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1. Introduction

The Ehrhart polynomial of a d-dimensional lattice polytope Q is a real polynomial of degree d,
which has the following two representations:

i Q = i Q (z) =
d∑

j=0

c j z
j =

d∑
i=0

ai

(
z + d − i

d

)
.

Here we chose the letter z for the independent variable in order to emphasize that we think of i Q

as a polynomial defined over the complex numbers. The coefficients c0, cd−1 and cd in the first rep-
resentation are positive, while the others generally can vanish or take on either sign. In contrast,
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a famous theorem of Stanley [11] asserts that all coefficients ai of i Q in the latter representation are
nonnegative, ai � 0 for 0 � i � d.

Such nonnegativity information is also available for other combinatorially defined polynomials,
a case in point being the chromatic polynomial of a graph (cf. Proposition 6.1 below). An early ex-
ample of how combinatorial information might be gleaned from studying roots of such polynomials
is the Birkhoff–Lewis Conjecture, which asserts that no chromatic polynomial has a root in the real
interval [4,∞). Somewhat ironically, even though it was formulated as a new inroad towards settling
the Four Color Conjecture (which it implies), the latter is now a theorem, while the former is still
open. Nevertheless, since at least 1965 [7], the complex roots of chromatic polynomials have received
close scrutiny. A well-known recent result by Sokal [10] states that their complex roots are dense in
the entire complex plane, if one allows arbitrarily large graphs. He was motivated by applications in
physics to the Potts model partition function.

Coming back to Ehrhart polynomials, first bounds obtained in [1] on the location of the roots of i Q

for fixed d were substantially improved by Braun [3] and Braun and Develin [4]. All of these papers
use the nonnegativity of the ai ’s, but Braun’s crucial new insight is to think of the value i Q (z) at each
z ∈ C as a linear combination with nonnegative coefficients of the d+1 complex numbers bi = bi(z) =(z+d−i

d

)
. In particular, for z0 to be a zero of i Q , there must be a nonnegative linear combination of

the bi(z0) that sums to zero.
In this paper, we extend and generalize Braun’s bounds on the location of roots for the binomial

coefficient basis. We propose a unified approach using Gale duality to bound the location of roots,
that

• works in exactly the same way for all bases of the vector space Pd of polynomials of degree at
most d (Theorem 3.3), and

• allows one to incorporate arbitrary additional linear equations and inequalities between the co-
efficients ai beyond mere nonnegativity (Theorem 5.1). This is applied in Section 6 to the case of
Ehrhart and chromatic polynomials (Figs. 6 and 7).

We apply our approach in Section 3 to explicitly bound the location of the roots of polyno-
mials with nonnegative coefficients with respect to four common bases of Pd; the detailed treat-
ment of the binomial coefficient basis comprises Section 4. Throughout, we focus on bounding the
location of the nonreal roots, as the case of real roots is much more straightforward (Observa-
tion 3.4).

In Section 7, we use our method to explain why the roots of “random” polynomials with nonnega-
tive coefficients (for a suitable meaning of “random”) tend to clump together, by tracing this behavior
back to properties of the basis polynomials (Figs. 9 and 10).

1.1. Sketch of the method

Let B = {b0, . . . ,bd} be any basis of Pd , the (d + 1)-dimensional vector space of real polynomials
of degree at most d in one variable.

• We regard B as a collection of vector fields: for each complex number z ∈ C, the basis ele-
ments b0(z), . . . ,bd(z) define a configuration B(z) = (w0(z), . . . , wd(z)) of real vectors w j(z) =
(Re b j(z), Im b j(z))T in the plane R2. This point of view converts the algebraic problem of bound-
ing the location of roots of a polynomial into a combinatorial problem concerning the discrete
geometry of vector configurations.

• We analyze the combinatorics of B(z) in terms of the Gale dual configuration B∗(z). In particu-
lar, there exists a polynomial f = ∑d

i=0 aibi(z) with nonnegative coefficients ai � 0 and a root at
z = z0 whenever the vector configuration B(z0) has a nonnegative circuit, and this occurs when-
ever B∗(z0) has a nonnegative cocircuit.
The important point is that we obtain a semi-explicit expression for B∗ for any basis of Pd ,
not just the binomial coefficient basis. In fact, for the power basis bi = zi , the rising and falling
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Fig. 1. The values of {(z+d−i
d

)
: 0 � i � d} at different points in the complex plane, for d = 6. All vectors are normalized to the

same length. In gray, the locus of points where two vectors become collinear. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

factorial bases bi = zī, zi , and the binomial coefficient basis bi = (z+d−i
d

)
we can make the Gale

dual completely explicit.
• In concrete situations one often has more information about f . Gale duality naturally allows to

incorporate any linear equations and inequalities on the coefficients, and in some cases this leads
to additional restrictions on the location of roots.

• As an illustration, we show how the inequality ad � a0 + a1 that is valid for Ehrhart polynomials
further constrains the location of the roots of i Q . We also study the case of chromatic polyno-
mials, for which Brenti [5] has shown the nonnegativity of the coefficients with respect to the
binomial coefficient basis.

• Braun and Develin [4] derive an implicit equation for a curve C bounding the possible locations of
roots of f = ∑d

i=0 ai
(z+d−i

d

)
, and our method gives an explicit equation for a real algebraic curve

whose outermost oval is precisely C .

It is instructive to visualize the vector fields w0, . . . , wd for the binomial coefficient basis, i.e.,
when b j(z) = (z+d− j

d

) = R j(z) + i I j(z); recall that w j(z) = (R j(z), I j(z))T .
From Fig. 1, it appears that at points far away from the origin the vectors wi are all “acute”, i.e.,

contained in a half-plane (that varies from point to point), while closer to the origin they positively
span the entire space. If true in general, this would imply that far away from the origin, f cannot have
any roots.

The detailed analysis (and proof) of this observation will take up the bulk of the paper, Sec-
tions 2–6, and in this special case may be summarized as follows:
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Theorem 4.11. Let d be a positive integer and Zd the set of complex, nonreal numbers that are zeros of non-
identically vanishing polynomials of the form

f (z) =
d∑

j=0

a j

(
z + d − j

d

)
,

with a j � 0 for j = 0, . . . ,d. Then Zd is the set of nonreal points in the region bounded by the outermost oval
of the real algebraic curve of degree d − 1 in the complex plane with equation

(z
d

)(z+d
d

) − (z
d

)(z+d
d

)
z − z̄

= 0,

where ·̄ denotes complex conjugation. This bound is tight, in the sense that any point inside Zd is a root of
some such f . Moreover, there is an explicit representation of this equation as the determinant of a tridiagonal
matrix; see (3) and Proposition 2.4.

The real roots of any such f all lie in the real interval [−d,d − 1].

From contemplating Fig. 1, a naive strategy for bounding the locations of the roots comes to mind:
First, try to prove that for “far away” z the wi(z) positively span a convex pointed 2-dimensional
cone τ . Then determine the generators wk(z), wl(z) of its facets, and the locus C of all z ∈ C for
which these facet vectors “tip over”, i.e., become collinear. By continuity, for z0 inside C the origin is
a nonnegative linear combination of the wi , and thus z0 is a possible root.

The alert reader will perhaps have lost track of even the number of holes in this argument! As a
sample, it is a priori not clear (but true, at least for the binomial coefficient basis) that the wi(z) in
fact span a pointed cone for all z of large enough absolute value. It is even less clear (but true in this
case) that the vectors spanning facets of τ far away from the origin will still define facets just before
τ ceases to be convex closer to the origin. Furthermore, the locus C might (and does) have multiple
components, suggesting that one has to exercise more care when talking about points z0 “inside” C .

However, the real problem with this approach lies with the fact that the locus of collinearity of

wi(z) and w j(z) is the vanishing locus of the determinant �i j =
∣∣∣ Ri R j

Ii I j

∣∣∣, and evaluating this polyno-

mial explicitly quickly becomes a daunting task; moreover, it is not at all clear how the knowledge
of �i j for any particular basis would help for other bases of Pd .

