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a b s t r a c t

We show that given any polynomial ring R over a field and any
ideal J ⊂ Rwhich is generated by three cubic forms, the projective
dimension of R/J is at most 36. We also settle the question of
whether ideals generated by three cubic forms can have projective
dimension greater than 4, by constructing one with projective
dimension equal to 5.
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1. Introduction

Throughout this paper, unless stated otherwise, R denotes any polynomial ring over an arbitrary
field k, say R = k[X1, . . . , Xn] where n is not specified, and all ideals are homogeneous. Consider the
following question posed by Michael E. Stillman.

Question 1 (Stillman (Peeva and Stillman, 2009, Problem 3.14)). Is there a bound, independent of n, on
the projective dimension of ideals in R = k[X1, . . . , Xn] which are generated by N homogeneous polyno-
mials of given degrees d1, . . . , dN?

Unlike the Hilbert Syzygy Theorem which bounds the projective dimension of an ideal by the
dimension n of the underlying ring R, this question concerns the existence of a uniform bound on
the projective dimension of R/J where neither the ring R nor the ideal J ⊂ R are fixed, but merely the
number of generators of J and the degrees of those generators. Equivalently, the above question could
be phrased as: Is

sup
n

{
pd(R/J) | J ⊂ R = k[X1, . . . , Xn] is an ideal

generated by N forms of degrees d1, . . . , dN
}
<∞ ?

where pd(R/J) denotes the projective dimension of R/J over R.
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Recall that a rather straightforward construction of Burch (1968) shows how 3-generated ideals
can already have arbitrarily large projective dimension. Burch’s construction, however, comes at the
cost of increasing degrees of the generators. The assumptions on the number of generators and their
degrees are thus easily seen to be necessary.
Question 1 is further motivated by the notable fact that it is equivalent to the very same question

posed about the Castelnuovo–Mumford regularity of ideals in polynomial rings: Is there a bound on the
regularity of an ideal solely in terms of the number of its generators and the degrees of those generators?
See Engheta (2005, Section 1.3) for a proof of this equivalence following an argument due to Caviglia.
In this paperwe consider the caseN = 3, d1 = d2 = d3 = 3, and show that if J is an ideal generated

by three cubic forms, then pd(R/J) 6 36. Our goal is to establish the existence of such a bound and
not necessarily to obtain the best bound possible; in all likelihood, the bound of 36 is far from being
sharp. In fact, until recently there were no known examples of three cubics with projective dimension
greater than 4. In Section 3 we exhibit the only construction known to date which yields three cubics
whose projective dimension equals 5.
The approach presented here is informed by previous work (Engheta, 2007) of the author, wherein

connections to the unmixed part of I and to ideals linked to the unmixed part of I were established —
see Theorems 3, 4 and 8.

1.1. Preliminaries

Notation.We denote by m the homogeneous maximal ideal (X1, . . . , Xn) of R. For an ideal J , ht(J)
denotes the height of J and Junm the unmixed part of J , that is, the intersection of those primary com-
ponentsQ of J with ht(Q ) = ht(J). By λ(R/J)we denote the length of R/J and by e(R/J) its multiplicity
at m. One has e(R/J) = e(R/Junm) and the associativity formula for multiplicities:

e(R/J) =
∑

P ∈ Spec(R)
dim(R/P)=dim(R/J)

e(R/P) λ(RP/JP). (1)

With the associativity formula (1) in mind, we adopt the following notation in order to easily refer to
an ideal with given multiplicity and number of primary components of minimal height: We say that
an ideal J is of type

〈e = a1, . . . , am | λ = b1, . . . , bm〉

if J has exactly m associated primes of minimal height with multiplicities a1, . . . , am and locally at
each of those primes R/J has length b1, . . . , bm, respectively. So R/J has multiplicity

∑m
i=1 ai bi by (1).

Note that an ideal and its unmixed part are of the same type and there are only finitely many possible
types for an unmixed ideal of fixed multiplicity. For example, prime ideals are of type 〈e = a | λ = 1〉
and primary ideals are of type 〈e = a | λ = b〉.
The following proposition classifies all height 2 unmixed ideals of multiplicity 2. Of interest to us

are those of type 〈e = 1 | λ = 2〉which are described in part (iv).

