an unfounded set and 
A E GU(I), it follows that either IU body(C) is inconsistent or there is B E 
body(C) N GU(I). 

Case 1: IU body(C) is inconsistent. Case 1.1: There is an ordinary atom /3 
body(C) such that  not-B E I. Hence, not-B is acceptable wrt S. As E is an 
evidence of B, there is not-B ~ in E such that  S ~ BC Contradiction. So Case 1.1 
does not occur. Case 1.2: There is an abducible atom not-B in body(C) such that  
B E I. This leads to a contradiction since not-B E E. So Case 1.2 cannot occur 
either. 

Case 2: There is B E body(C) N GU(I). The subtree Tr' with root B of Tr is 
again a proof tree of B wrt KB.  As height of Tr' is less than or equal to :r~ - 1 
and B ~ GU(I), it follows that  there is a path from the root B to a terminal node 
not-B ~ in Tr ~ such that all the positive literals on this path belong to GU(I) and 
B t E I. The proposition then follows immediately. 

The proposition implies immediately that for each A E GU(I), not-A is accept- 
able wrt S. 

" 3 "  Let X = {B I not-B is acceptable wrt S}. We want to prove that X is an 
unfounded set of K B  wrt I. Assume that X is not an unfounded set wrt I. Then 
there is an atom A E X and a clause A *- Bd in K B  such that  I U Bd is consistent 
and no ordinary subgoal in Bd belongs to X. Thus, there exists an evidence EB 
for every ordinary subgoal B in Bd such that S~ZB ~ for each not-B t E EB. Let 
E = © { E B  I B E B d  N H B } U { n o t - B  I not-B EBd} .  Then it is clear thar~Eis  
an evidence of A. Since not-A is acceptable wrt S, there is not-B ~ E E such that  
S ~- B' .  Thus, not-B ~ E Bd. This is a contradiction to the fact that  I U Bd is 
consistent !! So X is unfounded wrt I. [] 

Theorem 6. Let K B  be a logic program, and let WFMKB be the well-founded 
model of KB. Then 

WFMtcB = {A I A E HB and W F E K s  F A} 

U{not-A I not-A E W F E ~ B }  

PROOF. Follows immediately from Lemma 4. [] 

A P P E N D I X  C 

We show now the correctness of the abductive procedure. 
Let 

f l :  (G1, H1), (G2 , / / 2 ) , . . . ,  (0, Hn) be an abductive refutation, and 
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# : (G1, K]), (F2, K 2 ) , . . . ,  (0, Kin) be a consistency derivation. 

Define 

/3 > # if there is Gi =*- l, l ~ such that  I = not-k, l ¢ Hi, and # is a consistency 
derivation from ( { ~  k}, HiU{/}) to (0, H')  such that  Gi+l = ~  l' and Hi+l = 
H ~ 
# > /3 if there is Fi = {~-- l , l ' }UF/ '  such that  l = not-k,l  C K i  and /3 is 
an abductive derivation from (~--- k,/~i) to ([], K ' )  such that  Fi+] = F/~ and 
K~+I = K' .  
If G1 =~--- A, then the set of all hypotheses appearing in goals Gis in /3 is 
called the ev idence  of  A g e n e r a t e d  by/3.  

Further, let >> be the transitive closure of >. 
It is obvious that  the following Lemmas hold. 

Lemma 5. 

1) Let/3 be an abductive refutation, and let # : ({~- B } , K ) , . . . ,  (O,K') be a 
consistency derivation such that/3 >> #. Then not-B E K.  

2) Let/3 be an abductive derivation and/3 : (~-- B, M ) , . . . ,  ([], M')  be an abduc- 
tive derivation such that/3 >>/3. Then not-B ~ M. 

3) Let # be a consistency derivation from ({~-- A } , K )  to (0, K') .  Let E be an 
evidence of A. Then for some not-B E E, there exists an abductive refutation 
/3 from (~- B, H) to ([2, H') such that # >/3. [] 

Lemma 6. If there exists an abductive refutation from (~-- A, H) to ([2, H'), then 
there exists no consistency derivation from ({~--- A}, K)  to (0, K')  for any K 
with H ~ c K .  [] 

Lemma 7. Let/3 be an abductive refutation from (~- A, H) to ([], H t) such that 
not-A ~ H. Then not-A ¢ Hq 

PROOF. Assume the contrary. Then there exists a consistency derivation # : ({~-- 
A}, K ) , . . . ,  (0, K')  for some K such that/3 >> p. Let E be the evidence of A gener- 
ated by/3. Thus, there exists an abductive refutation/3' : (~-- B, M ) , . . . ,  ([], M')  for 
some not-B c E such that  p >/3 ~ (Lemma 5.3). It is clear that  not-B ¢ M(Lemma 
5.2). Since not-B E E and E is generated by/3, there is a consistency derivation 
#' from ({~-- B}, R) to (0, R') such that /3  > #'. It is clear that  not-B E R. Since 
not-B ¢ M and not-B E R, it follows that  p~ (as a process) starts after /3~ in 
the process of/3. Then either /3' >> #~ or /3 ~, #' are disjoint. Since /3 > #~ and 
/3 >> # >/3~, it follows immediately that/3~,#~ are disjoint. Thus, M ~ C R. Lemma 
6 implies that  #~ does not exist. Contradiction!! [] 

Lemma 8. Assume that there is an abductive refutation/3 from (~-- A, O) to ([3, H).  
Then H LJ K B  U I C  is consistent. 

