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Abstract

The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on R
n ⊕ R

n. In this paper
we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of
operators acting on functions or distributions defined, not on R

n but rather on R
n ⊕ R

n. These operators are intertwined with
the standard Weyl pseudo-differential operators using an infinite family of partial isometries of L2(Rn) −→ L2(R2n) indexed by
S(Rn). This allows us to obtain spectral and regularity results for our operators using Shubin’s symbol classes and Feichtinger’s
modulation spaces.
© 2011 Elsevier Masson SAS.

Résumé

Le calcul de Weyl habituel est étroitement associé au choix de la structure symplectique standard sur R
n ⊕ R

n. Dans cet article
nous allons montrer que le remplacement de cette structure par une structure symplectique arbitraire mène à un calcul pseudo-
différentiel pour des opérators agissant sur des fonctions ou des distributions définis, non pas sur Rn mais sur Rn ⊕ Rn. Ces
opérateurs sont entrelacés avec les opérateurs de Weyl habituels par une famille infinie d’isométries partielles L2(Rn) −→ L2(R2n)

indexées par l’espace de Schwartz S(Rn). Ceci nous permet d’obtenir des résultats spectraux, ainsi que des propriétés de régularité
pour nos opérateurs, utilisant les classes de symboles de Shubin ainsi que les espaces de modulation de Feichtinger.
© 2011 Elsevier Masson SAS.
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1. Introduction

Every traditional pseudo-differential calculus harks back in one way or another to the physicists’ early work on
quantum mechanics. Following the founding fathers of quantum mechanics one should associate to a symbol (or
“observable”) defined on R

2n ≡ R
n ⊕ R

n an operator obtained by replacing the coordinates xj by the operator X̂j of
multiplication by xj and the dual variable ξj by the operator Ξ̂j = −i∂xj

. The ordering problem (what is the operator
associated with ξj xj = xj ξj ?) was solved in a satisfactory way by Weyl [45]: one associates to the symbol a the
operator Â = Opw(a) with kernel formally defined by:

K(x,y) =
(

1

2π

)n ∫
Rn

ei(x−y)·ξ a
(

1

2
(x + y), ξ

)
dξ. (1)

The Weyl correspondence a
Weyl←→ Â plays a somewhat privileged role among the other possible choices a

τ←→ Aτ

corresponding to the kernels

Kτ (x, y) =
(

1

2π

)n ∫
Rn

ei(x−y)·ξ a
(
τx + (1 − τ)y, ξ

)
dξ (2)

with τ ∈ R. This is due mainly to two reasons: first of all, the choice (1) ensures us that to real symbols correspond

(formally) self-adjoint operators; secondly, among all possible choices (2) the Weyl correspondence a
Weyl←→ Â is the

only one which has the symplectic covariance property a ◦ S
Weyl←→ Ŝ−1Â Ŝ where Ŝ ∈ Mp(2n,σ ) has projection

S ∈ Sp(2n,σ ) (Sp(2n,σ ) and Ŝ ∈ Mp(2n,σ ) are the symplectic and metaplectic groups, respectively). It turns out
that the Weyl correspondence is intimately related to the standard symplectic structure σ(z, z′) = ξ · x′ − ξ ′ · x on
R

n ⊕ R
n or, equivalently, to the commutation relations

[X̂j , X̂k] = [Ξ̂j , Ξ̂k] = 0, [X̂j , Ξ̂k] = iδjk (3)

satisfied by the elementary Weyl operators X̂j , Ξ̂k . Setting Ẑα = X̂α if 1 � α � n and Ẑα = Ξ̂α−n if n + 1 � α � 2n

these relations can be rewritten

[Ẑα, Ẑβ ] = ijαβ for 1 � α,β � 2n, (4)

where

J = (jαβ)1�α,β�2n =
(

0 I

−I 0

)
is the matrix of the symplectic form σ . Here I,0 denote the n × n identity and zero matrices, respectively.

We now make the two following essential observations:

• There are many operators satisfying the commutation relations (3)–(4). For instance, they are preserved if one
replaces X̂j and Ξ̂j with the operators

X̃j = xj + 1

2
i∂ξj

, Ξ̃j = ξj − 1

2
i∂xj

, (5)

(these are the “Bopp shifts” [9] familiar from the physical literature). Notice that X̃j and Ξ̃j act not on functions
defined on R

n but rather on functions defined on R
n ⊕ R

n. Indeed, in recent papers de Gosson [22], de Gosson
and Luef [26,28], Dias et al. [14] it has been shown that the operators X̃j and Ξ̃j can be used to reformulate
the Moyal product familiar from deformation quantization [5,6] in terms of a phase-space pseudo-differential
calculus, which also intervenes in the study of certain magnetic operators (“Landau calculus” [22]).

• The second observation takes us to the subject of this paper. The choice of the standard symplectic structure,
associated with the commutation relations (4), is to a great extent arbitrary. So one could wonder what happens
if we replace the matrix J = (jαβ)1�α,β�2n with some other non-degenerate skew-symmetric matrix Ω . This
question is not only academic: the study of non-commutative field theories and their connections with quantum
gravity [1–4,15,42] has led physicists to consider more general commutation relations of the type
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[Z̃α, Z̃β ] = iωαβ for 1 � α,β � 2n, (6)

where the numbers ωαβ are defined by

Ω = (ωαβ)1�α,β�2n =
(

Θ I

−I N

)
, (7)

where Θ = (θαβ)1�α,β�n and N = (ηαβ)1�α,β�n are antisymmetric matrices (see [3,7,12]). The commutation
relations (6) are satisfied by the operators

X̃j = xj + 1

2
i∂ξj

+ 1

2
i
∑

k

θjk∂xk
, (8)

Ξ̃j = ξj − 1

2
i∂xj

+ 1

2
i
∑

k

ηjk∂ξk
(9)

which reduce to the “Bopp shifts” (5) when Ω = J . The relation of these operators with a deformation
quantization has been made explicit in Dias et al. [14].

Writing formulas (8)–(9) in compact form as

Z̃ = z + 1

2
iΩ∂z (10)

this suggests that one should be able to give a sense to pseudo-differential operators formally written as

Ãω = a(Z̃) = a

(
z + 1

2
iΩ∂z

)
. (11)

We set out in this paper to justify formula (11); more generally we define a pseudo-differential calculus arising from
the choice of an arbitrary symplectic form ω with constant coefficients on R

n ⊕ R
n associated to an antisymmetric

matrix Ω ∈ GL(2n;R) by the formula

ω
(
z, z′) = z · Ω−1z′.

This symplectic form obviously coincides with the standard symplectic form σ when Ω = J = ( 0 I
−I 0

)
.

The consideration of such operators Ãω leads to a class of Weyl operators with symbols defined on R
2n ⊕ R

2n.
In this article we will show that

• The formal definition (11) of the operators Ãω and their Weyl symbols can be made rigorous.
• The operators Ãω are intertwined with the usual Weyl operators Â using a family of partial isometries

u 
−→ Wf,φu of L2(Rn) in L2(R2n) parametrized by φ ∈ S(Rn).
• The spectral properties of the operators Ãω can be recovered from those of Â using these intertwining relations;

in particular the consideration of Shubin’s classes of globally hypoelliptic symbols will allow us to state a very
precise result when Â is formally self-adjoint.

Our results show that the study of the physicist’s “non-commutative quantum mechanics” can be reduced to the
study of a particular Weyl calculus with symbols defined on a double phase space.

We want to mention that the connections between symbol classes and non-commutative harmonic analysis have
also been explored (from a different point of view) by Unterberger [43] and Unterberger and Upmeier [44]; it would
perhaps be interesting to analyze their results from the point of view of the methods and tools introduced in the present
paper.

Notation 1. The generic point of R
n ⊕ R

n ≡ R
2n is denoted by z = (x, ξ) and that of R

2n ⊕ R
2n ≡ R

4n by (z, ζ ). The
standard symplectic form σ on R

2n is defined by σ(z, z′) = ξ · x′ − ξ ′ · x and the corresponding symplectic group
is denoted Sp(2n,σ ). Given an arbitrary symplectic form ω on R

n ⊕ R
n we denote by Sp(2n,ω) the corresponding

symplectic group.
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Notation 2. Functions (or distributions) on R
n are denoted by small Latin or Greek letters u,v,φ, . . . while those

defined on R
2n by capitals U,V,Φ, . . . . We denote by S(Rn) the Schwartz space of rapidly decreasing functions

on R
n; its dual S ′(Rn) is the space of tempered distributions. The scalar product of two functions u,v ∈ L2(Rn) is

denoted by (u|v) and that of U,V ∈ L2(R2n) by ((U |V )). The corresponding norms are written ‖u‖ and |||U |||.