Proposition 1 (Engheta, 2007, Proposition 11). Let R be a polynomial ring over a field and let I ⊂ R be
a homogeneous height 2 unmixed ideal of multiplicity 2. Then pd(R/I) 6 3 and I is one of the following
ideals.

(i) A prime ideal generated by a linear form and an irreducible quadric.
(ii) (x, y) ∩ (x, v) = (x, yv) with independent linear forms x, y, v.
(iii) (x, y) ∩ (u, v) = (xu, xv, yu, yv) with independent linear forms x, y, u, v.
(iv) The (x, y)-primary ideal (x, y)2 + (ax+ by) with independent linear forms x, y and forms a, b ∈ m

such that x, y, a, b form a regular sequence.
(iv◦) (x, y2) with independent linear forms x, y.

One of the key results in Engheta (2007) stated that if J ⊂ R is a 3-generated ideal of height 2 and
I ′ ⊂ R an ideal linked to the unmixed part of J , then pd(R/J) 6 pd

(
R/I ′

)
+ 1. We generalize this fact

in Theorem 3 and give a simpler proof. To this end, we will need the following elementary lemma.
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Lemma 2. If K is an unmixed ideal, then K : J = K : Junm for any ideal J with ht(J) > ht(K).

Proof. As K : Junm ⊆ K : J , it suffices to check the claim locally at every P ∈ Ass(R/(K : Junm)). As K
is unmixed, Ass(R/(K : Junm)) ⊆ Ass(R/K) and ht(P) = ht(K). By our assumption, ht(P) 6 ht(J) and
the claim follows from Junm

P
= J

P
. �

Theorem 3. Let R be a regular local ring and let J be an N-generated ideal of R of height N − 1. If
z = z1 , . . . , zN−1 is a maximal regular sequence in J, then

pd(R/J) 6 pd
(
R/(z):J

)
+ 1

and equality holds if and only if R/J is not Cohen–Macaulay, that is, if and only if pd(R/J) > N.

Proof. Let J = (f1, . . . , fN) with ht(f1, . . . , fN−1) = N − 1 and let z be a maximal regular sequence
in J . By Lemma 2, (z) : J = (z) : Junm, that is, (z) : J is linked to the unmixed part of J . As any two
links of an ideal in a Gorenstein ring have the same (finite or infinite) projective dimension, we have
pd
(
R/(z):Junm

)
= pd

(
R/(f1,...,fN−1):Junm

)
. So it suffices to prove the claim for z = f1, . . . , fN−1.

Notice that (f1, . . . , fN−1) : J = (f1, . . . , fN−1) : fN . This yields the short exact sequence

0 −→
R

(f1, . . . , fN−1) : J

· fN
−→

R
(f1, . . . , fN−1)

−→
R
J
−→ 0,

of which the middle term R/(f1, . . . , fN−1) is minimally resolved by the Koszul complex on the
elements f1, . . . , fN−1 and has projective dimension N − 1. Since one has pd

(
R/(f1,...,fN−1):J

)
>

grade((f1, . . . , fN−1) : J) = N − 1, it follows that pd(R/J) 6 pd
(
R/(f1,...,fN−1):J

)
+ 1, as claimed.

If R/J is not Cohen–Macaulay, then pd(R/J) > N and we also have the reverse inequality
pd
(
R/(f1,...,fN−1):J

)
6 pd(R/J)− 1. And if R/J is Cohen–Macaulay, then J is unmixed and (z) : J is linked

to J . In particular, R/(z):J is Cohen–Macaulay as well and pd(R/J) = pd
(
R/(z):J

)
. �

We recall the following theorem which allows us to focus our attention on those ideals whose
unmixed part is generated in degree 3 or higher.

Theorem 4 (Engheta (2007, Theorem 16)). Let R be a polynomial ring over a field and let J ⊂ R be an
ideal generated by three cubics. If the unmixed part of J contains a quadric form, then pd(R/J) 6 4.