We now present our method that overcomes all these obstacles.

2. Gale duality

2.1. Overview

Consider a polynomial f = ∑d
i=0 aibi of degree d, expanded with respect to a basis B = {b0, . . . ,bd}

of Pd , the vector space of all polynomials in one complex variable of degree at most d. For the
moment, we will focus on the complex, nonreal roots of f . To find these, rewrite the real and complex
parts of the condition f (z) = 0 in the form

(
R0 R1 · · · Rd

I0 I1 · · · Id

)
⎛
⎜⎜⎜⎝

a0

a1
...

ad

⎞
⎟⎟⎟⎠ = 0, (1)

where R j = R j(x, y) and I j = I j(x, y) stand for the real and imaginary parts of the polynomial
b j(x + iy).
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As suggested in the Introduction, we now regard each basis element bi not as a complex polyno-
mial, but as a real vector wi(x, y) = (Ri, Ii)

T ∈ R
2. Then there exists some polynomial f with a root

at z = x + iy if and only if there exist real coefficients a0, . . . ,ad with

d∑
i=0

ai wi(x, y) = 0.

If we impose the additional restriction that the ai be nonnegative but not all zero, this is only possible
if the positive span of the wi includes the origin. Among all such linear combinations summing to
zero, we now consider only support-minimal ones, i.e., those with the minimum number of nonzero
coefficients ai . In oriented matroid terminology, the ordered collection σ of signs of the coefficients
of such a support-minimal linear combination is called a circuit of the (full-dimensional) vector con-
figuration W = (w0, . . . , wd) ⊂ R2. To proceed, we regard W as a (2 × (d + 1))-matrix. A Gale dual
vector configuration W̄ = (w̄0, . . . , w̄d) ⊂ Rd−1 of W is the ordered set of rows of any matrix, also
called W̄ , whose columns form a basis for the (row) kernel of the matrix W , so that W W̄ = 0 [12].
Gale duality states that the collection of signs σ is a cocircuit of W̄ . This means that there exists a
linear form g on R

d−1 with (sign g(w̄i): i = 0, . . . ,d) = σ .
Clearly, any circuit of W has either two or three nonzero entries (unless it is the zero circuit, which

we exclude from the discussion). Because z0 is a root of f if and only if there exists a nonnegative
circuit of W (z0) = (w0(z0), . . . , wd(z0)) ⊂ R2, by Gale duality this happens if and only if there exists a
cocircuit of W̄ (z0) = (w̄0(z0), . . . , w̄d(z0)) ⊂ Rd−1, i.e., if and only if there exists a linear form on Rd−1

that vanishes on all of the w̄i except for either two or three of them, and on those evaluates to the
same sign. Geometrically, there must exist a linear hyperplane in R

d−1 that contains all vectors w̄i
except for two or three, and has those on the same side.

Thus, we have traded the search for the locus of two collinear vectors among the wi ∈ R
2 (a prob-

lem involving only two pieces of input data) for the task of finding a Gale dual W̄ in the much
higher-dimensional space Rd−1, and hyperplanes passing through almost all of the w̄i — a problem
involving almost the entire input!

That this is not crazy, but instead effective, is explained by the fact that passing to the higher-
dimensional representation is possible in great generality, and moreover greatly simplifies the struc-
ture of the problem; see Proposition 2.1 below.

2.2. Implementation

Let B = {bi: 0 � i � d} be any basis of Pd .

2.2.1. The Gale dual
Form the matrix

W = W (x, y) =
(

R0 R1 · · · Rd

I0 I1 · · · Id

)
,

where R j = R j(x, y) and I j = I j(x, y) denote the real and imaginary parts of the complex polynomial
b j = b j(x + iy). The rank of W is 2, so any Gale dual matrix W̄ to W has size (d + 1) × (d − 1).
The following proposition gives an explicit representative for W̄ involving polynomials pk,qk, rk that
depend on the basis B . For four especially relevant bases, we will make the Gale dual W̄ completely
explicit. These bases are:

• The power basis, where bi = zi ;
• the falling factorial basis, where bi = zi = z(z − 1) · · · (z − i + 1);
• the rising factorial basis, where bi = zī = z(z + 1) · · · (z + i − 1); and
• the binomial coefficient basis, where bi = (z+d−i

d

)
.

Here z0 = z0 = z0̄ = 1.
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Proposition 2.1. A Gale dual matrix to W may be chosen to have exactly three nonzero diagonals

W̄ = W̄ (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0 0 0 · · · 0

−q0 p1 0 · · · 0

r0 −q1
. . .

...

0 r1
. . .

. . .

...
. . .

. . . pd−2

rd−3 −qd−2

0 · · · 0 rd−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Moreover, its entries may be chosen to lie in R[x, y]. For the four bases considered, we may choose the following
explicit values:

bi pk qk rk

zi x2 + y2 2x 1
zi (x − k)2 + y2 2(x − k) − 1 1

zī (x + k)2 + y2 2(x + k) + 1 1(z+d−i
d

)
(x − k)2 + y2 pk + rk − d(d − 1) pk+1−d

Note that in the last row, qk = 2(x − (k − d−1
2 ))2 + 2y2 − d2−1

2 .

Proof. We first prove that the matrix W̄ can be chosen to have the displayed triple band structure
regardless of the basis B chosen for Pd . For this, define the rational functions gk = bk+1

bk
∈ R(z) for

0 � k � d − 1; specific values for gk become apparent from the relations zk+1 = z · zk , zk+1 = (z −k)zk ,
zk+1 = (z + k)zk̄ and

(z+d−k−1
d

) = z−k
z+d−k

(z+d−k
d

)
.

The triple (pk,qk, rk) lists nontrivial coefficients of a real syzygy

pkbk + qkbk+1 + rkbk+2 = bk(pk + gkqk + gk gk+1rk) = 0

whenever

(
1 Re gk Re gk gk+1

0 Im gk Im gk gk+1

)⎛
⎝ pk

qk

rk

⎞
⎠ =

(
0

0

)
.

But the displayed matrix with entries in R(x, y), call it M , obviously has rank at least 1, and rank 2
whenever Im gk(x + iy) �= 0, so that such triples certainly exist. Moreover, by multiplying with a com-
mon denominator we may assume pk,qk, rk ∈ R[x, y], and so the relations pkbk + qkbk+1 + rkbk+2 = 0
imply that W̄ is in fact a Gale dual of W . The concrete syzygies listed above arise by choosing explicit
bases for ker M . �
Remark 2.2. Another interesting case is that of polynomials with symmetric coefficients. For instance,
if f = ∑d

i=0 ai
(z+d−i

d

)
and ai = ad−i , we may expand f in the basis B = {(z+d−i

d

) + (z+i
d

)
: 0 � i �

� d
2 �} of the vector space of polynomials with symmetric coefficients in the binomial coefficient basis.

However, the coefficients of syzygies of these bk do not appear to be as simple as the ones listed in
Proposition 2.1. For example, a typical coefficient (namely, q1 for d = 8) reads

−8
((

(x + α1)
2 + y2)((x + α2)

2 + y2) + γ1
)((

(x + β1)
2 + y2)((x + β2)

2 + y2) + γ2
) + γ ,

where α1,α2 are the roots of α2 − α + ρ1 = 0 (so that α1 + α2 = 1), β1, β2 are the roots of β2 − β +
ρ2 = 0, ρ1,ρ2 are the roots of ρ2 − 29

2 ρ − 231
8 = 0, γ1 +γ2 = 135

4 , γ1 = 135
8 (1− 61√

649
), and γ = 874800

649 .