2. Phase space Weyl operators

Let us begin by giving a short review of the main definitions and properties from standard Weyl calculus as exposed
(with fluctuating notation) in for instance [21,34,38,40,46]; this will allow us to list some useful formulas we will need
in the forthcoming sections.

2.1. Standard Weyl calculus

Given a function a ∈ S(R2n) the Weyl operator Â with symbol a is defined by:

Âu(x) =
(

1

2π

)n ∫ ∫
R2n

ei(x−y)·ξ a
(

1

2
(x + y), ξ

)
u(y)dy dξ (12)

for u ∈ S(Rn). This definition makes sense for more general symbols a provided that the integral interpreted in some
“reasonable way” (oscillatory integral, for instance) when a is in a suitable symbol class, for instance the Hörmander
classes Sm

ρ,δ , or the global Shubin spaces HΓ
m1,m0
ρ . A better definition is, no doubt, the operator integral

Â =
(

1

2π

)n ∫
R2n

Fσ a(z)T̂ (z) dz (13)

because it immediately makes sense for arbitrary symbols a ∈ S ′(R2n); here Fσ is the symplectic Fourier transform:

Fσ a(z) =
(

1

2π

)n ∫
R2n

e−iσ (z,z′)a
(
z′)dz′, (14)

T̂ (z0) is the Heisenberg–Weyl operator S ′(Rn) −→ S ′(Rn) formally defined by

T̂ (z0) = e−iσ (Ẑ,z0) with Ẑ = (x,−i∂x); (15)

the action of T̂ (z0) on u ∈ S(Rn) is given by the explicit formula

T̂ (z0)u(x) = ei(ξ0·x− 1
2 ξ0·x0)u(x − x0) (16)

if z0 = (x0, ξ0). We note that Fσ is an involution which extends into an involutive automorphism S ′(R2n) −→ S ′(R2n).

The Weyl correspondence, written a
Weyl←→ Â or Â

Weyl←→ a, between an element a ∈ S ′(R2n) and the Weyl operator it
defines is bijective; in fact the Weyl transformation is one-to-one from S ′(R2n) onto the space L(S(Rn), S ′(R2n)) of
continuous maps S(Rn) −→ S ′(Rn) (see e.g. Maillard [36], Wong [46] or [43]). This can be proved using Schwartz’s
kernel theorem and the fact that the Weyl symbol a of the operator Â is related to the distributional kernel of that
operator by the partial Fourier transform with respect to the y variable

a(x, ξ) =
∫
Rn

e−iξ ·yK
(

x + 1

2
y, x − 1

2
y

)
dy, (17)

where K ∈ S ′(Rn × R
n) and the Fourier transform is defined in the usual distributional sense. Conversely

(cf. formula (12)) the kernel K is expressed in terms of the symbol a by the inverse Fourier transform

K(x,y) =
(

1

2π

)n ∫
n

eiξ ·(x−y)a

(
1

2
(x + y), ξ

)
dξ.
R
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Assuming that the product Â B̂ exists (which is the case for instance if B̂ : S(Rn) −→ S(Rn)) the Weyl symbol c

of Ĉ = Â B̂ and its symplectic Fourier transform Fσ c are given by the formulas

c(z) =
(

1

4π

)2n ∫ ∫
R2n×R2n

e
i
2 σ(u,v)a

(
z + 1

2
u

)
b

(
z − 1

2
v

)
dudv, (18)

Fσ c(z) =
(

1

2π

)n ∫
R2n

e
i
2 σ(z,z′)Fσ a

(
z − z′)Fσ b

(
z′)dz′. (19)

The first formula is often written c = a#b and a#b is called the “twisted product” or “Moyal product” (see e.g. [46]).
Two important properties of the Weyl correspondence already mentioned in the Introduction are the following:

Proposition 3. Let Â
Weyl←→ a:

(i) The operator Â is formally self-adjoint if and only the symbol a is real; more generally the symbol of the formal
adjoint of an operator with Weyl symbol a is its complex conjugate a;

(ii) Let Ŝ ∈ Mp(2n,σ ). We have Ŝ−1Â Ŝ
Weyl←→ a ◦ S.

Here Mp(2n,σ ) is the metaplectic group, that is the unitary representation of the double cover of Sp(2n,σ ).
To every S ∈ Sp(2n,σ ) thus corresponds, via the natural projection π : Mp(2n,σ ) −→ Sp(2n,σ ), two operators
±Ŝ ∈ Mp(2n,σ ). We note that property (ii) is characteristic of the Weyl pseudo-differential calculus (see Stein [40],
Wong [46]). We notice that Unterberger and Upmeier [44] have studied similar covariance formula for more general
operators (pseudo-differential operators of Fuchs type) which occur in the study of boundary problems with edges or
corners.

A related well-known object is the cross-Wigner transform W(u,v) of u,v ∈ S(Rn); it is defined by

W(u,v)(z) =
(

1

2π

)n ∫
Rn

e−iξ ·yu
(

x + 1

2
y

)
v

(
x − 1

2
y

)
dy (20)

(it is thus, up to a constant, the Weyl symbol of the operator with kernel u ⊗ v). We note, for further use, that W(u,v)

can alternatively be defined by the formula

W(u,v)(z) = π−n
〈
T̂GR(z)u, v

〉
, (21)

where T̂GR(z) is the Grossmann–Royer operator:

T̂GR(z0)u(x) = e2iξ0·(x−x0)u(2x0 − x). (22)

Formula (21) allows us to define W(u,v) when u ∈ S ′(Rn) and v ∈ S(Rn); one can actually extend the mapping
(u, v) −→ W(u,v) into a continuous mapping S ′(Rn) × S ′(Rn) −→ S ′(R2n). The cross-Wigner transform enjoys
the following symplectic-covariance property: if S ∈ Sp(2n,σ ) then

W(u,v)
(
S−1z

) = W(Ŝu, Ŝv)(z), (23)

where Ŝ ∈ Mp(2n,σ ) has projection S. Let u,v ∈ S(Rn). The following important property is sometimes taken as the
definition of the Weyl operator Â:

(Âu|v) =
∫

R2n

a(z)W(u, v)(z) dz = 〈
a,W(u, v)

〉
. (24)

Also note that the cross-Wigner transform satisfies the Moyal identity

((
W(u,v)|W (

u′, v′))) =
(

1
)n(

u|u′)(v|v′). (25)

2π
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The following formula describes the action of the Heisenberg–Weyl operators:

W
(
T̂ (z0)u, T̂ (z1)v

)
(z) = ei[−σ(z,z0−z1)− 1

2 σ(z0,z1)]W(u,v)
(
z − 〈z〉), (26)

where 〈z〉 = 1
2 (z0 + z1); the particular case

W
(
T̂ (z0)u, v

)
(z) = e−iσ (z,z0)W(u, v)

(
z − 1

2
z0

)
(27)

will be used in our study of intertwining operators.

2.2. Definition of the operators Ãω

In what follows Ω denotes an arbitrary (real) invertible antisymmetric 2n × 2n matrix. The formula

ω
(
z, z′) = z · Ω−1z′ = −Ω−1z · z′ (28)

defines a symplectic form on R
2n which coincides with the standard symplectic form σ when Ω = J .

Let us introduce the following variant of the symplectic Fourier transform:

Definition 4. For a ∈ S(R2n) we set:

Fωa(z) =
(

1

2π

)n

|detΩ|−1/2
∫

R2n

e−iω(z,z′)a
(
z′)dz′. (29)

Obviously Fω is a continuous automorphism of S(R2n). Moreover,

Lemma 5. The automorphism Fω extends into a unitary automorphism of L2(R2n) and into a continuous automor-
phism of S ′(R2n). Moreover, Fω is related to the usual unitary Fourier transform F on R2n by the formula

Fa(z) = |detΩ|1/2Fωa(−Ωz). (30)

In particular Fω is involutive, that is

FωFωa = a. (31)

Remark 6. Notice that we are using the normalization of the Fourier transform according to the rule (2π)−dimension/2.
Since we are working in the phase-space (dimension = 2n), we have a factor (2π)−n rather than the usual factor
(2π)−n/2.