2. The projective dimension of three cubics

Let f , g, h ∈ R be three cubic forms. In this section we prove that the projective dimension of
R/(f , g, h) is bounded above by 36. I = (f , g, h)unm will denote the unmixed part of the ideal (f , g, h)
and I ′ will be used to denote an ideal which is linked to I .
By Engheta (2007, Remark 2) we may assume that (f , g, h) has height 2. And clearly, we may

assume that f , g, h are minimal generators. This in turn implies that the multiplicity e(R/(f , g, h))
is at most 8 — cf. Engheta (2007, Lemma 8). It was shown in Engheta (2007) that pd(R/(f , g, h))
6 3 if e(R/(f , g, h)) = 1, pd(R/(f , g, h)) 6 4 if e(R/(f , g, h)) = 2, and pd(R/(f , g, h)) 6 16 if
e(R/(f , g, h)) = 3.
If e(R/(f , g, h)) = 7, then we let p1, p2 be two cubics in I = (f , g, h)unm which form a regular

sequence and we consider the link I ′ = (p1, p2) : I which has multiplicity 9 − 7 = 2. By
Proposition 1 we have pd

(
R/I ′

)
6 3 and it follows from Theorem 3 that pd(R/(f , g, h)) 6 4. Similarly,

if e(R/(f , g, h)) = 8, then the link I ′ has multiplicity 1 and thus R/I ′ is Cohen–Macaulay, that is,
pd
(
R/I ′

)
= 2 and pd(R/(f , g, h)) 6 3 by Theorem 3.

There remain the cases of multiplicity 4, 5, and 6 which will require most of our attention. In the
following theorem we summarize our results.

Theorem 5. If f , g, h are three cubic forms in a polynomial ring R over a field, then pd(R/(f , g, h)) 6 36.
More precisely, with I = (f , g, h)unm,

(a) If ht(f , g, h) = 3, or if ht(f , g, h) = 2 and I contains a linear form,
then pd(R/(f , g, h)) 6 3. (See Engheta (2007, Proposition 6).)
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(b) If ht(f , g, h) = 1 or if I contains a quadric, then pd(R/(f , g, h)) 6 4.
(See Theorem 4.)

(c) Suppose e(R/(f , g, h)) 6 5 and let I ′ be an ideal which is linked to I via a complete intersection
generated by cubics. If I ′ contains a quadric, then pd(R/(f , g, h)) 6 4. (See Theorem 8.)

(d) Below we give a breakdown of the established bounds by multiplicity.

multiplicity of bound on
R/(f , g, h) pd(R/(f , g, h))

1, 8 3
2, 7 4
3 16
4 36

5, 6 20

2.1. Multiplicity 4

For the case of multiplicity 4, we prove Proposition 7 which supplies a bound of 36 for
pd(R/(f , g, h)) whenever the ideal (f , g, h) has multiplicity > 2 along a codimension 2 linear sub-
space, that is, whenever R/I has length > 2 locally at an associated prime of multiplicity 1. To this
end, we will need the following lemma.

Lemma 6. Three quadrics which minimally generate an ideal of height 6 2 can be expressed entirely in
terms of eight linear forms, unless two of the quadrics share a common linear factor.

Proof. Let q1, q2, q3 be three quadrics. The statement is evident if (q1, q2, q3) has height 1. If
ht(q1, q2, q3) = 2, then it is easily seen that (q1, q2, q3) has multiplicity 6 3 — cf. Engheta (2007,
Lemma 8). We pass to the unmixed part of (q1, q2, q3) and consider each case separately.
Let I denote the unmixed part of the ideal (q1, q2, q3) and note that ht(I) = 2. If e(R/I) = 1, then I

is generated by two independent linear forms x, y and qi = li1x+ li2ywith i = 1, 2, 3 and linear forms
li1, li2. So q1, q2, q3 can be expressed in terms of eight linear forms li1, li2, x, y.
If e(R/I) = 2, then, by Proposition 1, I is one of the following ideals:

(i) I = (x, q) with a linear form x and an irreducible quadric q. Then qi = lix+ αiq with linear forms
li and field coefficients αi for i = 1, 2, 3. As ht(q1, q2, q3) = 2, the coefficients αi must not be all zero;
say α3 6= 0. Replacing q1 by q1 −

