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Abstract

For a tree T and an integer k�1, it is well known that the kth power T k of T is strongly chordal and hence has a strong elimination
ordering of its vertices. In this note we obtain a complete characterization of strongly simplicial vertices of T k , thereby characterizing
all strong elimination orderings of the vertices of T k .
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Strongly chordal graphs have received much attention since first defined in [9], in particular because they yield
polynomial time solvability of the domatic set and the domatic partition problems. For more information on these
problems we refer the reader to [4,10,13,6]. In [9] a characterization of strongly chordal graphs in terms of balanced
matrices is given. In [12,8] it is shown that any power of a strongly chordal graph is again strongly chordal. We should
note that this does not hold for chordal graphs in general: only odd powers of chordal graphs are guaranteed to be
again chordal, as was first explicitly shown in [3]. A simpler proof of this result can be found in [2]. Since a tree is
strongly chordal, then any power of a tree is again strongly chordal. Although a direct consequence of [12,8], this was
also shown explicitly in [7]. Since any power of a tree is strongly chordal, this implies that it has a strong elimination
orderings of its vertices.

The purpose of this note is to characterize completely the strongly simplicial vertices of a power of a tree, and
thereby give a complete characterization of the strongly elimination orderings of the vertices of a power of a tree.
Strongly simplicial vertices of powers of trees can be applied to obtain an optimal greedy vertex coloring of squares
of outerplanar graphs, as described in detail in [1]. In particular, we derive here Theorem 2.9 and Corollary 2.11, the
latter of which was used to obtain the mentioned optimal greedy coloring algorithm in [1]. We should stress that the
main result of this note is not a theorem, but rather Definition 2.2. Namely the mere statement of what we mean by
k-strong simplicity of a vertex in a tree, as described in Lemma 2.1.
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General notation: The set {1, 2, 3, . . .} of natural numbers will be denoted by N. All graphs in this note are assumed
to be simple and undirected unless otherwise stated. The degree of a vertex u in graph G is denoted by dG(u). We
denote by NG(u) the open neighborhood of u in G, that is the set of all neighbors of u in G, and by NG[u] the closed
neighborhood of u in G, that additionally includes u. The distance �G(u, v), between vertices u and v, is the number of
edges in a shortest path between them. When the graph in question is clear from context, we omit the subscript in the
notation. For a graph G and k ∈ N, the power graph Gk is the simple graph with the same vertex set as G, but where
every pair of vertices of distance k or less in G is connected by an edge. In particular, G2 is the graph in which, in
addition to edges of G, every two vertices with a common neighbor in G are also connected with an edge. The closed
neighborhood of a vertex u in Gk will be denoted by Nk

G[u] and the degree of vertex u will be denoted by dk(u).
Recall the following definition:

Definition 1.1. A vertex u in a graph G is simplicial if NG[u] induces a clique in G. If u is simplicial and {NG[v] :
v ∈ NG[u]} is linearly ordered by set inclusion, then u is strongly simplicial.

A graph G is strongly chordal if it has a strong elimination ordering of its vertices V (G) = {u1, . . . , un}, such that
each vertex ui is strongly simplicial in the subgraph of G induced by ui and the previous vertices u1, . . . , ui−1. Clearly,
a vertex of a tree is strongly simplicial if, and only if, it is a leaf, which gives us a complete description of when exactly
an ordering is a strong elimination ordering of the tree. To describe strong simplicity in T k for arbitrary k ∈ N, we
need to introduce some special notation for trees.

Notation and terminology of trees: The leaves of a tree T will be denoted by L(T ). The diameter of T is the number
of edges in a longest path in T and will be denoted by diam(T ). For a tree T with diam(T )�1 we can form the pruned
tree pr(T )=T −L(T ). For two vertices u and v of a tree T, the unique path between them will be denoted by pT (u, v)

or by p(u, v) when there is no danger of ambiguity. The vertices of this path, including both u and v, is given by
V (p(u, v)). A center of T is a vertex of distance at most �diam(T )/2� from all other vertices of T. A center of T is
either unique or one of two unique adjacent vertices. Clearly, the power graph T k of a tree T is only interesting when
k ∈ {1, . . . , diam(T ) − 1}. For U ⊆ V (T ) the join of U in T is the unique smallest subtree of T connecting all of U
together. The connector of three leaves of T is the unique vertex of degree three in the join of the leaves.