We will not pursue this basis further in this paper.
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2.2.2. The determinants
Recall that two vectors w j(z), wk(z) become collinear at some point z ∈ C whenever there exists a

circuit of the vector configuration W (z) with exactly two nonzero entries. By Gale duality, this means
that the Gale dual vector configuration W̄ (z) has a cocircuit with support 2, i.e., the determinant of
the matrix obtained by deleting two rows from W̄ vanishes. Our approach rests on the fact that we
can give fairly explicit expressions for these determinants for the four bases considered here.

Lemma 2.3. Let W̄ ( j,k) = W̄ ( j,k)(x, y) denote the square matrix obtained by deleting rows j and k from W̄ ,
where 0 � j < k � d (so that we number the rows from 0 to d). Then

det W̄ ( j,k) = p0 · · · p j−1 D j,krk−1 · · · rd−2,

where D j,k = D j,k(x, y) is the determinant of the tridiagonal matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q j p j+1 0 · · · 0

r j −q j+1
. . .

...

0 r j+1
. . .

. . .

...
. . .

. . . pk−2

rk−3 −qk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Here D j, j+1 := 1, and the leading resp. trailing products are 1 if j = 0 resp. k = d. In particular, D j, j+2 = −q j .

Proof. The matrix W̄ ( j,k) decomposes into three blocks, whose determinants yield the stated formula,
and two additional elements r j−1 and pk−1 that do not contribute to det W̄ ( j,k) . �
Proposition 2.4. Set z = x + iy and z̄ = x − iy. Then

D j,k(x, y) = (−1)k− j−1

z − z̄

(
f j,k(z) − f j,k(z̄)

)
,

where the polynomials f j,k(z) are given in the following table:

bi f j,k(z)

zi zk− j

zi (z − k + 1) · · · (z − j)

zī (z + k − 1) · · · (z + j)(z+d−i
d

) 1
d (z − k + 1) · · · (z − j)(z̄ + d − k + 1) · · · (z̄ + d − j)

The D j,k are real polynomials with even degrees in y.

Proof. It is well known that the determinant Dn of an n × n tridiagonal matrix A = (aij) satisfies the
three-term recursion relation Dn = ann Dn−1 − an,n−1an−1,n Dn−2. Solving this recursion for the matrix
from Lemma 2.3 with the values from Proposition 2.1 and the boundary conditions D j, j+1 = 1 and
D j, j+2 = −q j yields the stated expressions. �
2.3. The real case

Up to now, we have only considered complex, nonreal roots of f . The case of real roots is much
simpler, and the machinery used for complex roots specializes in a straightforward way to the real
case. If we regard both f and the bi as polynomials in one real variable, the matrix W = W R reduces
to the single row W R = (b0, . . . ,bd).
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Proposition 2.5. A basis for the kernel of W R is given by the columns of the matrix

W̄ R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b1 0 0 · · · 0

b0 −b2 0 · · · 0

0 b1
. . .

...

... 0
. . .

. . . 0
...

...
. . . −bd

0 · · · 0 bd−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

of size (d + 1) × d. The determinant of the matrix obtained by deleting row j from W is

det W̄ j = (−1) jb jΠ for j = 0,1, . . . ,d,

with Π = b1b2 · · ·bd−1 .

3. Bounding the location of roots

We first treat the case of complex, nonreal roots. For each ordered triple of indices i, j,k with
0 � i < j < k � d, denote by Hi, j,k the hyperplane in R

d−1 spanned by the rows of the matrix W̄ (i, j,k) ,
obtained by deleting the rows w̄i, w̄ j, w̄k from W̄ .

Definition 3.1. Si, j,k is the set of all z = x+ iy ∈ C such that Hi, j,k = Hi, j,k(x, y) induces a nonnegative
cocircuit, i.e., the vectors w̄i = w̄i(x, y), w̄ j = w̄ j(x, y), w̄k = w̄k(x, y) all (weakly) lie on the same
side of Hi, j,k(x, y).

The sets Si, j,k are crucial for our purposes for the following reason: If z ∈ Si, j,k , then the corre-
sponding Gale primal vectors wi, w j, wk form a nonnegative circuit, and thus yield a nonnegative
combination of all w ’s that sums to zero; in other words, there exists some polynomial f with non-
negative coefficients in the chosen basis B that has a zero at z. On the other hand, if z /∈ Si, j,k , we
can only conclude that the three particular Gale primal vectors wi, w j, wk do not form a circuit, and
so are not responsible for the possible zero z of f .

Proposition 3.2. For 0 � i < j < k � d and z ∈ C � R, let σi, j,k(z) be the set of signs{
(−1)i sign det W̄ ( j,k)(x, y), (−1) j−1 sign det W̄ (i,k)(x, y), (−1)k−2 sign det W̄ (i, j)(x, y)

}
= {

(−1)i sign D j,k(x, y), (−1) j−1 sign Di,k(x, y), (−1)k−2 sign Di, j(x, y)
}
.

Then each Si, j,k ⊂ R2 is a semialgebraic set defined as the locus of all (x, y) such that

{±1} �⊂ σi, j,k(x + iy).

Proof. We obtain a linear form ϕi, j,k on Rd−1 whose vanishing locus is the hyperplane Hi, j,k by
adding a first row of variables x1, . . . , xd−1 to W̄ (i, j,k) and expanding the determinant of that square
matrix along the first row. The value of ϕi, j,k on w̄i , say, is given by the sign (−1)i of the permutation
that interchanges rows 0 and i in the matrix W̄ ( j,k) , times det W̄ ( j,k) . For Hi, j,k to define a (positive
or negative) cocircuit, the signs obtained in this way for w̄i , w̄ j and w̄k must agree. Finally, by
Lemma 2.3 the signs of det W̄ ( j,k) and D j,k agree except perhaps on the real axis (on the vanishing
locus of the pk ’s and rk ’s), and we may assume that j − i � 2 and k − j � 2. �

In summary:
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Theorem 3.3. Let f be a polynomial of degree d with nonnegative coefficients with respect to some basis of
the vector space Pd. Then the set of nonreal roots of f is contained in the union of the semialgebraic sets Si, j,k,
for 0 � i < j < k � d. Put differently, if

{−1,1} ⊆ {
(−1)i D j,k(z0), (−1) j+1 Di,k(z0), (−1)k Di, j(z0)

}
for each triple (i, j,k) with 0 � i < j < k � d, then z0 is not a root of f .

After a short discussion of the real case, we will apply this result to our four representative bases.
We only discuss the power basis and binomial coefficient basis in any detail, as the procedure for the
rising and falling factorial bases is almost exactly the same.

3.1. The real case

A real number x ∈ R is a real root of some polynomial f with nonnegative coefficients with respect
to a fixed basis if and only if either x is a root of some basis polynomial, or two basis polynomials
differ in sign when evaluated at x. In other words:

Observation 3.4. Let f be a polynomial of degree d with nonnegative coefficients with respect to some basis
{b0, . . . ,bd} of Pd. Then the locus of possible real roots of f is the set of x ∈ R for which bi(x)b j(x) � 0 for
some i �= j.

For the sake of completeness, and in response to the query of one of the referees, we briefly
rederive this result using our framework of Gale transforms.

Proof of Observation 3.4. In complete analogy to the complex case, denote for 0 � i < j � d by W̄ R

(i, j)

the matrix obtained by deleting rows wi and w j from W̄ R , by Hi, j the hyperplane in Rd spanned by
the rows of W̄ R

(i, j) , and by Si, j ⊆ R the set of all x ∈ R such that Hi, j(x) induces a positive cocircuit,
i.e., the vectors w̄i = w̄i(x) and w̄ j = w̄ j(x) lie on the same side of Hi, j .

To find these cocircuits explicitly, build a linear form ϕi, j on Rd that defines Hi, j by adding a
first row (x1, . . . , xd) of variables to W̄ R

i, j and expanding the determinant of that square matrix along

the first row. Just as in the proof of Proposition 3.2, ϕi, j(w̄i) = (−1)i det W̄ R

i = biΠ and ϕi, j(w̄ j) =
(−1) j−1 det W̄ R

j = −b jΠ by Proposition 2.5. In consequence, Si, j is the locus of points x ∈ R such
that bi(x) and b j(x) differ in sign. This finishes the proof. �
3.2. The power basis

For bi = zi , we set n = k − j − 1, write Dn for D j,k , and substitute z = reiθ into Dn:

Dn = (−1)n zn+1 − z̄n+1

z − z̄
= (−1)nrne−inθ e2i(n+1)θ − 1

e2iθ − 1
.