α1
α3
q3 = (l1 −

α1
α3
l3)x and q2 by q2 −

α2
α3
q3 = (l2 −

α2
α3
l3)x, they both

become divisible by the linear form x and we are done.
(ii) I = (x, yv) with independent linear forms x, y, v. Then qi = lix + αiyv with linear forms li and
field coefficients αi for i = 1, 2, 3. So q1, q2, q3 ∈ k[l1, l2, l3, x, y, v].
(iii) I = (xu, xv, yu, yv) with independent linear forms x, y, u, v. Clearly, we have q1, q2, q3 ∈
k[x, y, u, v].
(iv) I = (x, y)2 + (ax + by) with independent linear forms x, y and elements a, b ∈ m such that
x, y, a, b form a regular sequence. As I is the unmixed part of an ideal generated by quadrics, we must
have deg(ax+ by) = 2, for otherwise I = (x, y)2. So, a and b are linear and q1, q2, q3 ∈ k[a, b, x, y].
(iv◦) I = (x, y2) with independent linear forms x, y. In analogy to part (ii) above, q1, q2, q3 ∈
k[l1, l2, l3, x, y].
It remains the case that e(R/I) = 3. By the associativity formula (1) there are five cases to

consider. (These cases were discussed in detail in Engheta (2007, Section 4).) In three of those cases, I
is contained in an ideal generated by two linear forms and, as argued above in the case of multiplicity
1, the quadrics q1, q2, q3 can be expressed in terms of eight linear forms. We consider the remaining
two cases:
I is a homogeneous prime ideal of minimal multiplicity. As such, I is generated by the 2×2minors

of a 3 × 2 matrix of indeterminates — cf. Eisenbud and Harris (1987). That is, I is generated by three
quadrics in at most six variables, and therefore the same holds for (q1, q2, q3).
I is primary to (x, y)with independent linear forms x, y and λ

(
(R/I)(x,y)

)
= 3. Either I = (x, y)2 or

I is generated by (x, y)3 plus additional terms of the form cjx+djywith (cj, dj) 6⊂ (x, y)2. In the former
case we are done, as q1, q2, q3 ∈ k[x, y]. In the latter case we first rule out the possibility that one of
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the terms cjx+ djymay be linear: if so, then I = (x, y3) after a linear change of coordinates and thus
(q1, q2, q3) ⊂ (x), a contradiction, since ht(q1, q2, q3) = 2.
So nowwe have (q1, q2, q3) ⊆ (cjx+djy)with deg(cjx+djy) > 2.Write qi =

∑
j αij(cjx+djy)with

field coefficientsαijwhereαij = 0whenever deg(cjx+djy) > 2. Then li1 :=
∑
j αijcj and li2 :=

∑
j αijdj

are linear and q1, q2, q3 can be expressed in terms of eight linear forms li1, li2, x, y. �

Proposition 7. Let f , g, h be three cubic forms which minimally generate an ideal of height 2. Suppose
that (f , g, h) has a component primary to an ideal P = (x, y) with independent linear forms x, y and
λ
((
R/(f ,g,h)

)
P

)
> 2. Then pd(R/(f , g, h)) 6 36.

(In our notation, the hypothesis of the proposition simply states that if (f , g, h) is of type 〈e =
a1, . . . , am | λ = b1, . . . , bm〉, then ai = 1 and bi > 2 for some i.)

Proof. Let Q denote the P-primary component of (f , g, h), that is, (f , g, h) ⊆ Q ( P and (f , g, h)P =
QP ( PP .We have e(R/Q ) = λ(RP /QP ) > 2. IfQ ⊆ P

2, then the cubics f , g, h can be expressed in terms
of the quadrics x2, xy, y2 using no more than nine linear forms li, in which case f , g, h ∈ k[x, y, li] and
pd(R/(f , g, h)) 6 11. So we may assume that Q contains additional terms of the form cx+ dywhere
(c, d) 6⊂ P . Consequently, the Hilbert function of (R/Q )P is given by (1, 1, 1, . . . , 1︸ ︷︷ ︸

e(R/Q ) times

). (We caution that

in addition to P
e(R/Q )

and the above mentioned terms of the form cx + dy, the ideal Q may contain
other terms as minimal generators — cf. the example in Engheta (2007, Section 3).)
Now consider the ideal I := Q : P