Proof. From ω(−Ωz,z′) = z · z′, we immediately recover (30). From (30) and the unitarity of the Fourier transform,
we have in L2(R2n):

|||a||| = |||Fa||| = |detΩ|1/2
( ∫

R2n

∣∣Fωa(−Ωz)
∣∣2

dz

) 1
2

=
( ∫

R2n

∣∣Fωa
(
z′)∣∣2

dz′
) 1

2 = |||Fωa|||, (32)

where we performed the substitution z′ = −Ωz. Consequently, Fω extends into a unitary automorphism of L2(R2n).
The symplectic Fourier transform Fω also extends into a continuous automorphism of S ′(R2n) in the usual way by
defining Fωa for a ∈ S ′(R2n) by the formula 〈Fωa,b〉 = 〈a,Fωb〉 for all b ∈ S(R2n) (or, alternatively, by using the
relation (30) above). Note that when Ω = J we have Fω = Fσ (the ordinary symplectic Fourier transform) since
detJ = 1. Using formula (30) the symplectic Fourier transform Fω can thus be written:
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Fω = UΩIF, (33)

where UΩ and I are the transformations defined by

(UΩa)(z) = |detΩ|1/2a
(
Ω−1z

)
, (Ia)(z) = a(−z) (34)

for which trivially:

((UΩa|UΩb)) = ((a|b)), ((Ia|Ib)) = ((a|b)) (35)

for all a, b ∈ L2(R2n). From (35) and the Parseval identity, it follows that for all a, b ∈ L2(R2n):

((FωFωa|b)) = ((Fωa|Fωb)) = ((UΩIFa|UΩIFb)) = ((a|b)) (36)

which proves (31). �
In the sequel we will also need the operators

T̃ω(z0) : S ′(
R

2n
) −→ S ′(

R
2n

)
defined by the formula

T̃ω(z0)U(z) = e−iω(z,z0)U

(
z − 1

2
z0

)
. (37)

These operators satisfy the same commutation relations as the usual Heisenberg–Weyl operators T̂ (z0) when ω = σ .
In fact, a straightforward computation shows that

T̃ω(z0 + z1) = e− i
2 ω(z0,z1)T̃ω(z0)T̃ω(z1), (38)

T̃ω(z0)T̃ω(z1) = eiω(z0,z1)T̃ω(z1)T̃ω(z0). (39)

Let us justify the introduction of the operators T̃ω(z0) with an informal discussion; after all it is not obvious at this
stage why they should allow us to implement the “quantization” (10)–(11)! Recall [21] that the introduction of the
usual Heisenberg–Weyl operator T̂ (z0) = e−iσ ( ẑ,z0) can be motivated as follows: consider the translation Hamiltonian
Hz0(z) = σ(z, z0); the operator with this Weyl symbol is Ĥz0(z) = σ(Ẑ, z0) and the solution of the corresponding
Schrö dinger equation

i
∂

∂t
u = Ĥz0u, u(x,0) = u0(x)

is formally given by u(x, t) = e−itσ (Ẑ,z0)u0(x); a direct calculation shows that we have the explicit formula

u(x, t) = e−itσ (Ẑ,z0)u0(x) = ei(tξ0·x− 1
2 t2ξ0·x0)u0(x − tx0)

hence T̂ (z0)u(x,0) = u(x,1). To define the operators T̃ω(z0) one proceeds exactly in the same way: replacing the
Hamiltonian operator Ĥz0(z) = σ(Ẑ, z0) with

H̃z0(z) = ω(Z̃, z0) = ω

(
z + 1

2
iΩ∂z, z0

)
we are led to the “phase space Schrödinger equation”

i
∂

∂t
U = ω(Z̃, z0)U, U(z,0) = U0(z)

whose solution is

U(z, t) = e−itω(Z̃,z0)U0(z) = e−itω(z,z0)U0

(
z − 1

2
tz0

)
.

We thus have

U(z,1) = T̃ω(z0)U0(z) = e−iω(Z̃,z0)U0(z).
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Let us now define the operators Ãω . Comparing with the definition (13) of the usual Weyl operators these consider-
ations suggest that we define Ãω = a(Z̃) by the formula

ÃωU =
(

1

2π

)n

|detΩ|−1/2
∫

R2n

Fωa(z)T̃ω(z)U dz. (40)

This “guess” is justified by the following result which identifies the Weyl symbol of the operator Ãω defined by the
formula above:

Proposition 7. Let a ∈ S ′(R2n) and U ∈ S(R2n). The operator Ãω : S(R2n) −→ S ′(R2n) defined by:

ÃωU =
(

1

2π

)n

|detΩ|−1/2〈Fωa(·), T̃ω(·)U 〉
, (41)

that is, formally, by (40) is continuous and its Weyl symbol ãω is given by the formula

ãω(z, ζ ) = a

(
z − 1

2
Ωζ

)
, (42)

and we have ãω ∈ S ′(R2n ⊕ R2n). When a = 1 the operator Ãω is the identity on S(R2n).

Proof. Since T̃ω(z)U ∈ S(R2n) for every z and Fωa ∈ S ′(R2n) the operator Ãω is well-defined. We have, setting
u = z − 1

2z0,

ÃωU(z) =
(

1

2π

)n

|detΩ|−1/2
∫

R2n

Fωa(z0)T̃ω(z0)U(z) dz0

=
(

1

2π

)n

|detΩ|−1/2
∫

R2n

Fωa(z0)e
−iω(z,z0)U

(
z − 1

2
z0

)
dz0

=
(

2

π

)n

|detΩ|−1/2
∫

R2n

Fωa
[
2(z − u)

]
e2iω(z,u)U(u)du

hence the kernel of Ãω is given by the formula

K(z,u) =
(

2

π

)n

|detΩ|−1/2Fωa
[
2(z − u)

]
e2iω(z,u).

It follows from formula (17) that the symbol ãω is given by:

ãω(z, ζ ) =
∫

R2n

e−iζ ·ζ ′
K

(
z + 1

2
ζ ′, z − 1

2
ζ ′

)
dζ ′

=
(

2

π

)n

|detΩ|−1/2
∫

R2n

e−iζ ·ζ ′
Fωa

(
2ζ ′)e−2iω(z,ζ ′) dζ ′,

that is, using the obvious relation

ζ · ζ ′ + 2ω
(
z, ζ ′) = ω

(
2z − Ωζ, ζ ′)

together with the change of variables z′ = 2ζ ′,

ãω(z, ζ ) =
(

2

π

)n

|detΩ|−1/2
∫

R2n

e−iω(2z−Ωζ,ζ ′)Fωa
(
2ζ ′)dζ ′

=
(

1

2π

)n

|detΩ|−1/2
∫
2n

e−iω(z− 1
2 Ωζ,z′)Fωa

(
z′)dz′.
R
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Formula (42) immediately follows using the Fourier inversion formula (31). That Ãω = I when a = 1 immediately
follows from the fact that Fωa = (2π)n|detΩ|1/2δ where δ is the Dirac measure on R

2n. The continuity statement
follows from the fact that Ãω is a Weyl operator. �

Two immediate consequences of this result are:

Corollary 8. The operators Ãω have the following properties:

(i) The operator Ãω defined by (40) is formally self-adjoint if and only if a is real.
(ii) The formal adjoint Ã∗

ω of Ãω is obtained by replacing a with its complex conjugate a.
(iii) The symbol c̃ of C̃ω = ÃωB̃ω is given by c̃ω(z, ζ ) = c(z − 1

2Ωζ), where c = a#b is the Weyl symbol of the
operator Ĉ = Â B̂ .

Proof. (i) The property is obvious since Ãω is formally self-adjoint if and only if its Weyl symbol ãω is real, that is if
and only if a itself is real. (ii) Similarly, the Weyl symbol of Ã∗

ω is the function

(z, ζ ) 
−→ a

(
z − 1

2
Ωζ

)
.