PROOF From Lemma 5.3, it follows immediately 

Proposition. Let not-B C H and E is an evidence of B. Then for some hypothesis 
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n o t - X  E E,  there  exists an abduc t ive  refuta t ion /3i f rom (+-- X,  R) to (•, R I) 
such t h a t / 3  >>/3'. 

Assume  t h a t  K B  U H U I C  is inconsistent.  Then  there  is an a t o m  X such 
t h a t  n o t - X  E H and X E Con(H ,  K B ) .  From no t -X  E H and H is an evidence 
of X,  it follows f rom the above proposi t ion t ha t  there  is no t -B  E H wi th  an 
abduc t ive  refutat ion/31 f rom (--~ B,  K )  to ([~, K ' )  such t ha t  /3 >>/3'. It  is clear 
t h a t  no t -B  ~ K ( L e m m a  C1.2). But  since no t -B  ~ H,  there  is a consis tency 
der ivat ion # f rom ({*-- B},  R) to (¢, R ' )  such t h a t / 3  >> p and not-/3 c R. There  
are two cases: 

Case 1. /3 / >> #. T h a t  means  t h a t  no t -B  ~ K ~, Contradic t ion  to Lemma. 7. 
Case 2. # and /3 / are disjoint. Thus,  p (as a process) s tar ts  after /31 {as a 

process)  t e rmina te s  in/3 (as a process).  Then  it is (:lear t ha t  K ~ C R. L e m m a  6 
implies t h a t  p does not exist. Cont radic t ion  !! [] 

I t  follows immedia te ly  f rom L e m m a s  5, 8. 

Theorem 8 (Soundness of the abduction procedure). Let ( ~-- A, O) . . . .  , ([], H)  be art 
abductive refutation. Then K B U  H is an, admissible scenario such that K B U  H b 
A. [] 

A P P E N D I X  D: T H E  O R I G I N A L  E S H G H I  A N D  K O W A L S K I  A B D U C T I O N  
P R O C E D U R E  [14] 

T h e  definit ion of the  original abduc t ion  procedure  is similar to the  definition of the  
modif ied abduc t ion  procedure  given above, wi th  the one exception t h a t  s tep (co3) 
is replaced by (co3') as follows. 

co3 ' )  If  1 is a hypothesis  (l -- not-k) ,  1 ~ Hi 
then  if there  is an abduc t ive  derivat ive from (*-- k, Hi )  to ([], H I) 

then  Fi+l = F [  and H~+I = H  / 

else if l' is not  e m p t y  

then  Fi+l  = { ~ - - l ' } U F ~ '  and H i + l = H i U { 1 }  [] 

T h e  following theo rem is given in [14]. 

Theorem. Let K B  be a locally stratified abductive program. Then the abduction 
procedure for K B  is correct. [] 

T h e  following simple example  shows tha t  this is not the  case. 
COUNTEREXAMPLE. Let  K B  be the  following program:  

a +--- not-b 

b +-- not-c  A not - r  

r ~-- not-c  

c ~-- not-d 

d + - - d  
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I 
I 

not-b. 

I 

I 

t~ ' -  o l ,  (not-O} 

I 

I ~  not-c ^ not-r}, {not-bt 
I 

since there is no refumUon for (*-- c.{no~-b}) I 
{~---- n o t - r } ,  { n o t - b . n o t - c }  

~ -r. { not-b,not-c t 

~-.o,-¢. I.ot-b.~o~-¢i 
C1 { not-b.not-c } 

~ .  { not-b,not-c } 

{ not -b .not -c  } 

F I G U R E  3 

It is clear that  KB is stratified, hence also locally stratified. The unique stable 
model of K B  is {c, a}. The unique preferred extension of K B  i s /E  = K B  U H 
with H = {not-d, not-r, not-b} and Con(H, KB)  = {c,a}. Thus AS is a stable 
extension. 

Since there is not consistency derivation from ({+-- d}, { not-b, not-d}) to (0, S) 
for any S, there exists no abductive refutation from (*-- c, {not-b}) to (•, R) for 
any R. Thus, we obtain the search space shown in Figure 3. 

If the above theorem is correct, then not -c  E {not-d,  n o t - r ,  not -b} C o n t r a -  
d ic t ion!!  

So this example represents a counterargument to the above theorem that  the 
abduction procedure is sound for locally stratified programs. 

It is interesting to note that  in an earlier and unpublished version of their ab- 
ductive procedure, Eshghi and Kowalski [15] have used the following co3") instead 
of the above co3q 

co3") If 1 is a hypotheses (l = not-k), l ¢ H~ 
then if there is an abductive derivation from (~-- k, H~) to ([], Hi) 

then F~+l = F ~  and Hi+l = H '  

else if l' is not empty, and there is no such derivation (the abductive proof 
procedure finitely fails to find one) 

t h e n F i + l : { ~ - - l ' } U  F '  and H I + I = H I U { / }  [] 

It is easy to see that  this version of the abductive procedure works correctly for 
the above example. But a formal proof of its correctness remains to be found. 
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