e(R/Q )−2
whoseHilbert function, locally at P , is given by (1, 1). That

is, I is a P-primary ideal of multiplicity 2. By parts (iv) and (iv◦) of Proposition 1, I = P2 + (ax + by)
with elements a, b such that ht(x, y, a, b) > 3. (The term ax + by need not be the same as the term
cx + dy above.) In other words, either x, y, a, b form a regular sequence or (a, b) is the unit ideal, in
which case we may take I to be (x, y2).
Note that (f , g, h) ⊆ Q ⊆ P2+ (ax+ by). In what follows, we exploit this inclusion to place f , g, h

inside a subring of R generated by a bounded number of linear forms (or by a regular sequence), which
will in turn give a bound for pd(R/(f , g, h)).
If deg(ax + by) = 4, then (f , g, h) ⊆ P2 and pd(R/(f , g, h)) 6 11 as shown above. (Strictly

speaking, this case is ruled out by our assumption that Q 6= P2.)
If deg(ax+by) = 3, thenwemay assumewithout loss of generality that h = ax+by and f , g ∈ P2.

Indeed, as (f , g, h) ⊆ P2 + (ax+ by), there are nine linear forms lij and field coefficients α, β, γ such
that (f

g
h

)
=

(l11 l12 l13 α
l21 l22 l23 β
l31 l32 l33 γ

) x2
xy
y2

ax+ by

 .
If α = β = γ = 0, then (f , g, h) ⊆ P2 and we are done; so we may assume γ 6= 0. Replacing f by
f − α

γ
h and g by g − β

γ
h, we have f , g ∈ P2. And relabeling (l31x+ l32y+ γ a) as a and (l33y+ γ b) as

b, we can write h = ax+ bywhere x, y, a, b still form a regular sequence.
Setting L := (l11, l12, l13, l21, l22, l23), we consider the following two cases: If a and b share a

common factor modulo L+ P , then pd(R/(f , g, h)) 6 27. Indeed, if a ≡ a′c and b ≡ b′c modulo L+ P
with linear forms a′, b′, c , then a − a′c can be written in terms of x, y, l11, . . . , l23 using eight linear
forms u1, . . . , u8 and the same holds for b − b′c with eight linear forms v1, . . . , v8. Thus, the cubics
f , g, h are in the subring k[x, y, l11, . . . , l23, a′, b′, c, u1, . . . , u8, v1, . . . , v8] and pd(R/(f , g, h)) 6 27.
If on the other hand a and b do not have a common factor modulo L + P , then they form a regular
sequence modulo L + P . That is, the generators of L + P along with a, b form a regular sequence of
length at most 10 and pd(R/(f , g, h)) 6 10.
If deg(ax+by) = 2, then the cubics f , g, h can be expressed in terms of the quadrics x2, xy, y2, ax+

by using no more than 12 linear forms lij. So f , g, h ∈ k[x, y, a, b, lij] and pd(R/(f , g, h)) 6 16.



B. Engheta / Journal of Symbolic Computation 45 (2010) 60–73 65

It remains the case where I = (x, y2). Here we have three linear forms l1, l2, l3 and three quadrics
q1, q2, q3 such that(f

g
h

)
=

(q1 l1
q2 l2
q3 l3

)(
x
y2

)
.

If ht(q1, q2, q3) 6 2, then we apply Lemma 6. Either the quadrics q1, q2, q3 can be expressed in terms
of eight linear forms, or two of the quadrics share a common factor, say q1 = uz and q2 = vz with
linear forms u, v, z. In the former casewe have pd(R/(f , g, h)) 6 13. Namely, f , g, h are in the subring
generated by x, y, l1, l2, l3 and the eight linear forms needed to express q1, q2, q3.
In the latter case we are left with eight linear forms x, y, l1, l2, l3, u, v, z and one quadric q3. If q3

is in the ideal generated by these eight linear forms, then it can be expressed in terms of those using
another set of eight linear forms. So f , g, h are in a subring generated by at most 16 linear forms and
pd(R/(f , g, h)) 6 16. And if q3 /∈ (x, y, l1, l2, l3, u, v, z), then q3 is a non-zerodivisormodulo this ideal,
that is, the generators of (x, y, l1, l2, l3, u, v, z) together with q3 form a regular sequence of length at
most 9 and therefore pd(R/(f , g, h)) 6 9.
Lastly, we need to consider the case ht(q1, q2, q3) = 3 where q1, q2, q3 form a regular sequence. If