(iii) The property is an immediate consequence of the definition of C̃ω since a#b
Weyl←→ Â B̂ . �

2.3. Symplectic transformation properties

Let ω be the symplectic form (28) on R
n ⊕ R

n. The symplectic spaces (Rn ⊕ R
n,ω) and (Rn ⊕ R

n, σ ) are linearly
symplectomorphic. That is, there exists a linear automorphism f of R

2n such that f ∗ω = σ that is

ω
(
f z,f z′) = σ

(
z, z′) (43)

for all (z, z′) ∈ R
2n ×R

2n (this can be viewed as a linear version of Darboux’s theorem). The proof is straightforward:
choose a symplectic basis B of (Rn ⊕R

n,ω) and a symplectic basis B′ of (Rn ⊕R
n, σ ). Then any linear automorphism

f of R
n ⊕ R

n such that f (B′) = B satisfies (43). Identifying the automorphism f with its matrix in the canonical
basis, the relation (43) is equivalent to the matrix equality

Ω = f Jf T . (44)

Such a symplectomorphism f : (R2n, σ ) −→ (R2n,ω) is by no means unique; we can in fact replace it by any auto-
morphism f ′ = f Sσ where Sσ ∈ Sp(2n,σ ); note however that the determinant is an invariant because we have

detf ′ = detf detSσ = detf

since detSσ = 1. The symplectic groups Sp(R2n,ω) and Sp(R2n, σ ) are canonically isomorphic.
We are going to see that the study of the operators Ãω is easily reduced to the case where ω = σ , the standard

symplectic form on R
2n. This result is closely related to the symplectic covariance of Weyl operators under metaplectic

conjugation as we will see below.
For f a linear automorphism of R

2n we define the operator

Mf : S ′(
R

2n
) −→ S ′(

R
2n

)
by the formula

Mf U(z) = √|detf |U(f z). (45)

Clearly Mf is unitary: we have |||Mf U ||| = |||U ||| for all U ∈ L2(R2n).

Notation 9. When Ω = J we write T̃ (z0) = T̃σ (z0) and Ã = Ãσ .
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Proposition 10. Let f : (R2n, σ ) −→ (R2n,ω) be a linear symplectomorphism.

(i) We have the conjugation formulas

Mf T̃ω(z0) = T̃
(
f −1z0

)
Mf , Mf Fω = Fσ Mf , (46)

Mf Ãω = Ã′Mf with a′(z) = a(f z). (47)

(ii) When f is replaced by an automorphism f ′ = f Sσ with Sσ ∈ Sp(2n,σ ) then Ã′ is replaced by the operator

Ã′′ = MSσ Ã′M−1
Sσ

, (48)

where MSσ U(z) = U(Sσ z).

Proof. (i) Since ω(f z, z0) = σ(z,f −1z0) we have for all U ∈ S ′(R2n),

Mf

[
T̃ω(z0)U

]
(z) = √|detf |e−iω(f z,z0)U

(
f z − 1

2
z0

)

= √|detf |e−iσ (z,f −1z0)U

(
f

(
z − 1

2
f −1z0

))

= e−iσ (z,f −1z0)Mf U

(
z − 1

2
f −1z0

)
= T̃

(
f −1z0

)
Mf U(z)

which is equivalent to the first equality (46). We have likewise for a ∈ S ′(R2n)

Mf Fωa(z) = √|detf |Fωa(f z)

=
(

1

2π

)n

|detΩ|−1/2
√|detf |

∫
R2n

e−iω(f z,z′)a
(
z′)dz′

=
(

1

2π

)n

|detΩ|−1/2
√|detf |

∫
R2n

e−iσ (z,f −1z′)a
(
z′)dz′

=
(

1

2π

)n

|detΩ|−1/2|detf |
∫

R2n

e−iσ (z,z′′)Mf a
(
z′′)dz′′

hence the second equality (46) because

|detΩ|−1/2|detf | = 1 (49)

in view of the equality (44). To prove that Mf Ãω = Ã′Mf it suffices to use the relations (46) together with definition
(40) of Ãω:

Mf Ãω =
(

1

2π

)n

|detΩ|−1/2
∫

R2n

Fωa(z)Mf T̃ω(z) dz

=
(

1

2π

)n

|detΩ|−1/2
∫

R2n

Fωa(z)T̃
(
f −1z

)
Mf dz;

performing the change of variables z 
−→ f z we get, using again (49), and noting that |detf |−1/2Mf a(z) = a(f z),

Mf Ãω =
(

1

2π

)n

|detΩ|−1/2|detf |
∫
2n

Fωa(f z)T̃ (z)Mf dz
R
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=
(

1

2π

)n ∫
R2n

Fωa(f z)T̃ (z)Mf dz

=
(

1

2π

)n

|detf |−1/2
∫

R2n

Mf Fωa(z)T̃ (z)Mf dz

=
(

1

2π

)n

|detf |−1/2
∫

R2n

Fσ Mf a(z)T̃ (z)Mf dz

=
(

1

2π

)n ∫
R2n

Fσ (a ◦ f )(z)T̃ (z)Mf dz

= Ã′Mf .

(ii) To prove formula (48) it suffices to note that

Mf ′Ãω = (
Mf ′M−1

f

)
Mf Ãω

= MSσ

(
Ã′Mf

)
= (

MSσ Ã′M−1
Sσ

)
MSσ Mf

= (
MSσ Ã′M−1

Sσ

)
Mf ′ .

That we have MSσ U(z) = U(Sσ z) is clear since detSσ = 1. �
We note that formula (48) can be interpreted in terms of the symplectic covariance property of Weyl calculus.

To see this, let us equip the double phase space R
2n ⊕ R

2n with the symplectic structure σ⊕ = σ ⊕ σ . In view of
formula (42) with Ω = J the Weyl symbols of operators Ã′′ and Ã′ are, respectively,

ã′(z, ζ ) = a

[
f

(
z − 1

2
Jζ

)]
, ã′′(z, ζ ) = a

[
f ′

(
z − 1

2
Jζ

)]
,

and hence, using the identities f −1f ′ = Sσ ∈ Sp(2n,σ ) and Sσ J = J (ST
σ )−1,

ã′′(z, ζ ) = a′
[
Sσ

(
z − 1

2
J
(
ST

σ

)−1
ζ

)]
= ã′(Sσ z,

(
ST

σ

)−1
ζ
)
.

Let now mSσ be the automorphism of R
2n ⊕ R

2n defined by

mSσ (z, ζ ) = (
S−1

σ z, ST
σ ζ

);
formula (48) can thus be restated as

Ã′′ = MSσ Ã′M−1
Sσ

with a′′ = a′ ◦ m−1
Sσ

. (50)

Recall now (see for instance [21], Chapter 7) that each automorphism f of R
2n induces an element mf of

Sp(4n,σ⊕) defined by mf (z, ζ ) = (f −1z, f T ζ ) and that mf is the projection of the metaplectic operator
M̂f ∈ Mp(R2n ⊕ R

2n, σ⊕) (with σ⊕ = σ ⊕ σ ) defined by (45). Formula (50) thus reflects the symplectic covari-
ance property of Weyl calculus mentioned in Section 2.1.

We finally note that if we equip R
2n ⊕ R

2n with the symplectic form ω⊕ = ω ⊕ ω, the symplectomorphism
f : (R2n, σ ) −→ (R2n,ω) induces a natural symplectomorphism

f ⊕ f : (R2n ⊕ R
2n, σ⊕) −→ (

R
2n ⊕ R

2n,ω⊕)
.

3. The intertwining property

In this section we show that the operators Ãω can be intertwined with the standard Weyl operator Â using an
infinite family of partial isometries (Wf,φ)φ∈S(Rn) of L2(Rn) (depending on Ω) into L2(R2n). Each Wf,φ maps
isomorphically L2(Rn) onto a closed subspace Hφ of L2(R2n).
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3.1. The partial isometries Wf,φ

Let φ ∈ S(Rn) be such that ‖φ‖ = 1; φ will be hereafter called a window. In [26] two of us have studied the linear
mapping Wφ : S(Rn) −→ S(R2n) defined by the formula

Wφu = (2π)n/2W(u,φ), (51)

where W(u,φ) is the cross-Wigner distribution (20). Notice that

Wφu(z) =
(

2

π

)n/2(
T̂GR(z)u|φ)

, (52)

where T̂GR(z) is the Grossmann–Royer transform (22).

Proposition 11. Let φ ∈ S(Rn) be a window.

(i) The mapping Wφ : S(Rn) −→ S(R2n) extends into a mapping

Wφ : S ′(
R

n
) −→ S ′(

R
2n

)
whose restriction to L2(Rn) is an isometry onto a closed subspace Hφ of L2(R2n).