This vanishes iff θ = π l/(n + 1) for integer l with 1 � l � 2n + 1 and l �= n + 1. The zero locus of Dn
thus consists of n lines through the origin, the ones closest to the x-axis having angles θ = ± π

n+1 .
We conclude that Dn has the same sign throughout the entire open sector Zn+1 = {z ∈ C: − π

n+1 <

arg z < π
n+1 }. By substituting a positive, real value of z into Dn = (−1)n ∑n

j=0 z j z̄n− j , we determine

this sign to be (−1)n = (−1)k− j−1.
For z ∈ Zd and 0 � i < j < k � d the set of signs of the polynomials in Proposition 3.2 is

σi, j,k(z) = {
(−1)i+ j+k+1, (−1)i+ j+k, (−1)i+ j+k−1} = {±1}.

This implies Si, j,k = ∅, and thus Theorem 3.3 recovers the classical result that a polynomial of de-
gree d with positive coefficients in the power basis has no zeros in Zd; of course, this includes the
case of real roots.
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Fig. 2. The locus D0,10 in the case of the rising factorial basis.

3.3. Rising and falling factorial basis

In both cases, the polynomials f j,k from Proposition 2.4 have the form f j,k(z) = ∏n+1
i=1 (z −ai), with

n = k − j − 1 and ai = j − 1 + i for the falling powers and ai = −( j − 1 + i) in the case of the rising
powers. The transform z �→ z ± j+k−1

2 remedies this asymmetry, where we choose the ‘−’ sign for

bi = zi and the ‘+’ sign for bi = zī . The ai then become integers or half-integers in the range ± n
2 .

Using the same type of analysis as will be detailed in Section 4 for the binomial coefficient basis,
one can prove that the zero locus D j,k = {z ∈ C: D j,k(z) = 0} is smooth everywhere, that one com-
ponent intersects the real axis between each pair of adjacent ai ’s, and that far away from the origin
D j,k approaches the arrangement of lines through the origin with slopes ± 1

n+1 , . . . ,± n
n+1 ; cf. Fig. 2.

We will not enter into the details here, but instead treat the remaining basis in a separate section.

4. The binomial coefficient basis

We first get the real case out of the way: The basis polynomials all have the same sign outside the
closed interval [−d,d − 1], and at each point inside this interval there are two basis polynomials that
evaluate to opposite signs. By Observation 3.4, [−d,d − 1] is exactly the set of possible real roots.

For the nonreal roots, as before we pass to an adapted coordinate system with respect to which
the vanishing locus of D j,k is centro-symmetric, by replacing

z �→ z′ + (k + j − d − 1)/2 (4)

in d · f j,k(z). Writing again z for z′ yields

df j,k(z) =
k−1∏
i= j

(
z + k + j − d − 1 − 2i

2

) k−1∏
i= j

(
z̄ + k + j + d − 1 − 2i

2

)
.

Next, we replace i by i + j in the first product and by k − 1 − i in the second, to obtain
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df j,k(z) =
k− j∏
i=1

(
z − i − �

2

)(
z̄ + i + �

2

)
,

where � = d − 1 − k + j. Introducing ai = i + �
2 we obtain

D j,k(z) = Dn(z) = (−1)n+1

d(z̄ − z)

(
n+1∏
i=1

(z − ai)(z̄ + ai) −
n+1∏
i=1

(z̄ − ai)(z + ai)

)
, (5)

where we have set n = k − j − 1 (so that � = d − 2 − n), in accordance with the fact that the degree
of D j,k(z) in z is n.

Before examining the zero locus of D j,k(z), we pause to calculate the leading coefficient. This result
will be used in Section 6.1.

Lemma 4.1. The leading coefficient of D j,k(z) is

[2n]D j,k(z) = (zz̄)k− j−1(−1)k− j−1(k − j) = r2n(−1)n(n + 1), (6)

where z = reiφ . It is invariant under substitutions of the form z �→ z + z0 , and the sign of Dn(z) outside the
outermost component of Dn is (−1)n, and +1 inside the innermost one.

Proof. See Appendix A. �
We now treat the zero locus of Dn . First, whenever Dn(z) = 0,

n+1∑
i=1

arg(z − ai) +
n+1∑
i=1

arg(z̄ + ai) −
n+1∑
i=1

arg(z̄ − ai) −
n+1∑
i=1

arg(z + ai) = 2lπ

for some integer l. Because arg(z ± ai) = −arg(z̄ ± ai), this relation reads

n+1∑
i=1

arg(z − ai) −
n+1∑
i=1

arg(z + ai) =
n+1∑
i=1

αi = lπ, (7)

where αi is the angle under which the segment [−ai,ai] appears as seen from z (cf. Fig. 3).
We may assume without loss of generality that z lies in the upper half-plane, and therefore that

arg(z−ai) > arg(z+ai) > 0, which implies l � 1. On the other hand, the maximal value (n+1)π of (7)
is achieved for real z between −a1 and a1, so that l � n for nonreal z. From this, we can draw several
conclusions, which we detail in Section 4.1. The reader may want to just skim this material, and
otherwise skip ahead to Section 4.2, where we apply it to conclude that the root locus is bounded.

4.1. Limiting behavior and global geometric properties of D j,k

Proposition 4.2. When d becomes large with respect to n, the zero locus of D j,k approaches a union of circles
passing through ±d/2 and symmetric about the imaginary axis. For l = 1, . . . ,k − j − 1, these circles have
center

zl = −d + 1 − k − j

2
− i

d

2
cot

lπ

k − j

and radius

rl = d

2 sin lπ
k− j

.
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Fig. 3. The segments [−ai ,ai ] as seen from z.

Proof. For d large with respect to n, the points ±ai fuse to ±a = ± d
2 , so that (7) reads

α := arg(z − a) − arg(z + a) = lπ

n + 1
.

By elementary geometry, the locus of these points is a union of two circular arcs with the specified
equations. �
Example 4.3. For n = 1, we obtain a1 = d−1

2 and a2 = d+1
2 . For large d, they approach a = d

2 and

Eq. (7) says α = π
2 . In that limit, D1 thus approaches the circumference with center 0 and radius d

2 .
For smaller values of d, directly evaluating Eq. (5) yields

D1(z) = zz̄ − a1a2,

which describes a circumference of center 0 and radius
√

a1a2 = 1
2

√
d2 − 1 < d

2 .

Proposition 4.4. The plane algebraic curve D j,k with equation D j,k(z) = 0 is smooth. The only points where
it has horizontal tangent vectors lie on the y-axis.

This is proved in Appendix A.

Proposition 4.5. All algebraic curves D j,k consist of n = k − j − 1 nested ovals. The i-th oval intersects the
real axis inside the union of open intervals ±(ai,ai+1), for i = 1, . . . ,n.

Proof. Let φ ∈ S1
� S0 be a nonreal unit vector and ρ the ray through the origin and φ. At

each point p of D j,k ∩ ρ , the angle sum
∑n+1

i=1 αi takes on some value lπ among the discrete set
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Fig. 4. Left: The curve D0,10 for d = 10. Right: The curves Di, j with 0 � i < j � 5.

{π, . . . ,nπ}, and therefore this value remains constant on the entire connected component to which
p belongs. The argument extends to the real axis by smoothness of D j,k .

For the second statement, observe that the value of α j = arg(z − a j) − arg(z + a j) increases by
almost π as z travels from a j + ε + iδ to a j − ε + iδ, for 0 < δ � ε � 1. �
Example 4.6. For D0,10 = D9 and d = 10, we obtain the picture of Fig. 4.