they also do so modulo the ideal (x, y, l1, l2, l3), then we have pd(R/(f , g, h)) 6 8, as the generators
of (x, y, l1, l2, l3) along with q1, q2, q3 form a regular sequence of length at most 8. So wemay assume
that the images q̄1, q̄2, q̄3 ∈ R/(x, y, l1, l2, l3) generate an ideal of height 6 2. Note that each q̄i can be
lifted back to qi using five linear formswi1, . . . , wi5.
By Lemma 6, either the quadrics q̄1, q̄2, q̄3 can be expressed in terms of eight linear forms, or two of

them share a common factor, say q̄1 = uz and q̄2 = vz with linear forms u, v, z. In the former case we
can place f , g, h in a subring generated by 28 linear forms: eight linear forms used to express q̄1, q̄2, q̄3,
along with x, y, l1, l2, l3 andwij with i = 1, 2, 3 and j = 1, . . . , 5. Thus, pd(R/(f , g, h)) 6 28.
In the latter case we have q1, q2 ∈ k[x, y, l1, l2, l3, u, v, z, w1j, w2j] with j = 1, . . . , 5.

Consequently, f and g are contained in this subring as well. To obtain h, we need to adjoin q3. If q3
is not in the ideal (x, y, l1, l2, l3, u, v, z, w1j, w2j), then the generators of this ideal along with q3 form
a regular sequence of length at most 19 and pd(R/(f , g, h)) 6 19. And if q3 is in the ideal generated by
these 18 linear forms, then it can be expressed in terms of those using another set of 18 linear forms.
Thus, pd(R/(f , g, h)) 6 36. �

With Theorem 4 and Proposition 7, we are now able to bound the projective dimension of
R/(f , g, h) by 36 in the case of multiplicity 4. By the associativity formula (1) there are eleven possible
types for the unmixed part I , namely,

〈e = 4 | λ = 1〉, 〈e = 1 | λ = 4〉,
〈e = 1, 3 | λ = 1, 1〉, 〈e = 1, 1 | λ = 1, 3〉,
〈e = 2, 2 | λ = 1, 1〉, 〈e = 1, 1 | λ = 2, 2〉,

〈e = 1, 1, 2 | λ = 1, 1, 1〉, 〈e = 1, 1, 1 | λ = 1, 1, 2〉,
〈e = 2 | λ = 2〉, 〈e = 1, 2 | λ = 2, 1〉,

〈e = 1, 1, 1, 1 | λ = 1, 1, 1, 1〉.

By virtue of Proposition 7 wemay dismiss five of these; we know that pd(R/(f , g, h)) 6 36 whenever
the length of R/I is at least 2 locally at an associated prime of multiplicity 1. There are five such
cases which are listed in the right column above. In what follows we consider the remaining six
cases.
〈e = 4 | λ = 1〉 If I contains a quadric, then pd(R/(f , g, h)) 6 4 by Theorem 4. So suppose I does not
contain any quadrics; in particular, I is non-degenerate. By Theorem 10 of Brodmann and Schenzel,
I is the defining ideal of a generic projection of the Veronese surface V5 ⊂ P5 onto P4 and it is
generated by seven cubics (in five variables). As f , g, h are linear combinations of those cubics, we
have pd(R/(f , g, h)) 6 5.
〈e = 1, 3 | λ = 1, 1〉 I = (x, y) ∩ P with independent linear forms x, y and a height 2 prime ideal
P of multiplicity 3. If P contains a linear form l, then I contains a quadric – such as xl or yl – and
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pd(R/(f , g, h)) 6 4 by Theorem 4. If on the other hand P is non-degenerate, then it is the ideal of
2× 2 minors of a 3× 2 matrix of indeterminates, that is, P is generated by three quadrics in at most
six variables. As (f , g, h) ⊆ I ⊂ P , the three cubics f , g, h can be expressed in terms of those quadrics
using no more than nine linear coefficients. Thus, pd(R/(f , g, h)) 6 15.
〈e = 2, 2 | λ = 1, 1〉 I is the intersection (l1, q1) ∩ (l2, q2) of two prime ideals where l1, l2 are linear
forms and q1, q2 are irreducible quadrics. As the quadric l1l2 belongs to I , we have pd(R/(f , g, h)) 6 4
by Theorem 4.
〈e = 1, 1, 2 | λ = 1, 1, 1〉 I is the intersection (x, y)∩ (u, v)∩ (l, q) of three prime ideals where q is an
irreducible quadric and x, y, u, v, l are (not necessarily independent) linear forms. If ht(x, y, u, v) = 3,
then, without loss of generality, we may replace u by x and write I = (x, yv) ∩ (l, q). In this case I
contains the quadric xl and pd(R/(f , g, h)) 6 4 by Theorem 4.
If on the other hand ht(x, y, u, v) = 4, then I ⊂ (xu, xv, yu, yv) and the cubics f , g, h can