(ii) The inverse of Wφ is given by the formula u = W−1
φ U with

u(x) =
(

2

π

)n/2 ∫
R2n

U(z0)T̂GR(z0)φ(x) dz0, (53)

and the adjoint W ∗
φ of Wφ is given by the formula

W ∗
φU =

(
2

π

)n/2 ∫
R2n

U(z0)T̂GR(z0)φ(x) dz0. (54)

(iii) The operator Pφ = WφW ∗
φ is the orthogonal projection of L2(R2n) onto the Hilbert space Hφ .

Proof. (i) In view of Moyal’s identity (25) the operator Wφ extends into an isometry of L2(Rn) onto a subspace Hφ

of L2(R2n): ((
Wφu|Wφu′)) = (

u|u′).
The subspace Hφ is closed, being homeomorphic to L2(Rn). (ii) The inversion formula (53) is verified by a direct
calculation: let us set

w(x) =
(

2

π

)n/2 ∫
R2n

U(z0)T̂GR(z0)φ(x) dz0

and choose an arbitrary function v ∈ S(Rn). We have

(w|v) =
(

2

π

)n/2 ∫
R2n

U(z0)
(
T̂GR(z0)φ|v)

dz0

= (2π)n/2
∫

R2n

U(z0)W(v,φ)(z0) dz0

=
∫

R2n

Wφu(z0)Wφv(z0) dz0

= (u|v)
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hence w = u which proves (53); formula (54) for the adjoint follows since W ∗
φWφ is the identity on L2(Rn).

(iii) We have Pφ = P ∗
φ and PφP ∗

φ = Pφ hence Pφ is an orthogonal projection. Since W ∗
φWφ is the identity on L2(Rn)

the range of W ∗
φ is L2(Rn) and that of Pφ is therefore precisely Hφ . �

In [26] it was shown that the partial isometries Wφ can be used to intertwine the operators Ã = Ãσ with symbol ã

with the usual Weyl operators with symbol a; we reproduce the proof for convenience:

Proposition 12. Let T̃ (z0) = T̃σ (z0). We have the following intertwining properties:

WφT̂ (z0) = T̃ (z0)Wφ and W ∗
φ T̃ (z0) = T̂ (z0)W

∗
φ , (55)

ÃWφ = WφÂ and W ∗
φ Ã = ÂW ∗

φ . (56)

Proof. Formula (55) immediately follows from the shift property (27). On the other hand we have

WφÂu =
(

1

2π

)n ∫
R2n

Fσ a(z0)Wφ

[
T̂ (z0)u

]
dz0,

and hence, in view of (55),

WφÂu =
(

1

2π

)n ∫
R2n

Fσ a(z0)
[
T̃ (z0)Wφu

]
dz0

which is the first equality (56). To prove the second equality (56) it suffices to apply the first to W ∗
φ Ã = (Ã∗Wφ)∗. �

Let us generalize this result to the case of an arbitrary operator Ãω.

Proposition 13. Let ω be a symplectic form (28) on R
2n and f a linear automorphism such that f ∗ω = σ . The

mappings Wf,φ : S(Rn) −→ S(R2n) defined by the formula

Wf,φ = M−1
f Wφ (57)

are partial isometries L2(Rn) −→ L2(R2n), in fact isometries on a closed subspace Hf,φ of L2(R2n), and we have

ÃωWf,φ = Wf,φÂ′ and W ∗
f,φÃω = Â′W ∗

f,φ, (58)

where Â′ Weyl←→ a ◦ f .

Proof. We have, using the first formula (56) and (47),

ÃωWf,φ = M−1
f Ã′Mf

(
M−1

f Wφ

)
= M−1

f

(
Ã′Wφ

)
= M−1

f WφÂ′

= Wf,φÂ′;
the equality W ∗

f,φÃω = Â′W ∗
f,φ is proven in a similar way. That Wf,φ is a partial isometry is obvious since Wφ is a

partial isometry and Mf is unitary. �
Let us make explicit the change of the mapping f :

Proposition 14. Let f and f ′ be linear automorphisms of R
2n such that f ∗ω = f ′∗ω = σ . We have

Wf ′,φu = Wf,Ŝσ φ(Ŝσ u) (59)

where Ŝσ ∈ Mp(2n,σ ) is such that π(Ŝσ ) = f −1f ′.
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Proof. The relation f ∗ω = f ′∗ω = σ implies that Sσ = f −1f ′ ∈ Sp(2n,σ ). We have Mf ′ = Mf Sσ = MSσ Mf and
hence

Wf ′,φ = M−1
f ′ Wφ = M−1

f M−1
Sσ

Wφ.

Now, taking into account definition (51) of Wφ in terms of the cross-Wigner transform and the fact that detSσ = 1 we
have, using the symplectic covariance property (23),

M−1
Sσ

Wφu(z) = (2π)n/2W(u,φ)
(
S−1

σ z
)

= (2π)n/2W(Ŝσ u, Ŝσ φ)(z)

= WŜσ φ(Ŝσ u)(z)

hence formula (59). �
We remark that the union of the ranges of the partial isometries Wφ viewed as mappings defined on S ′(Rn) is

in a sense a rather small subset of S ′(R2n) even when φ runs over all of S ′(Rn); this is a consequence of Hardy’s
theorem on the concentration of a function and its Fourier transform (de Gosson and Luef [24,25]), and is related to a
topological formulation of the uncertainty principle (de Gosson [23]). We will discuss these facts somewhat more in
detail at the end of the article.

3.2. Action of Wf,φ on orthonormal bases

Let us prove the following important result that shows that orthonormal bases of L2(Rn) can be used to generate
orthonormal bases of L2(R2n) using the mappings Wf,φ :

Proposition 15. Let (φj )j be a complete family of vectors in L2(Rn).

(i) The family (Φj,k)j,k with Φj,k = Wf,φj
φk is complete in L2(R2n).

(ii) If (φj )j is an orthonormal basis of L2(Rn) then (Φj,k)j,k is an orthonormal basis of L2(R2n).

Proof. We first note that (ii) follows from (i) since Wf,φ is an isometry of L2(Rn) onto its range Hf,φ in L2(R2n).
Let us show that if U ∈ L2(R2n) is orthogonal to the family (Φj,k)j,k (and hence to all the spaces Hf,φj

) then U = 0.

Since by definition Wf,φ = M−1
f Wφ and the image of a complete system of vectors by M−1

f is also complete, it is
sufficient to assume that Wf,φ = Wφ . Suppose now that we have ((U |Φj,k)) = 0 for all indices j, k. Since

((U |Φj,k)) = ((U |Wφj
φk)) = ((

W ∗
φj

U |φk

))
it follows that W ∗

φj
U = 0 for all j since (φj )j is a basis; using the anti-linearity of Wφ in φ we have in fact W ∗

φU = 0

for all φ ∈ L2(Rn). Let us show that this property implies that we must have U = 0. Recall that the adjoint of the
wave-packet transform W ∗

φ is given by

W ∗
φU =

(
2

π

)n/2 ∫
R2n

U(z0)T̂GR(z0)φ dz0,

where T̂GR(z0) is the Grossmann–Royer operator (see formula (54) above). Let now u be an arbitrary element of
S(Rn); we have, using definition (21) of the cross-Wigner transform,

(
W ∗

φU |u) =
(

2

π

)n/2 ∫
R2n

U(z)
(
T̂GR(z)φ|u)

dz

= (2π)n/2
∫
2n

U(z)W(φ,u)(z) dz.
R
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Let us now view (2π)n/2U ∈ L2(R2n) as the Weyl symbol of an operator ÂU . In view of formula (24) we have

(2π)n/2
∫

R2n

U(z)W(φ,u)(z) dz = (ÂUφ|u),

and the condition W ∗
φU = 0 for all φ ∈ S(Rn) is thus equivalent to the condition (ÂUφ|u) = 0 for all φ,u ∈ S(Rn). It

follows that ÂUφ = 0 for all φ and hence ÂU = 0. Since the Weyl correspondence is one-to-one we must have U = 0
as claimed. �

We remark that the argument in the proof above in fact allows to show that, more generally, given two orthonormal
bases (φj )j and (ψj )j of L2(Rn) the vectors Φj,k = Wf,φj

ψk form an orthonormal basis of L2(R2n).

4. Spectral properties of the operators ˜Aω

Particularly useful symbol classes for the study of the spectral properties are the “global” symbol classes
HΓ

m1,m0
ρ (R2n) introduced in Shubin [38]; also see Buzano et al. [11].