To continue, we introduce some useful notation. By (5), the formula for D j,k(z) involves the points
a j,k;i = i + 1

2 (d − 1 − k + j) for 1 � i � k − j, so that

(a j,k;1, . . . ,a j,k;k− j) =
(

d

2
− k − j − 1

2
, . . . ,

d

2
+ k − j − 1

2

)
.

We write α(±a j,k;i; z) for the angle under which z ∈ C sees the segment [−a j,k;i,a j,k;i], and

A( j,k; z) = ∑k− j
i=1 α(±a j,k;i; z) for the corresponding angle sum. Moreover, let

D j,k;l = {
(x, y) ∈ R

2: A( j,k; x + iy) = lπ
}

for l = 1, . . . ,k − j − 1,

be the l-th oval of D j,k , and cl D j,k;l the closure of the region in R2 bounded by D j,k;l .

Remark 4.7. The arrangement of ovals {D j,k;l: 0 � j < k � d, 1 � l � k − j} has several interesting
combinatorial properties, which we will not pursue in this paper. Here we would only like to point
out the triple points where components of D j,r , Dr,k and D j,k intersect.

Proposition 4.8. Let 0 � j � j′ < k′ � k � d and 1 � l � k − j − 1 be integers.
Then D j′,k′ ⊂ cl D j,k;1 � cl D j,k;k− j−1 . In particular, all components of all curves D j,k are contained in the

topological closure of cl D0,d;1 � cl D0,d;d−1 . Moreover, for all integers δ1, δ2 with 0 � δ1 � j, 0 � δ2 � d − k
and (where appropriate) 1 + δ1 + δ2 � l � d − δ1 − δ2 ,
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cl D j−δ1,k+δ2;l+δ1+δ2 ⊆ cl D j,k;l ⊆ cl D j+δ1,k−δ2;l−δ1−δ2 , (8)

cl D j+δ1,k−δ2;l ⊆ cl D j,k;l ⊆ cl D j−δ1,k+δ2;l. (9)

Proof. We first show that D j′,k′;l ⊂ cl D j,k;1 for all l with 1 � l � k′ − j′ − 1. The first set consists of

all points z ∈ C such that
∑k′− j′

i=1 α(±a j′,k′;i; z) = lπ in the centro-symmetric coordinates. Undoing the
coordinate change (4) yields

D j′,k′;l = {
z ∈ C: α

(±(
d − k′ + 1

); z
) + · · · + α

(±(
d − j′

); z
) = lπ

}
,

cl D j,k;1 = {
z ∈ C: α

(±(d − k + 1); z
) + · · · + α

(±(d − j); z
);� π

}
.

Now the required inclusion is clear, because the first set of points of which the viewing angle is
taken is a subset of the second one. It remains to prove that D j,k;k− j−1 ⊂ cl D j′,k′;l for all 1 � l �
k′ − j′ − 1; proving the extremal case l = k′ − j′ − 1 is sufficient. Thus, we are required to show that∑d− j

m=d−k+1 α(±m; z) = (k − j − 1)π implies
∑d− j′

m=d−k′+1 α(±m; z) � (k′ − j′ − 1)π . But this is true
because the first sum has k − j summands, the second k′ − j′ summands, and removing each of the
(k − j) − (k′ − j′) = (k − k′) + ( j′ − j) � 0 pairs of points from the points corresponding to the first
summand decreases the total viewing angle by at most π .

Similarly, the first inclusion of (8) follows because
∑d− j+1+δ1

m=d−k+1−δ2
α(±m; z) � (l + δ1 + δ2)π implies∑d− j

m=d−k+1 α(±m; z) � lπ , by removing δ1 + δ2 pairs of points, and the second one from an appropri-
ate change of variables. Relations (9) are proved in exactly the same way. �
Corollary 4.9. For z /∈ cl D0,d;1 , the facets of the cone τ (z) = R�0 〈w0(z), . . . , wd(z)〉 are the rays spanned by
w0(z) and wd(z), and w1(z), . . . , wd−1(z) appear in cyclic order inside τ (z).

Proof. The argument of w j(z) = (z+d− j
d

)
is (

∑d
i=1 arg (z + i − j)) mod 2π , so that the difference of

the arguments of w j(z) and w j+1(z) equals β j := arg(z + d − j) − arg(z − j) mod 2π ; cf. [4]. If we
choose z to have the form z = N + iε, with N � ε > 0, it is not necessary to reduce β j modulo 2π ,
and 0 < β0 < β1 < · · · < βd; we may even achieve βd < π

d , so that the total angle subtended by the
wi(z) is strictly less than π , and w0(z) and wd(z) span the facets of τ (z). Now note that two vec-
tors wi(z), w j(z) become collinear iff there is a (not necessarily positive or negative) circuit involving
the two, iff there is such a cocircuit involving w̄i(z), w̄ j(z), iff D j,k(z) = 0. An invocation of Proposi-
tion 4.8 finishes the proof. �

We close with a lemma regarding the relative orientations of w j, wk on D j,k .

Lemma 4.10. Let z ∈ D j,k;l , and regard wi(z) = (z+d−i
d

)
as a vector in R2 . Then w j(z) and wk(z) point in the

same direction iff l is even, and in opposite directions iff l is odd:

sign
(

w j(z) · wk(z)
) = (−1)l for z ∈ D j,k;l.

4.2. Conclusion: The root locus is bounded

Theorem 4.11. Let f = ∑d
j=0 a j

(z+d− j
d

)
be a polynomial of degree d with nonnegative coefficients a j � 0

with respect to the binomial coefficient basis. Then all nonreal roots of f are contained in the region cl D0,d;1
bounded by the outermost oval of the algebraic curve with equation D0,d(z) = 0, and any point inside cl D0,d;1
arises as a root of some such f .

The real roots of f all lie in the real interval [−d,d − 1].

Proof. The first statement can be proved by a short calculation involving Lemma 4.1 and the general
tool of Theorem 3.3. However, we have accumulated enough information about the special curves D j,k
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Fig. 5. From left to right, the semialgebraic sets S012, S013, S023, S123 (shaded). Their union equals the entire interior of the
bounding curve C , which by Theorem 4.11 is precisely the locus of possible nonreal roots.

arising for the binomial coefficient basis to give a direct proof: By Corollary 4.9, the vectors w0 =
w0(z), . . . , wd = wd(z) are positively spanning for z /∈ cl D0,d;1.

Next, suppose that z ∈ cl D0,d;1 falls inside the region Sk := cl D0,k;1 � cl D0,k−1;1 for some k ∈ N

with 2 � k � d. Such a k exists, because cl D0,k−1;1 ⊂ cl D0,k;1 by (9), and cl D0,1;1 = ∅. We claim that
in this situation, the vectors w0, wk−1 and wk are positively spanning. Indeed, the locus of points in
the complex plane where the combinatorics of this subconfiguration changes is exactly D0,k−1 ∪ D0,k ,
because Dk,k−1 = ∅. Moreover, D0,k;l ⊂ cl D0,k−1;1 for l � 2 by (8), so the boundary of the region Sk
is D0,k−1;1 ∪ D0,k;1, and the property of the three vectors being spanning or not remains constant
inside Sk . Since outside of cl D0,k;1, these vectors are not positively spanning by Corollary 4.9, but this
changes when crossing ∂ Sk , the second statement follows.