Let T be rooted at r ∈ V (T ). The kth ancestor of u ∈ V (T ), if it exists, is the vertex on p(u, r) of distance k from
u, and is denoted by ak

r (u). An ancestor of u is a vertex of the form ak
r (u) for some k�0. Note that u is viewed as an

ancestor of itself. The descendants of u, denoted by Dr [u], is the collection of all the vertices having u as an ancestor.
For u ∈ V (T ), the distance �T (u, r) to the root r will be referred to as the level of u and denoted by lT (u) or by l(u)

when there is no danger of ambiguity. For U ⊆ V (T ) the least common ancestor of U, denoted by lca(U), is the unique
common ancestor of U on the largest level. For a vertex u in T the subset Ru ⊆ V (T ) contains all r ∈ V (T ) with
�T (u, r) maximum. Note that this definition of Ru works for unrooted trees T. Also note that for each u ∈ V (T ) we
necessarily have Ru ⊆ L(T ). In fact, we have the following observations that will be useful in the next section.

Claim 1.2. Let T be a tree and u ∈ V (T ). Then the center(s) of T is(are) on the path p(u, r) for each r ∈ Ru.

Proof. Root T at a center c. If r ∈ V (T ) is such that c is not on the path p(u, r) then there is a longer path going from
u through c, and hence r /∈ Ru. �

Claim 1.3. Let T be a tree, u ∈ V (T ) and r ∈ Ru. Then r is an endvertex of a path of T of maximum length diam(T ).

Proof. By Claim 1.2 the center(s) of T is(are) on p(u, r). If c is a center of T, then there is a vertex x that is (i) an
endvertex of a maximum length path of T and (ii) such that c ∈ V (p(u, x)). By definition we have �T (u, x)��T (u, r)

and hence �T (c, x)��T (c, r). Therefore, equality holds and r is also an endvertex of a maximum length path in T. �

By the above two Claims 1.2 and 1.3 we have the following.

Claim 1.4. Let T be a tree with diam(T ) = d and u ∈ V (T ). If u ∈ V (T ) and r ∈ Ru, then �T (u, r)��d/2�.

With this setup we can start to discuss our first results, the characterization of simplicial vertices of powers of trees.
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2. Characterization of simplicial vertices

We start with the following lemma.

Lemma 2.1. Let T be a tree, u, r ∈ V (T ) and k ∈ N. If T is rooted at r, let Pu;k(r) be the following statement:

Pu;k(r): If ak
r (u) exists, then �T (v, ak−1

r (u))�k −1 for all v ∈ Dr [ak−1
r (u)]. Otherwise (if ak

r (u) does not exist),
T k is a complete graph.

Then the truth value of Pu;k(r) is independent on r ∈ Ru.

Proof. By definition of Ru the kth ancestor ak
r (u) exists for one particular r ∈ Ru iff ak

r (u) exists for all r ∈ Ru. Hence,
we can assume that ak

r (u) exists for all r ∈ Ru. In this case we may further assume u to be a leaf of T, since otherwise
Pu;k(r) is false regardless of r ∈ Ru. For r, r ′ ∈ Ru it suffices to show that if Pu;k(r) does not hold, then Pu;k(r ′) does
not hold either:

Since all three vertices r, r ′ and u are leaves of T, we have the connector u′ ∈ V (T )\{u, r, r ′}. Clearly we have
�T (u′, r) = �T (u′, r ′). Looking at the join of r, r ′ and u, there are two cases to consider.