be expressed in terms of the quadrics xu, xv, yu, yv using no more than 12 linear forms. Thus,
pd(R/(f , g, h)) 6 16.
〈e = 2 | λ = 2〉 I is primary to a prime ideal P = (l, q)with a linear form l and an irreducible quadric
q such that λ

(
RP /IP

)
= 2. Thus, locally at P , we must have P2

P
⊂ IP . But primary ideals are contracted

ideals in the sense that I = IRP ∩ R. Hence P
2
⊂ I globally. So I contains the quadric l2 and we have

pd(R/(f , g, h)) 6 4 by Theorem 4.
〈e = 1, 1, 1, 1 | λ = 1, 1, 1, 1〉 I is the intersection of four height 2 prime ideals, each of which is
generated by two linear forms. So the generators of I are expressed entirely in terms of at most
eight (not necessarily independent) linear forms. If I contains a quadric, then pd(R/(f , g, h)) 6 4 by
Theorem4. And if I is generated in degrees 3 and higher, then the cubics f , g, h are linear combinations
(with field coefficients) of the cubic generators of I , in which case pd(R/(f , g, h)) 6 8.

2.2. Multiplicity 5

We call to mind the following theorem which is similar in nature to Theorem 4.
Theorem 8 (Engheta, 2007, Theorem 17). Let R be a polynomial ring over a field and let J ⊂ R be an ideal
generated by three cubics with e(R/J) 6 5. Denote by I the unmixed part of J and let I ′ be an ideal which
is linked to I via cubics. If I ′ contains a quadric, then pd(R/J) 6 4.
Before proceeding with the case of multiplicity 5, we single out the following argument which we

will employ multiple times in this section as well as in the next. Note that there is no assumption on
the multiplicity of the ideal.
Remark 9. Let Q be an ideal primary to (x, y)with independent linear forms x, y and let p1, . . . , pk be
cubic forms in Q . Suppose Q ⊆ (x, y)2 + (ax+ by)with elements a, b ∈ m such that x, y, a, b form a
regular sequence. (In particular, deg(ax+by) > 2.) Then either the cubics p1, . . . , pk can be expressed
entirely in terms of 4(k + 1) linear forms, or Q is of the form (x, y)e(R/Q ) + (a′x + b′y) with quadrics
a′, b′ such that x, y, a′, b′ form a regular sequence and pd(R/Q ) 6 3.
Proof. The proof of the claim is mainly based on the inclusion

(p1, . . . , pk) ⊆ Q ⊆ (x, y)2 + (ax+ by).
The only obstacle occurs when deg(ax+ by) = 3, in which case a and b are quadrics and may involve
an arbitrarily large number of linear forms.
Suppose deg(ax + by) = 3. We first consider the case where one of the pi has a non-zero contri-

bution from the term ax+ by, that is, if we write
pi = li1 x2 + li2 xy+ li3 y2 + αi (ax+ by), i = 1, . . . , k (2)

with linear forms lij and scalars αi ∈ k, then αi is non-zero for some i. Say α1 6= 0. In this case wewrite
p1 as