Finally, the case of real roots was dealt with at the beginning of the present Section 4. �
Example 4.12. Let d = 3. Then

W̄ =

⎛
⎜⎜⎜⎝

p0 0

−q0 p1

r0 −q1

0 r1

⎞
⎟⎟⎟⎠ ,

q0 = 2(x + 1)2 + 2y2 − 4, q1 = 2x2 + 2y2 − 4, p0 = x2 + y2, p1 = (x − 1)2 + y2, r0 = (x + 2)2 + y2

and r1 = (x + 1)2 + y2. Furthermore, D0,2 = −q0r1, D0,3 = q0q1 − p1r0, D1,3 = −p0q1, and Di, j � 0
otherwise. Now

S012 = {z: D1,2 � 0, D0,2, D0,1 � 0}, S013 = {z: D1,3, D0,3, −D0,1 � 0},
S023 = {z: D2,3 � 0, −D0,3, −D0,2}, S123 = {z: −D2,3 � 0, −D1,3, −D1,2 � 0},

so that by Fig. 5 and Theorem 4.11 all nonreal roots of polynomials of degree 3 with nonnegative
coefficients in the binomial coefficient basis lie in the union of these regions.

5. Incorporating additional linear constraints

5.1. Linear inequalities

Suppose we not only know that the coefficients ai of a polynomial f = ∑d
i=0 aibi with respect

to some basis B = {bi: i = 0, . . . ,d} are nonnegative, but also that they satisfy a linear inequality∑d
i=0 λiai � 0; the ‘� 0’ case is of course accounted for by reversing the signs of the λi . We use a

slack variable s � 0 to rewrite our inequality as

d∑
λiai + s = 0.
i=0
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To incorporate this into our Gale dual matrices W and W̄ , we introduce the vector ã = (a0, . . . ,ad, s)T .
The analogue W ã = 0 of (1) is

⎛
⎝ R0 R1 · · · Rd 0

I0 I1 · · · Id 0

λ0 λ1 · · · λd 1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

a0

a1
...

ad

s

⎞
⎟⎟⎟⎟⎟⎠ = 0,

and we name the columns of this new W by w0, . . . , wd+1. We obtain a Gale dual W̃ = W̃ (z) of W
by appending the row vector

w̄d+1 = (ω0, . . . ,ωd−2) = (−λi pi + λi+1qi − λi+2ri: 0 � i � d − 2)

to the matrix W̄ from (2). For the polynomial f (z) = ∑d
i=0 aibi(z) with ai � 0 and

∑d
i=0 λiai � 0 to

have a zero at z = z0, the vector ã must lie in the column space of W̃ (z0) and have nonnegative
entries; equivalently, there must exist a vector μ = (μ0, . . . ,μd−2)

T with W̃ (z0)μ = ã. Geometrically,
we think of μ as the normal vector of a linear hyperplane that leaves all vectors w̄i (weakly) on one
side. In particular, if the linear inequality is strict (so that s > 0), then we are only interested in linear
hyperplanes that do not contain w̄d+1.

In general, m � 1 independent linear inequalities yield a ((d +1+m)× (d −1))-matrix W̃ . Consider
the configuration of d+1+m vectors in Rd−1 spanned by the rows of W̃ . Each (d−2)-tuple of vectors
among these spans a linear hyperplane, and we would like to know when the m+3 remaining vectors
all lie on the same side of it. As before, we treat strict inequalities by only considering those linear
hyperplanes that do not contain any of the m “new” vectors w̄ j , and to simplify the discussion we
will focus on these.

We thus fix an ordered subset J = { j1, . . . , jm+3} = { j1 < j2 < j3} ∪ {d + 1, . . . ,d + m} of
{0, . . . ,d + m}; this set will index the rows of W̃ not on a linear hyperplane. Next, we calculate a
linear form ϕ J̄ whose vanishing locus is the hyperplane spanned by the d − 2 vectors not indexed

by J : it is the determinant of the matrix obtained by deleting from W̃ all rows indexed by J , and
adding a first row of variables. The sign σ J̄ ,i(z) of ϕ J̄ (w ji ) at a point z ∈ C is then obtained by plug-
ging the coordinates of w ji = w ji (z) into these variables, i.e., by not deleting the row with index ji ,
but instead permuting it to the first row and then taking the sign of the determinant of the result-
ing matrix. More precisely, if we denote by W̃ K the matrix obtained from W̃ by deleting the rows
indexed by K ⊂ {0, . . . ,d + m}, then

σ J̄ ,i(z) = (−1) ji+i+1 sign det W̃ J�{ ji}(z), for i = 1, . . . ,m + 3. (10)

Writing σ( J̄ , z) = {σ J̄ ,1(z), . . . , σ J̄ ,m+3(z)}, we can summarize our discussion as follows:

Theorem 5.1. Assume that the coefficients of f satisfy m � 1 strict linear inequalities, indexed from d + 1 to
d + m. Let

S( J ) = {
z ∈ C: σ( J̄ , z) = {−1,0} or σ( J̄ , z) = {0,+1}}.

Then the set of roots of f is contained in the union
⋃

J S( J ), where J runs through all sets of the form

{ j1, j2, j3} ∪ {d + 1, . . . ,d + m} with 0 � j1 < j2 < j3 � d; put differently, if {−1,1} ⊆ σ( J̄ , z) for each
such J , then z0 is not a root of f .

In the case m = 1 and J = { j,k, l,d + 1}, we obtain from (10) that

σ( J̄ , z) = {
(−1) j sign Dk,l, (−1)k+1 sign D j,l, (−1)l sign D j,k, (−1)d sign det W̃ { j,k,l}

}
. (11)

Expanding the last determinant along its last row yields
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det W̃ { j,k,l} = (−1)d
d−2∑
c=0

(−1)cωi[W̄ ]{ j,k,l};c, (12)

where [W̄ ]{ j,k,l};c stands for the minor of W̄ obtained by deleting rows j,k, l and column c. This
formula can be evaluated as follows:

Lemma 5.2. Let m = 1, 0 � j < k < l � d, and 0 � c � d − 2. Then

[W̄ ]{ j,k,l};c =
{

p0 · · · p j−1 D j,c+1 pc+1 · · · pk−1 Dk,lrl−1 · · · rd−2 if 0 � c � k − 1,

p0 · · · p j−1 D j,krk−1 · · · rc−1 Dc+1,lrl−1 · · · rd−2 if k − 1 � c � d − 2.

Here we follow the convention that pa · · · pb = ra · · · rb = 1 if a > b, but Da,b = 0 for a � b. In particular,
[W̄ ]{ j,k,l};c = 0 for 0 � c � j − 1 and l − 1 � c � d − 2.

Proof. In each case, W̄ K ;c decomposes into square blocks on the diagonal whose determinants yield
the stated expressions. The elements outside these blocks do not contribute to [W̄ ]K ;c , because the
determinant of a block matrix of the form

( A 0
C D

)
or

( A B
0 D

)
is det A det D . �

To recapitulate, additional linear inequalities can only restrict further the location of possible roots
of f . If the vectors wi(z0), w j(z0), wk(z0) ∈ B do not witness a possible root of f , in other words
{±1} ⊆ {(−1) j sign Dk,l(z0), (−1)k+1 sign D j,l(z0), (−1)l sign D j,k(z0)}, nothing changes after incorpo-
rating the additional sign (−1)d sign det W̃ { j,k,l}(z0): the vectors wi(z0), w j(z0), wk(z0), wl(z0) do still
not witness a root of f at z0. If, on the other hand, the new sign is different from the old ones, there
is “one reason less” for z0 to be a root.

5.2. Linear equations

If the coefficients of f satisfy m independent linear equations of the form
∑d

i=0 λiai = 0 (corre-
sponding to the case s = 0), the d − 1 − m columns of the new Gale dual W̃ will of course be linear
combinations of the columns of the old one, but in general we will not be able to give an explicit
expression for them. We therefore only treat some special cases that arise in the context of Ehrhart
and chromatic polynomials, and defer further discussion to Section 6.2.

6. Applications

6.1. Ehrhart polynomials

From [1], we know that the following inequalities hold for the coefficients of i Q in the binomial
basis:

ad + ad−1 + · · · + ad−s � a0 + · · · + as + as+1 for all 0 � s �
⌊
(d − 1)/2

⌋
.

For s = 0, the inequality reads ad � a0 + a1, and w̄d+2 is

(p0 − q0, p1,0, . . . ,0,−rd−2).