If ak−1
r (u) ∈ V (p(u, u′)), then ak−1

r (u) = ak−1
r ′ (u) and Dr [ak−1

r (u)] = Dr ′ [ak−1
r ′ (u)] so Pu;k(r ′) is also false in this

case.
If ak−1

r (u) ∈ V (p(u′, r)), then ak−1
r ′ (u) is the corresponding vertex of V (p(u′, r ′)) at the same distance from u′ as

ak−1
r (u) is. Assume there is a descendant v of ak−1

r (u) with �T (v, ak−1
r (u))�k. We must consider three separate cases

of the location of the connector v′ of r, r ′ and v to be.
First case: v′ ∈ V (p(u, u′)). Here v ∈ Dr [ak−1

r (u)]∩Dr ′ [ak−1
r ′ (u)] and further �T (v, ak−1

r ′ (u))=�T (v, ak−1
r (u))�k,

so we have Pu;k(r ′) to be false in this case.
Second case: v′ ∈ V (p(u′, r)). Here �T (v′, ak−1

r (u))��T (v′, ak−1
r ′ (u)) and hence

�T (v, ak−1
r ′ (u)) = �T (v, v′) + �T (v′, ak−1

r ′ (u))

��T (v, v′) + �T (v′, ak−1
r (u))

= �T (v, ak−1
r (u))

�k.

Since ak−1
r ′ (u) ∈ V (p(v, r ′)) the vertex v is a descendant of ak−1

r ′ (u) when T is rooted at r ′. Hence Pu;k(r ′) is false in
this case as well.

Third case: v′ ∈ V (p(u′, r ′)). By definition of Ru we have that �T (u, r ′)��T (u, v), and hence �T (v′, r ′)��T (v′, v).
By symmetry we have therefore

�T (r, ak−1
r ′ (u)) = �T (r ′, ak−1

r (u))

= �T (r ′, v′) + �T (v′, ak−1
r (u))

��T (v, v′) + �T (v′, ak−1
r (u))

= �T (v, ak−1
r (u))

�k.

Since ak−1
r ′ (u) ∈ V (p(r, r ′)) the vertex r is a descendant of ak−1

r ′ (u) when T is rooted at r ′. Hence Pu;k(r ′) is false in
this final case. This completes our proof of the lemma. �

Remark. The statement Pu;k(r) can, at first sight, seem complex. By the right view point it is however quite natural
and simple:

1. First root T at the vertex u.
2. The vertices at the lowest level constitute the set Ru ⊆ L(T ).
3. Pick r ∈ Ru and re-root T at r.
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4. If ak
r (u) does not exist, then Pu;k(r) is true only if k�diam(T ).

5. If ak
r (u) does exist, then Pu;k(r) is true only if u is on the lowest level of the sub-tree of T that is rooted at ak−1

r (u).

By Lemma 2.1 the following definition makes sense.

Definition 2.2. Let T be a tree and k ∈ N. We say that a vertex u ∈ V (T ) is k-strongly simple, or k-ss for short, if the
statement Pu;k(r) from Lemma 2.1 is true for one (and hence all) r ∈ Ru.

Note that by definition we have a0
r (u) = u for every vertex u ∈ V (T ). Hence, a vertex u in a proper tree T (with at

least one edge) is 1-ss in T if, and only if, u is a leaf of T. Also note that in general for 1�k < diam(T ), only leaves of
T can possibly be k-ss.

By Claim 1.4 and Definition 2.2 we have the following.

Corollary 2.3. If 1�k′ �k��d/2� and u ∈ V (T ) is k-ss, then u is also k′-ss.

The next result describes k-strong simplicity for the remaining interesting values of k:

Theorem 2.4. Let T be a tree and u ∈ V (T ). If d = diam(T ) and k ∈ {�d/2�, . . . , d − 1}, then the following are
equivalent:

1. u is an endvertex of a path of maximum length d.
2. u is k-ss.
3. u is �d/2�-ss.

Proof. By Definition 2.2 we clearly have (1) ⇒ (2) ⇒ (3). What remains to show is (3) ⇒ (1).
Let h = �d/2� and assume that u is h-ss in T. Since ah

r (u) exists for any r ∈ Ru we have �T (v, ah−1
r (u))�h − 1 for

all v ∈ Dr [ah−1
r (u)]. By Claim 1.2 the center(s) is(are) contained in V (p(u, r)) and by the value of h, also contained

in Dr [ah
r (u)]. Let c be the center that is closest to u:

If c ∈ Dr [ah−1
r (u)], then Dr [c] ⊆ Dr [ah−1

r (u)] and hence, in particular, �T (v, ah−1
r (u))�h − 1 for all v ∈ Dr [c].