4.1. The Shubin symbol classes HΓ
m1,m0
ρ

Let m0,m1 ∈ R and 0 < ρ � 1. Introducing the multi-index notation α = (α1, . . . , α2n) ∈ N
2n, |α| = α1 +· · ·+α2n,

and ∂α
z = ∂

α1
x1 · · · ∂αn

xn
∂

αn+1
y1 · · · ∂α2n

yn
, we have by definition a ∈ HΓ

m1,m0
ρ (R2n) if:

• We have a ∈ C∞(R2n).
• There exist constants R,C0,C1 � 0 and, for every α ∈ N2n, |α| �= 0, a constant Cα � 0 such that for |z| � R the

following estimates hold:

C0|z|m0 �
∣∣a(z)

∣∣ � C1|z|m1 ,
∣∣∂α

z a(z)
∣∣ � Cα

∣∣a(z)
∣∣|z|−ρ|α|. (60)

The first condition (60) is an ellipticity condition; observe that HΓ
m1,m0
ρ (R2n) is not a vector space.

A simple but typical example is the following: the function a defined by a(z) = 1
2 |z|2 is in HΓ

2,2
1 (R2n), the same

applies, more generally to a(z) = 1
2Mz · z when M is a real positive definite matrix.

The interest of these symbol classes comes from the following result (Shubin [38], Chapter 4):

Proposition 16. Let a ∈ HΓ
m1,m0
ρ (R2n) be real, and m0 > 0. Then the formally self-adjoint operator Â with Weyl

symbol a has the following properties:

(i) Â is essentially self-adjoint and has discrete spectrum in L2(Rn);
(ii) There exists an orthonormal basis of eigenfunctions φj ∈ S(Rn) (j = 1,2, . . .) with eigenvalues λj ∈ R such that

limj→∞ |λj | = ∞.

We observe that in the proposition above there exists a basis of eigenfunctions belonging to S(Rn); this property
follows from the global hypoellipticity of operators with Weyl symbol in HΓ

m1,m0
ρ (R2n):

u ∈ S ′(
R

n
)

and Âu ∈ S
(
R

n
)

implies u ∈ S
(
R

n
)
,

(global hypoellipticity is thus a stronger property than that of the usual hypoellipticity, familiar from the (micro)local
analysis of pseudo-differential operators).

We will also need the following elementary result that says that the symbol classes HΓ
m1,m0
ρ (R2n) are invariant

under linear changes of variables:

Lemma 17. Let a ∈ HΓ
m1,m0
ρ (R2n) with m0 > 0. For every linear automorphism f of R

2n we have
f ∗a = a ◦ f ∈ HΓ

m1,m0
ρ (R2n).
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Proof. Set a′(z) = a(f z); clearly a′ ∈ C∞(R2n). We now note that there exist λ,μ > 0 such that λ|z| � |f z| � μ|z|
for all z ∈ R

n. Since m0 > 0 it follows that

C′
0|z|m0 �

∣∣a′(z)
∣∣ � C′

1|z|m1

with C′
0 = C0λ

m0 and C′
1 = C1μ

m1 . Next, we observe that for every α ∈ N
2n, |α| �= 0, there exists Bα > 0 such that

|∂α
z a′(z)| � Bα|∂α

z a(f z)| (this is easily seen by induction on |α| and using the chain rule); we thus have∣∣∂α
z a′(z)

∣∣ � CαBα

∣∣a′(z)
∣∣|f z|−ρ|α| � C′

α

∣∣a′(z)
∣∣|z|−ρ|α|

with C′
α = BαCαμ−ρ|α|. Hence a′ ∈ HΓ

m1,m0
ρ (R2n). �

4.2. Application to the operators Ãω

Let us now apply the theory of Shubin classes to the study of some spectral properties of the operators Ãω. We begin
by studying the standard case Ω = J ; as previously we set Ãω = Ã. The extension to the general case will be done
using again the reduction result in Proposition 10.

Proposition 15 is the key to the following general spectral result, which shows how to obtain the eigenvalues and
eigenvectors of Ã from those of Â:

Proposition 18. Let a ∈ HΓ
m1,m0
ρ (R2n) be real, and m0 > 0. Then:

(i) The eigenvalues of the operators Â and Ã are the same; and Ã has discrete spectrum (λj )j∈N with
limj→∞ |λj | = ∞.

(ii) The eigenfunctions of Ã are given by Φj,k = Wφj
φk where the φj are the eigenfunctions of the operator Â.

(iii) Conversely, if U is an eigenfunction of Ã, then u = W ∗
φU is an eigenvector of Â corresponding to the same

eigenvalue.

Proof. That every eigenvalue of Â also is an eigenvalue of Ã is clear: if Âu = λu for some u �= 0, then

Ã(Wφu) = WφÂu = λWφu,

and U = Wφu �= 0; this proves at the same time that Wφu is an eigenvector of Â because Wφ has kernel {0}. Assume
conversely that ÃU = λU for U ∈ L2(R2n), U �= 0, and λ ∈ R. For every φ we have

ÂW ∗
φU = W ∗

φ ÃU = λW ∗
φU

hence λ is an eigenvalue of Â and u an eigenvector if u = W ∗
φU �= 0. That Ã has discrete spectrum (λj )j∈N with

limj→∞ |λj | = ∞ now follows from Proposition 16. We have Wφu = WφW ∗
φU = PφU where Pφ is the orthogonal

projection on the range Hφ of Wφ . Assume that u = 0; then PφU = 0 for every φ ∈ S(Rn), and hence U = 0 in view
of Proposition 15. �

Let us now consider the general case of operators Ãω.

Proposition 19. Let a ∈ HΓ
m1,m0
ρ (R2n) be real, and m0 > 0. Then:

(i) The operator Ãω has discrete spectrum (λj )j∈N with limj→∞ |λj | = ∞.
(ii) The eigenfunctions of Ãω are the functions Φj = Wf,φφj where the φj are the eigenfunctions of the operator Â′

with Weyl symbol a′ = f ∗a.
(iii) We have Φj,k = Wf,φj

φk ∈ S(R2n) and the Φj,k form an orthonormal basis of S(R2n).

Proof. Recall that we have shown in Proposition 13 that ÃωWf,φ = Wf,φÂ′ where Â′ Weyl←→ a ◦ f . In view of
Lemma 17 the Shubin class HΓ

m1,m0
ρ (R2n) is preserved by linear changes of variables. The proof of the proposi-

tion now follows mutatis mutandis from that of Proposition 18 replacing Â with the operator Â′ with Weyl symbol
a ◦f and using the intertwining formula ÃωWf,φ = Wf,φÂ′ together with the fact that Wf,φ = M−1

f Wf,φ where M−1
f

is a unitary operator. �



N.C. Dias et al. / J. Math. Pures Appl. 96 (2011) 423–445 439
4.3. Gelfand triples and generalized eigenvalues

Eigenvectors of pseudo-differential operators are not always elements of a Hilbert space, but of a distribution
space. The notion of Gelfand triple (or rigged Hilbert spaces, as it was called by the physicist Dirac) formalizes this
observation, that we briefly recall here since it provides the natural setting for the discussion of the spectral properties
of our classes of pseudo-differential operators, e.g. if the symbol is not an element of HΓ

m1,m0
ρ (R2n).

A (Banach) Gelfand triple (B, H, B′) consists of a (Banach) Fréchet space B which is continuously and densely
embedded into a Hilbert space H, which in turn is w∗-continuously and densely embedded into the dual (Banach)
Fréchet space B′. In this definition one identifies H with its dual H∗ and the scalar product on H thus extends in a
natural way into a pairing between B ⊂ H and B′ ⊃ H.

The standard example of a Gelfand triple is (S(Rn),L2(Rn), S ′(Rn)) but there are many other examples; one of
them is (M1

0 (Rn),L2(Rn),M1
0 (Rn)′) where M1

0 (Rn) is the Feichtinger algebra which is a particular modulation space
(see Section 5.1 below). The use of this Gelfand triple not only offers a better description of self-adjoint operators but
it also allows a simplification of many proofs.

Given a Gelfand triple (B, H, B′) one proves that every self-adjoint operator A : B −→ B has a complete family of
generalized eigenvectors (ψα)α = {ψα ∈ B′: α ∈ A} (A an index set), defined as follows: for every α ∈ A there exists
λα ∈ C such that

(ψα,Aφ) = λα(ψα,φ) for every φ ∈ B.