Eq. (12) and Lemma 5.2 thus specialize as follows:

det W̃ {0,k,d} =
{

(−1)d(p0 − q0)D1,d − (−1)d p1r0 D2,d − r0 · · · rd−2 if k = 1,

(−1)d p0 · · · pk−1 Dk,d − D0,krk−1 · · · rd−2 if 2 � k � d − 1,

det W̃ {1,k,l} = (−1)dq0 p0 · · · pk−1 Dk,lrl−1 · · · rd−2 − p0 D1,krk−1 · · · rd−2[[l = d]].
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Fig. 6. From top left to bottom right, the vanishing loci of D0,d and W̃0,k,d , for d = 10, j = 0, l = d, and 1 � k � d − 1. In the
first four pictures, the outermost oval is only partially shown, but in fact curves around to the right and intersects the real axis
at a point with large positive coordinate. Thus, the points with positive real part just inside D0,d;1 lie inside the outermost
component of the zero locus of det W̃ {0,k,d} for 0 < k < d/2, but outside all components of det W̃ {0,k,d} for d/2 < k < d.

(Here we have used Iverson’s notation: [[l = d]] evaluates to 1 if l = d, and to 0 otherwise.) Explicit
calculation using Lemma 4.1 yields that the coefficient of the leading term r2d−2 in (−1)d det W̃ {0,k,d}
is 2(−1)d+1 for k = 1 and (−1)d+k+1(d − 2k) for 2 � k � d − 1. Thus, the sign of this coefficient is

sign
([

r2d−2](−1)d det W̃ {0,k,d}
) =

{
(−1)d+k+1 for 0 < k < d/2,

(−1)d+k for d/2 < k < d.
(13)

We examine the effect that this has on σ( J̄ , z). If z ∈ C does not lie in cl D0,d;1, the first three
entries of (11) already yield two different signs, no matter what sign the last determinant takes. Now
let z lie inside cl D0,d;1, but outside the union of all cl Di, j;1 with (i, j) �= (0,d). If { j,k, l} does not
contain {0,d}, the first three signs of σ( J̄ , z) in (11) will again contain two different ones. The in-
teresting situation is thus J = {0,k,d}, in which case σ( J̄ , z) = {(−1)k+d+1, (−1)d sign det W̃ {0,k,d}(z)}.
Combining this with (13), we see that these signs are different, i.e., z’s “last opportunity” J also does
not make it an Ehrhart zero, if z lies inside the outermost component of the zero locus of det W̃ {0,k,d}
for 0 < k < d/2, but outside all components of det W̃ {0,k,d} for d/2 < k < d. Fig. 6 shows that this
actually occurs.

6.2. Chromatic polynomials

Let G be a graph on d vertices. The value of the chromatic polynomial P (G, t) of G at z = t0 counts
the number of colorings of G with z0 colors. The chromatic number χ(G) is the first positive integer
that is not a zero of P (G, t).
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Proposition 6.1. Let G be an undirected graph on d vertices with m edges, κ connected components, chromatic
number χ = χ(G), and ω acyclic orientations. Let P (G, z) = ∑d

i=0 aibi be the chromatic polynomial of G
expressed in the basis B = {b0, . . . ,bd} of Pd.

(a) Let bi = (−1)d−i zi , so that B is the alternating power basis. Then ai � 0 for i = 0, . . . ,d, ai = 0 for
i = 0, . . . , κ − 1, aκ > 0, ad−1 = m and ad = 1 [8, Theorem 2.7].

(b) Let bi = zi , so that B is the falling factorial basis. Then ai � 0 for i = 0, . . . ,d [8, Theorem 2.1].
(c) Let bi = (−1)d−i zī , so that B is the alternating rising factorial basis. Then ai � 0 for i = 0, . . . ,d [6,

Proposition 2.1].
(d) Let bi = (z+d−i

i

)
, so that B is the binomial coefficient basis. Then ai � 0 for i = 0, . . . ,d,

∑d
i=0 ai = d!,

ai = 0 precisely for 0 � i � χ − 1, and ad = ω [5, Proposition 4.5], [6].

The roots of chromatic polynomials simultaneously satisfy all restrictions implied by these non-
negativity conditions. Here we only treat two of these in any detail.

6.2.1. The alternating power basis
To evaluate these conditions for the alternating power basis, only slight modifications from the

power basis case are needed. First, qk = −2x instead of qk = 2x in Proposition 2.1, and so

D j,k(z) = − zn+1 − z̄n+1

z̄ − z
with n = k − j − 1. Next, the relations a0 = · · · = aκ−1 = 0 say that effectively,

(
Rκ Rκ+1 · · · Rd

Iκ Iκ+1 · · · Id

)⎛
⎝aκ

...

ad

⎞
⎠ = 0,

so that W̄ starts out with the column (pκ ,−qκ , rκ ,0, . . . ,0)T . But in the present case of the alternat-
ing power basis, none of pk,qk, rk actually depends on k. The matrix W̄ thus stays the same, only the
effective dimension has dropped to d′ = d − κ . The discussion in Section 3.2 still applies, except that
the excluded region for roots of P (G, z) is now the opposite half-open sector, i.e., the cone τ bounded
by the lines of angles ±(1 − 1

d−κ )π .
We may incorporate the linear equation mad − ad−1 = 0 by appending the row vector (0, . . . ,

0,−1,m) of length d − κ + 1 to W , and replacing the last two columns of W̄ by their linear combi-
nation (0, . . . ,0, g,h,m,1)T with g = (m − 2x)(x2 + y2) and h = (m − 2x)2x + x2 + y2. The rows of the
resulting matrix W̄ ′ represent d′ + 1 vectors in R

d′−2, so any linear hyperplane spanned by members
of this set is defined by a linear form ϕi, j,k,l . The signs of the values of this linear form on the four
row vectors w̄ ′

i, w̄ ′
j, w̄ ′

k, w̄ ′
l are

σi, j,k,l = {
(−1)i sign det W̄ ′

( j,k,l), (−1) j+1 sign det W̄ ′
(i,k,l),

(−1)k sign det W̄ ′
(i, j,l), (−1)l+1 sign det W̄ ′

(i, j,k)

}
,

where W̄ ′
(i, j,k)

, for instance, is obtained from W̄ ′ by deleting rows i, j,k. The sets of signs

σi, j,k,d−1 = {
(−1)i sign D j,k, (−1) j+1 sign Di,k, (−1)k sign Di, j,0

}
tell us that any root allowed by the conditions ai � 0 is also allowed under the additional restriction
mad = ad−1, so that the set of possible roots does not change under this restriction.

6.2.2. The binomial coefficient basis
The relations a0 = · · · = aχ−1 = 0 say that effectively,

(
Rχ Rχ+1 · · · Rd

Iχ Iχ+1 · · · Id

)⎛
⎜⎝

aχ

...

a

⎞
⎟⎠ = 0,
d
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so that W̄ starts out with the column (pχ ,−qχ , rχ ,0, . . . ,0)T . The transformation x �→ x + χ maps
(pχ+i,−qχ+i, rχ+i) to (pi,−qi, ri), so after this translation the effective dimension has dropped to
d′ = d − χ .

The two affine linear relations aχ +· · ·+ad = d! and ad = ω of course do not individually influence

the location of roots, but may be combined to the linear relation
∑d

i=χ ai − 1
ε ad = 0 with ε = ω

d! .

A Gale dual compatible with this linear relation is the matrix W̃ of size (d′ + 1) × (d′ − 2) with
columns

W̃ = (v1 − v0, . . . , vd′−3 − v0, λvd′−2 − μv0),

where vi is the i-th column of W̄ , and the coefficients are λ = εd(d − 1) and μ = λ − rd′−2. To
calculate the sets σi, j,k,l of signs, we must evaluate the determinant [W̃ ]K of the submatrix of W̃
obtained by deleting the three rows indexed by K = {i, j,k}, say. By multilinearity of the determinant,
we obtain

[W̃ ]K = λdet(v1 − v0, . . . , vd′−3 − v0, vd′−2) − (−1)d′−3μdet(v0, v1, . . . , vd′−3)

= λ

d′−3∑
c=0

(−1)c[W̄ ]K ;c + (−1)d′−2μ[W̄ ]K ;d′−2

= ω

(d − 2)!
d′−2∑
c=0

(−1)c[W̄ ]K ;c − (−1)d′−2rd′−2[W̄ ]K ;d′−2.