SinceDr [c] contains a vertex x such that�T (x, r)=d and hence�T (x, c)=	d/2
, we must haveh−1��T (x, ah−1
r (u))=

�T (x, c) + �T (c, ah−1
r (u)) = 	d/2
 + �T (c, ah−1

r (u)), which can only occur if d is odd and ah−1
r (u) = c. In this case

�T (u, c) = 	d/2
 and hence u is an endvertex of maximum length path of T.
If c ∈ Dr [ah

r (u)]\Dr [ah−1
r (u)], then c = ah

r (u) and d must be even. Therefore, h = �T (u, ah
r (u)) = �T (u, c) and u

is an endvertex of a maximum length path of T in this case as well. This completes the proof. �

Remarks. What is defined to be an “extreme leaf” of T by Kearney and Corneil in [7] is precisely a vertex that satisfies
one condition in Theorem 2.4 (and hence all of them), that is a k-ss vertex of T where k ∈ N and d/2�k < d.

The following is the first step toward a complete description of strongly simplicial vertices of powers of trees:

Theorem 2.5. Let T be a tree and k ∈ N. A k-ss vertex of T is strongly simplicial in the power graph T k .

To prove Theorem 2.5, we will use the following from [2, Lemma 2.2, p. 45]:

Lemma 2.6. If T is a tree rooted at r ∈ V (T ) and u ∈ V (T ), then all the vertices of T on levels at most l(u) and of
distance at most k from u, form a clique in T k .

Proof of Theorem 2.5. We may assume k < diam(T ). Let u be a k-ss vertex of T and let r ∈ Ru be a fixed root. By
Lemma 2.6 Nk

T [u] forms a clique in T k .
We now show that {Nk

T [v] : v ∈ Nk
T [u]} is linearly ordered by set inclusion. For u′, u′′ ∈ Nk

T [u] we show that
if l(u′)� l(u′′) then Nk

T [u′] ⊆ Nk
T [u′′]. Assume l(u′)� l(u′′) and let v ∈ Nk

T [u′]. If lca(u′, u′′) is a descendant of
lca(u′, v), then lca(u′, u′′) ∈ V (p(u′, v)) and hence �T (u′′, v)��T (u′, v)�k so v ∈ Nk

T [u′′]. Otherwise lca(u′, v)
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must be a descendant of lca(u′, u′′). Here we further consider two cases, depending on where u is: If lca(u′, u′′) is a
descendant of lca(u, u′′), then, by the k-strong simplicity of u, we have l(v)� l(u) and hence �T (u′′, v)��T (u′′, u)�k

and hence v ∈ Nk
T [u′′]. Otherwise, in this case, lca(u, u′′) is a descendant of lca(u′, u′′) and hence lca(u, u′′) ∈

V (p(u′′, lca(u′, u′′))). Since l(u′)� l(u′′) and l(u)� l(v) we have

�T (u′′, v) = �T (u′′, lca(u′′, u′)) + �T (lca(u′′, u′), v)

��T (u′, lca(u′′, u′)) + �T (lca(u′′, u′), u)

= �T (u′, u),

�k,

showing that v ∈ Nk
T [u′′] in this final case. This completes the proof that {Nk

T [v] : v ∈ Nk
T [u]} is linearly ordered by

set inclusion. �

Lemma 2.7. Let T be a tree, u ∈ V (T ) and T be rooted at r ∈ Ru. If ak
r (u) exists and there is a descendant w of

ak−1
r (u) of distance k or more from ak−1

r (u), then u is not strongly simplicial in T k .