Completeness of the family (ψα)α means that there exists at least one ψα such that (ψα,φ) �= 0 for every φ ∈ B\{0}.
The scalars λα are called generalized eigenvectors. For more see [13,18,20].

Proposition 20. Let a be a real-valued symbol in S ′
R

n and choose (S(Rn),L2(Rn), S ′(Rn)) as Gelfand triple.

(i) The generalized eigenvalues of Ãω and those of the Weyl operator Â′ Weyl←→ a ◦ f are the same.
(ii) Let u be a generalized eigenvector of Â′: Â′u = λu. Then U = Wf,φu satisfies ÃωU = λU .

(iii) Conversely, if U is a generalized eigenvector of Ãω then u = W ∗
φU is a generalized eigenvector of Â′

corresponding to the same generalized eigenvalue.

Proof. Since S(Rn) is weak∗-dense in S ′(Rn), one can extend Â′ to S ′(Rn). By the assumption on the symbol a

yields bounded self-adjoint operators Â and Ãω from S ′(Rn) to S(Rn), respectively S ′(R2n) to S(R2n). Therefore,
the above mentioned result gives the existence of generalized eigenvectors and eigenvalues for Â and Ãω. Finally, the
arguments of the preceding section establishing the final two propositions extend to this setting if we interpret them
in a weak sense, which implies the statements (i)–(iii). �
5. Regularity in modulation spaces

The modulation spaces M
p,q
v (Rn) introduced in the 80s by Feichtinger [16,17,19] and developed by Feichtinger

and Gröchenig [29] are a tool of choice for relating the regularity properties of the phase space operator Ãω to those
of the corresponding operator Â. In addition, the modulation spaces M∞,1

v (Rn ⊕ R
n) (which contain as a particular

case the so-called Sjöstrand class) will supply us with symbol classes defined without any reference to differentiability
properties. We define the modulation spaces in terms of the cross-Wigner transform; in the standard literature on the
topic (especially in time-frequency analysis) they are defined using a closely related object, the “windowed short-
time Fourier transform”. Because of the particular form of the weighting functions we use, it is easy to see that both
definitions coincide.

5.1. The spaces M
q
s

Let s � 0 and set vs(z) = (1 +|z|2)s/2. We note that for every f ∈ GL(2n,R) there exists a constant Cs,f such that

vs(f z) � Cs,f vs(z). (61)
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The modulation space M
q
s (Rn) (q � 1) consists of all distributions u ∈ S ′(Rn) such that W(u,φ) ∈ L

q
s (R2n) for some

window φ ∈ S(Rn); here L
q
s (R2n) consists of all functions U on R

2n such that vsU ∈ Lq(R2n). One shows that this
definition is independent of the choice of window φ and that if it holds for one φ in S(Rn) then it holds for all.
Moreover the formula

‖u‖φ,M
q
s

= |||Wφu|||Lq
s
=

( ∫
R2n

|Wφu(z)|qv
q
s (z) dz

) 1
q

defines a norm on M
q
s (Rn) and different φ lead to equivalent norms. The topology defined by any of these norm

endows M
q
s (Rn) with a Banach space structure. The spaces M

q
s increase with the parameter q: if q � q ′ then

M
q
s (Rn) ⊂ M

q ′
s (Rn). Following result summarizes the main algebraic properties of M

q
s (Rn):

Proposition 21.

(i) The modulation spaces M
q
s (Rn) are invariant under the action of the metaplectic group Mp(2n,σ ): u ∈ M

q
s (Rn)

if and only Ŝu ∈ M
q
s (Rn) for every Ŝ ∈ Mp(2n,σ );

(ii) There exists a constant C > 0 such that for every z ∈ R2n we have∥∥T̂ (z)u
∥∥

φ,M
q
s

� Cvs(z)‖u‖φ,M
q
s
;

in particular M
q
s (Rn) is invariant under the action of the Heisenberg–Weyl operators;

(iii) Let f ∈ GL(n,R). We have u ∈ M
q
s (Rn) if and only if f ∗u = f ◦ u ∈ M

q
s (Rn).

The properties (i)–(ii) above can be stated in more concise form by saying that the modulation spaces M
q
s (Rn) are

invariant under the action of the inhomogeneous metaplectic group IMp(2n,σ ) (it is the group of unitary operators
generated by the elements of Mp(2n,σ ) together with the Heisenberg–Weyl operators).

In the particular case s = 0, q = 1 one obtains the Feichtinger algebra S0(R
n) = M1(Rn). It is an algebra for both

pointwise multiplication and convolution. It is the smallest Banach algebra containing S(Rn) and invariant under the
action of the Heisenberg–Weyl operators (and hence of IMp(2n,σ )), and we have

M1(
R

n
) ⊂ L1(

R
n
) ∩ F

(
L1(

R
n
))

,

using the Riemann–Lebesgue theorem it follows in particular that

M1(
R

n
) ⊂ C0(

R
n
)
.

The following easy observation will be used in the forthcoming sections:

Lemma 22. We have u ∈ M
q
s (Rn) if and only if Wf,φu ∈ L

q
s (Rn).

Proof. Since Wf,φ = M−1
f Wφ and Wφu is proportional to W(u,φ) it suffices to show that if U ∈ L

q
s (R2n) then

M−1
f U ∈ L

q
s (R2n). In view of definition (45) of Mf U we have, using the inequality (61),∫

R2n

∣∣M−1
f U(z)

∣∣qv
q
s (z) dz = |detf |−1/2

∫
R2n

∣∣U(
f −1z

)∣∣qv
q
s (z) dz

= |detf |1/2
∫

R2n

∣∣U(z)
∣∣qv

q
s (f z) dz

� C

∫
R2n

∣∣U(z)
∣∣qv

q
s (z) dz

which proves the assertion. �
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The dual Banach space M1
0 (Rn)′ consists of all u ∈ S′(Rn) such that W(u,φ) ∈ L∞(R2n) for some (and hence

every) window φ ∈ M1
0 (Rn); the duality bracket is given by the pairing

(
u,u′) =

∫
R2n

W(u,φ)(z)W
(
u′, φ

)
(z) dz, (62)

and the formula

‖ψ‖h̄

φ,(M1
0 )′ = sup

z∈R2n

∣∣W(ψ,φ)(z)
∣∣ (63)

defines a norm on M1
0 (Rn)′ for which this space is complete.

5.2. The symbol class M
∞,1
s

Let us now introduce a different class of modulation spaces, which contains as a particular case the Sjöstrand
classes, defined by other methods in Sjöstrand [39]; also see the paper [10] by Boulkhemair. It is interesting to
view these modulation spaces as symbol classes: in contrast to the cases traditionally considered in the literature,
membership of a symbol a in M

∞,1
s (Rn ⊕ R

n) does not require any smoothness properties of a. It turns out that this
point of view allows to recover many classical and difficult regularity results (for instance then Calderón–Vaillancourt
theorem) in a rather simple way; see for instance Gröchenig [30,31]. In a recent paper [27] two of us pointed out the
relevance of Sjöstrand classes for deformation quantization.

As before we set vs(z) = (1 + |z|2)s/2 for z ∈ R
2n. The modulation space M

∞,1
s (Rn ⊕ R

n) consists of all distribu-
tions in S ′(R2n) (viewed as pseudo-differential symbols, and hence denoted a, b, . . .) such that

sup
z∈R2n

∣∣W(a,Φ)(z, ζ )vs(z)
∣∣ ∈ L1(

R
n ⊕ R

n
)

(64)

for every Φ ∈ S(R2n). Here W(a,Φ) is the cross-Wigner transform of functions (or distributions) defined on R
n ⊕

R
n. When s = 0 the space M

∞,1
0 (R2n) = M∞,1(R2n) is called the Sjöstrand class. It thus consists of all symbols

a ∈ S ′(Rn ⊕ R
n) such that

sup
z∈R2n

∣∣W(a,Φ)(z, ζ )
∣∣ ∈ L1(

R
n ⊕ R

n
)

for every Φ ∈ S(R2n), and we have

S0
0,0

(
R

2n
) ⊂ C2n+1

b

(
R

2n
) ⊂ M∞,1(

R
2n

)
(65)

where C2n+1
b (R2n) is the vector space of all bounded complex functions on R2n with continuous and bounded

derivatives up to order 2n+1 and the symbol class S0
0,0(R

2n) consists of all infinitely differentiable complex functions

a on Rn ⊕ Rn such that ∂α
z a is bounded for all multi-indices α ∈ N2n.