This formula can be evaluated using Lemma 5.2. In Fig. 7 we show the zero loci of [W̃ ]K in the case
d = 4 and ω = d!

2 .

7. Distribution of random roots

In closing, we explain a phenomenon encountered several times in the literature [1,4]: The roots
of “randomly” generated polynomials with nonnegative coefficients tend to cluster together in several
clumps, and usually lie well inside the region permitted by theory; cf. Fig. 8.

Our explanation is this: in these simulations, the coefficient vector (a0, . . . ,ad) is usually picked
uniformly at random from some cube [0, N]d+1 (except that sometimes the cases a0 = 0 and ad = 0
are excluded; we will gloss over this minor point). By linearity of expectation, the expected value
E( f (z0)) of f (z0) = ∑d

i=0 aibi(z0) at a point z0 ∈ C is
∑d

i=0 E(ai)bi(z0) = N
2

∑d
i=0 bi(z0). Thus, as

a first approximation, the closer the barycenter β(z0) = ∑d
i=0 bi(z0) is to zero, i.e., the smaller its

absolute value |β(z0)|, the more likely it is for z0 to be a root of f ! For example, in the case of the
binomial coefficient basis,

β(z0) =
d∑

i=0

(
z0 + d − i

d

)
=

d∑
i=0

(
z0 + i

d

)
=

(
z0 + d + 1

d + 1

)
−

(
z0

d + 1

)
,

by an elementary identity for binomial coefficients. Fig. 9 shows the regions where |β(z0)| is small,
together with the roots of several random polynomials. Note that β(z0) is the Ehrhart polynomial of
the simplex conv{e1, . . . , ed,−e1 − · · · − ed} by [2, Proposition 1.3]; see also [9].

Fig. 10 shows the corresponding regions for the rising and falling factorial bases; in the case of the
power basis (bi = zi ), of course β(z0) = 0 iff z0 �= 1 is a d-th root of unity.

Clearly, the predictive power of this simple model can be easily improved by considering additional
parameters of the data; however, we will not do this here.
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Fig. 7. From left to right and top to bottom, the zero loci of [W̃ ]K for d = 4 and ε = 1
2 . Here K runs through

({0,...,d}
3

)
in

lexicographic order, except that the zero loci corresponding to K = {0,1,2} and K = {1,2,3} are empty and not shown. The last
figure combines all the zero loci with the roots of 500 random polynomials whose coefficients satisfy

∑d
i=0 ai − 1

ε ad = 0.

Appendix A

Proof of Lemma 4.1. It suffices to do the calculation for Dn from Eq. (5). So let’s expand the difference

n+1∏
(z − ai)(z̄ + ai) −

n+1∏
(z̄ − ai)(z + ai), (14)
i=1 i=1
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Fig. 8. The roots of 1000 random polynomials of degree d = 6 with nonnegative coefficients in the binomial coefficient basis
and a0,ad �= 0.

Fig. 9. Left: For d = 6, the contours |β(z0)| = c for bi = (z+d−i
d

)
and varying c; the innermost contours correspond to the

smallest c. Right: additionally, the roots of 500 polynomials of degree d whose coefficients with respect to the bi are chosen
uniformly at random from [0,d!], except that a0,ad �= 0.

and pick out a term in the expansion with l ‘z’s and m − l ‘z̄’s. The coefficient of this term is a sum
of terms of the form

(−1)m−lai1 · · ·aim−l a j1 · · ·a jl − ai1 · · ·aim−l (−1)laim−l a j1 · · ·a jl ,

and each of these terms vanishes for m even. In particular, the term zn+1 z̄n+1 does not occur, which
is also easy to see directly. The first nonzero term in (14) is then
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Fig. 10. Contours |β(z0)| = c for d = 6 and bi = zi (left), bi = zī (right), together with the roots of 1000, respectively 100 random
polynomials with nonnegative coefficients with respect to these bases. For the rising factorial basis, the minima of |β(z0)| turn
out to be real, so they only govern the distribution of the real zeros.

2zn z̄n+1(−a1 − · · · − an+1) + 2zn+1 z̄n(a1 + · · · + an+1) = 2zn z̄n(z − z̄)(a1 + · · · + an+1).

It is easy to work out
∑n+1

i=1 ai = d(n + 1)/2 for ai = i + �/2, and this finishes the proof. �
Proof of Proposition 4.4. The curve D = Dn is also described by the equation g = (h1 − h2)/(z̄ − z),
where h1 = ∏n+1

i=1 (z −ai)(z̄ +ai), h2 = ∏n+1
i=1 (z +ai)(z̄ −ai), and ai = i +�/2 with � = d − 2 −n. Thus,

D has a singular point if and only if the Jacobi matrix of g vanishes at some point of the locus g = 0.
Using the chain rule and the relations ∂z/∂x = 1, ∂z/∂ y = i, ∂ z̄/∂x = 1, ∂ z̄/∂ y = −i, we calculate the
partial derivatives of g(z) with respect to x and y:

∂ g(z)

∂x
= h1,z − h2,z + h1,z̄ − h2,z̄

z̄ − z
,

∂ g(z)

∂ y
= 2i

h1 − h2

(z̄ − z)2
+ i

h1,z − h2,z − h1,z̄ + h2,z̄

z̄ − z
.

Here h j,z , h j,z̄ denote the partial derivatives of h j with respect to z, z̄; by explicit differentiation,

h1,z = ∑n+1
i=1 h1/(z − ai) and h2,z = ∑n+1

i=1 h2/(z + ai).
To prove that D has no real singular points, we pick z ∈ D and calculate

∂ g

∂x
(z) = h1,z + h1,z̄

z̄ − z
− h2,z + h2,z̄

z̄ − z

= h1

z̄ − z

n+1∑
i=1

(
1

z − ai
+ 1

z̄ + ai
− 1

z + ai
− 1

z̄ − ai

)

= h1

z̄ − z

n+1∑
i=1

2ai(z̄2 − z2)

(z2 − a2
i )(z̄2 − a2

i )

= 4h1

n+1∑ xai

((x − ai)
2 + y2)((x + ai)

2 + y2)
.

i=1
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For real nonzero z ∈ D, this expression never vanishes. The same calculation already proves the sec-
ond statement, because a tangent vector to the curve g(x, y) = 0 at a nonsingular point (x0, y0) is
given by ±(− ∂ g

∂ y (x0, y0),
∂ g
∂x (x0, y0)).

We now examine a nonreal singular point z0 of D. Any such point must satisfy

h1(z0) − h2(z0)

z̄0 − z0
= 0 = h1,z(z0) − h2,z(z0).

The first equation tells us that h1(z0) = h2(z0), so that h1,z(z0) − h2,z(z0) = 0 if and only if h1(z0) = 0
(which is incompatible with z0 /∈ R and g(z0) = 0), or

0 =
n+1∑
i=1

1

z0 − ai
−

n+1∑
i=1

1

z0 + ai
= 2

n+1∑
i=1

ai

z2
0 − a2

i

.

Writing z2
0 = x0 + iy0 and separating the real and imaginary parts in the last expression yields

n+1∑
i=1

ai

(x0 − ai)
2 + y2

0

=
n+1∑
i=1

a3
i

(x0 − ai)
2 + y2

0

= 0.

But the denominators of these expressions are positive (the ai and the origin do not lie on D), and
ai > 0 for i = 1, . . . ,n + 1, so we conclude that D has no singular points. �
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