Proof. We may assume that l(w) = l(u) + 1. Going upward from w toward the root r, let v be the first ances-
tor of w that is contained in Nk

T [u] (such a vertex exists, since w is a descendant of ak−1
r (u) ∈ Nk

T [u].) Since
�T (w, v)��T (w, ak−1

r (u)) = k we have

w ∈ Nk
T [v]\Nk

T [ak
r (u)]. (1)

If �T (u, w)�k, then Nk
T [u] is not a clique in T k since �T (w, ak

r (u))= k + 1, and hence u is not even simplicial. So we
assume �T (u, w) > k. In this case, since v ∈ V (p(u, w)), we have by definition of r ∈ Ru that �T (w, v)��T (ak

r (u), r),
and hence there is a unique vertex w′ on the path p(ak

r (u), r) with �T (w, v) = �T (ak
r (u), w′). Therefore we have

�T (v, w′) = �T (v, ak
r (u)) + �T (ak

r (u), w′)
= �T (w, v) + �T (v, ak

r (u))

= �T (w, ak
r (u))

= k + 1.

But since we also have �T (w′, ak
r (u))= �T (w, v)��T (w, ak−1

r (u))= k, then w′ ∈ Nk
T [ak

r (u)]\Nk
T [v], which together

with (1) shows that u is not strongly simplicial in T k . �

Let T be a tree, u ∈ V (T ) and T be rooted at r ∈ Ru. If ak
r (u) does not exist, then Nk

T [u] = V (T ). If k < diam(T )

then Nk
T [u] cannot induce a clique in T and hence u is not simplicial, let alone strongly simplicial in T. We summarize:

Lemma 2.8. If ak
r (u) does not exist and k < diam(T ), then u is not strongly simplicial in T k .

By Theorem 2.5 and Lemmas 2.7 and 2.8 we have the following.

Theorem 2.9. For a tree T and k ∈ N, the vertex u ∈ V (T ) is k-ss in T if, and only if, u is strongly simplicial in T k .

Note: Theorem 2.9 yields a procedure to characterize all strong elimination orderings u1, . . . , un of a power of a tree
T on n vertices, and hence an algorithm to list them all in polynomial time.

By Theorems 2.4 and 2.9 we have the following corollary:

Corollary 2.10. Let T be a tree and u ∈ V (T ). If d=diam(T ) and k ∈ {�d/2�, . . . , d−1}, then u is strongly simplicial
in T k if, and only if, u is strongly simplicial in T �d/2�.

For a tree T we can recursively define T (i) by T (0) =T and T (i) = pr(T (i−1)) for i ∈ N, as long as T (i−1) has leaves,
that is, is neither empty nor one vertex. With this notation we obtain the following.
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Corollary 2.11. Let T be a tree with diam(T ) = d �2. For u ∈ V (T ) and k ∈ {1, . . . , �(d − 1)/2�}, the following are
equivalent:

1. For a center c ∈ V (T ), the vertex ak−1
c (u) is a leaf of T (k−1).

2. u is strongly simplicial in T k .

Proof. Assume �T (u, c)�k − 1 for the(each) center c of T. Then, first of all ak−1
c (u) is either isolated or does not

exist, and secondly ak
r (u) exists for each r ∈ Ru and further, since Dr [ak

r (u)] contains c, it also contains an endvertex x
of a maximum length path. We therefore have �T (x, c)�	d/2
 > k − 1��T (u, c), so by Lemma 2.7 u is not strongly
simplicial in T k . Hence, both statements of the corollary are wrong in this case.

If �T (u, c)�k for a center c, then ak
c (u) exists. By Claim 1.2 we have c ∈ V (p(u, r)) for each r ∈ Ru, and since

k��(d − 1)/2� we have that ak
r (u) also exists and further

ak−1
c (u) = ak−1

r (u) and Dc[ak−1
c (u)] = Dr [ak−1

r (u)], (2)

when T is rooted at c on one hand and at r on the other. By (2) the first statement is equivalent to k-strong simplicity
and the corollary easily follows. �

Remark. When determining a strong elimination ordering of the vertices of the graph G=T k it suffices to only know
the graph G, since in [7] a polynomial time algorithm is given to obtain the kth root T from G (provided that we know
G is a kth power of a tree G = T k . In fact, Chang et al. [5] claim they can in this case obtain the kth root in linear time).
However, for a general graph H it is NP-hard to compute the kth root H of G = Hk as shown in [11].
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