It is clear that M
∞,1
s (R2n) is a complex vector space for the usual operations. In fact:

Proposition 23. We have Ψ ∈ M
∞,1
s (Rn ⊕ Rn) if and only if (64) holds for one Φ ∈ S(Rn ⊕ Rn), and

(i) The equalities

‖a‖Φ

M
∞,1
s

=
∫

R2n

sup
z∈R2n

∣∣W(a,Φ)(z, ζ )vs(z)
∣∣dζ

define a family of equivalent norms on M
∞,1
s (Rn ⊕ R

n) for different Φ ∈ S(R2n).
(ii) The space M

∞,1
s (Rn ⊕ R

n) is a Banach space for the topology defined by any of the norms ‖ · ‖Φ

M
∞,1
s

and S(R2n)

is a dense subspace of M
∞,1
s (Rn ⊕ R

n).
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The interest of M
∞,1
s (Rn ⊕ R

n) comes from the following property of the twisted product (Gröchenig [31]):

Proposition 24. Let a, b ∈ M
∞,1
s (R2n). Then a#b ∈ M

∞,1
s (Rn ⊕ R

n). In particular, for every window Φ there exists
a constant CΦ > 0 such that

‖a#b‖Φ

M
∞,1
s

� CΦ‖a‖Φ

M
∞,1
s

‖b‖Φ

M
∞,1
s

.

Recall that the twisted product a#b is the Weyl symbol of the product Â B̂ of the operators Â
Weyl←→ a and B̂

Weyl←→ b.
Since obviously a ∈ M

∞,1
s (Rn ⊕ R

n) if and only and a ∈ M
∞,1
s (Rn ⊕ R

n) the property above can be restated by
saying that M

∞,1
s (R2n) is a Banach ∗-algebra with respect to the twisted product # and the involution a 
−→ a.

The following property follows from Theorem 4.1 and its Corollary 4.2 in [31] (also see [29], Theorem 14.5.6);
it is a particular case of more general results in Toft [41].

In the case of the Sjöstrand class M∞,1(Rn ⊕ R
n) one has the following more precise results:

Proposition 25. Let Â
Weyl←→ a. We have:

(i) If a ∈ M∞,1(Rn ⊕ R
n) then Â is bounded on L2(Rn) and on all Mq(Rn) = M

q

0 (Rn);

(ii) If a ∈ M
∞,1
s (Rn ⊕ R

n) then Â is bounded on every modulation space M
q
s (Rn);

(iii) If Â with a ∈ M∞,1(Rn ⊕ R
n) is invertible with inverse B̂

Weyl←→ b then b ∈ M∞,1(Rn ⊕ R
n).

Property (i) thus extends the L2-boundedness property of operators with symbols in S0
0,0(R

n ⊕ Rn). Property (iii)

is called the Wiener property of M∞,1(R2n).

5.3. Regularity results

Before we prove our main result, Proposition 27, let us show that the symbol spaces M
∞,1
s (R2n) are invariant under

linear changes of variables:

Lemma 26. Let f ∈ GL(2n,R) and set f ∗a = a ◦ f . There exists a constant CA > 0 such that∥∥f ∗a
∥∥

Φ,M
∞,1
s

� Cs‖a‖
(f −1)∗Φ,M

∞,1
s

(66)

for every Φ ∈ S(Rn ⊕ R
n). In particular a ∈ M

∞,1
s (R2n) if and only f ∗a ∈ M

∞,1
s (Rn ⊕ R

n).

Proof. Let us set b = f ∗a. We have, by definition of the cross-Wigner transform,

W(b,Φ)(z, ζ ) =
(

1

2π

)2n ∫
R2n

e−iζ ·ηa
(

f z + 1

2
f η

)
Φ

(
z − 1

2
η

)
dη

thus, performing the change of variables ξ = f η,

W(b,Φ)
(
f −1z, f T ζ

) =
(

1

2π

)2n

|detf |−1
∫

R2n

e−iζ ·ξ a
(

z + 1

2
ξ

)(
f −1

)∗
Φ

(
z − 1

2
ξ

)
dξ,

and hence

W(b,Φ)(z, ζ ) = |detf |−1W
(
a,

(
f −1)∗

Φ
)(

f z,
(
f T

)−1
ζ
)
, (67)

taking the suprema of both sides of this equality and integrating we get∥∥f ∗a
∥∥Φ

M
∞,1
s

=
∫
2n

sup
z∈R2n

∣∣W (
a,

(
f −1)∗

Φ
)
(z, ζ )vs

(
f −1z

)∣∣dζ.
R
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Since vs(f
−1z) � Cs,f vs(z) for some constant Cs,f > 0 (cf. the inequality (61)) the estimate (66) follows. �

Let us now introduce the following notation: for an arbitrary window φ set

Lq
f,φ

(
R

2n
) = Wf,φ

(
M

q
s

(
R

n
)) ⊂ L

q
s

(
R

2n
)
. (68)

Clearly Lf,φ(R2n) is a closed linear subspace of L
q
s (R2n).

Proposition 27. Let Ãω be associated to the Weyl operator Â
Weyl←→ a. If a ∈ M

∞,1
s (R2n) then

Ãω : Lq
f,φ

(
R

2n
) −→ Lq

f,φ

(
R

2n
)

(continuously) for every window φ ∈ S(Rn).

Proof. Let U ∈ Lq
f,φ(R2n); by definition there exists u ∈ M

q
s (Rn) such that U = Wf,φu. In view of the first intertwin-

ing relation (58) we have

ÃωWf,φu = Wf,φÂ′u

where Â′ Weyl←→ a′ with a′(z) = a(f z). In view of Lemma 26 above we have a′ ∈ M
∞,1
s (R2n) and hence Â′u ∈ M

q
s (Rn)

and is bounded in view of Proposition 25(ii). It follows that Wf,φÂ′u ∈ Lq
f,φ(R2n). �

It is worthwhile (and important, in a quantum mechanical context) to note that the spaces Lq
f,φ(R2n) cannot contain

functions which are “too concentrated” around a point; this is reminiscent of the uncertainty principle. In particular
the Schwartz space S(R2n) is not contained in any of the Lq

f,φ(R2n). This observation is based on the following result,
proved in de Gosson and Luef [24,25] using Hardy’s uncertainty principle for a function and its Fourier transform:
assume that u ∈ S(Rn) is such that Wu � Ce−Mz·z for some C > 0 and a real matrix M = MT > 0. Consider now
the eigenvalues of JM ; these are of the form ±iλj with λj > 0. Then we must have λj � 1 for all j = 1, . . . , n.
Equivalently, the symplectic capacity c(WM) of the “Wigner ellipsoid” WM : Mz · z � 1 satisfies c(W ) � π . [Recall
[33,37] that the symplectic capacity of an ellipsoid W in R

2n is the number πR2 where R is the supremum of the radii
of all balls B2n(r) that can be sent into WM using symplectomorphisms of (R2n, σ ).] This result in fact also holds
true for the cross-Wigner transform [32]: if |W(u,φ)(z)| � Ce−Mz·z for some φ ∈ S(Rn) then c(W ) � π . Assume
now that U ∈ Lq

f,φ(R2n) satisfies the sub-Gaussian estimate |U(z)| � Ce−Mz·z; by definition of Lq
f,φ(R2n) this is

equivalent to ∣∣W(u,φ)(f z)
∣∣ � Ce−(f −1)T Mf −1z·z

hence the ellipsoid f (WM) must have symplectic capacity at least equal to π . We remark that a complete character-
ization of the spaces M

q
s (Rn) and Lq

f,φ(R2n) in terms of the uncertainty principle is still lacking; we hope to come
back to this important question in a near future.

We finally notice that Lieb [35] has studied integral bounds for ambiguity and Wigner distributions; how are his re-
sults related to ours? This is certainly worth being explored, especially since he obtains an interesting characterization
for Gaussians in terms of L2 norms. In [8] Bonami et al. extend Beurling’s uncertainty principle into a characterization
of Hermite functions. They obtain sharp results for estimates of the Wigner distribution; it would perhaps be useful to
study their results in our context; we hope to come back to these possibilities in a near future.
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