p1 = l11 x2 + l12 xy+ l13 y2 + α1 (ax+ by)
= (α1a+ l11x)︸ ︷︷ ︸

a′

x+ (α1b+ l12x+ l13y)︸ ︷︷ ︸
b′

y, (3)
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and we note that since the elements x, y, a, b form a regular sequence and α1 6= 0, the elements
x, y, a′, b′ form a regular sequence as well. By Engheta (2007, Lemma 10) the ideal (x, y)e(R/Q )+ (a′x+
b′y) is unmixed of multiplicity e(R/Q ) and by Engheta (2007, Lemma 8) it is equal to Q . By Engheta
(2007, Lemma 10) we also have pd(R/Q ) 6 3.
If on the other hand αi = 0 for all i = 1, . . . , k, then (p1, . . . , pk) ⊂ (x, y)2 and by (2) the cubics

pi can be expressed entirely in terms of 3k + 2 linear forms lij, x, y. Note that the same holds when
deg(ax+ by) > 4. We also find ourselves in a similar situation when deg(ax+ by) = 2. Namely, the
cubics pi are then contained in an ideal generated by four quadrics x2, xy, y2, ax+ by and so they can
be expressed entirely in terms of 4k+ 4 linear forms li1, li2, li3, li4, x, y, a, bwith i = 1, . . . , k. �

We now establish a bound of 20 for the projective dimension of R/(f , g, h) in the case of
multiplicity 5. Let p1, p2 be any two cubics in the unmixed part I of (f , g, h) which form a regular
sequence and let I ′ denote the link (p1, p2) : I . We have e(R/I ′) = 9 − 5 = 4. By the associativity
formula (1) there are eleven possible types for the link I ′, namely,

〈e = 4 | λ = 1〉, 〈e = 1 | λ = 4〉,
〈e = 1, 3 | λ = 1, 1〉, 〈e = 1, 1 | λ = 1, 3〉,
〈e = 2, 2 | λ = 1, 1〉, 〈e = 1, 1 | λ = 2, 2〉,

〈e = 1, 1, 2 | λ = 1, 1, 1〉, 〈e = 1, 1, 1 | λ = 1, 1, 2〉,
〈e = 2 | λ = 2〉, 〈e = 1, 2 | λ = 2, 1〉,

〈e = 1, 1, 1, 1 | λ = 1, 1, 1, 1〉.

The argument which we are about to enter consists of the following parts:

• Either the link I ′ contains a quadric, in which case pd(R/(f , g, h)) 6 4 by Theorem 8.
• Or we give a bound for the projective dimension of R/I ′ which in turn bounds (by one more) the
projective dimension of R/(f , g, h).
• Or, by drawing on Remark 9 or by exhibiting that I ′ is contained in an ideal generated by a set of
given quadrics, we show that the cubics p1 and p2 can be expressed entirely in terms of at most 12
linear forms, whereas any one cubic in I ′ requires at most 8 linear forms.

Recall that p1 and p2 are two arbitrary cubics in I ′ which form a regular sequence. So, unless we are
able to obtain a bound for pd(R/(f , g, h)) from the first two parts of the above argument, we apply
the third part to the choice of, say, f , g and then to h and thus place the cubics f , g, h inside a subring
generated by no more than 12+ 8 linear forms. Hence pd(R/(f , g, h)) 6 20.
〈e = 4 | λ = 1〉 If I ′ contains a quadric, then pd(R/(f , g, h)) 6 4 by Theorem 8. So suppose I ′ does not
contain any quadrics. By Theorem 10 of Brodmann and Schenzel, I ′ is the defining ideal of a generic
projection of the Veronese surface V5 ⊂ P5 and pd

(
R/I ′

)
= 4. Thus, pd(R/(f , g, h)) 6 5 by Theorem 3.

We point out that the bound of 5 obtained in this case is in fact sharp. We will demonstrate this by
constructing an example in Section 3.
〈e = 1 | λ = 4〉 I ′ is primary to (x, y)with independent linear forms x, y such that λ

(
(R/I ′)(x,y)

)
= 4.

So the Hilbert function of (R/I ′)(x,y) is either (1, 2, 1) or (1, 1, 1, 1).
First suppose (R/I ′)(x,y) has Hilbert function (1, 2, 1). Then the Hilbert function of

(
R/I ′:(x,y)

)
(x,y) is

either (1, 1) or (1, 2), depending on whether or not (R/I ′)(x,y) has a socle element outside (x, y)2(x,y).
If
(
R/I ′:(x,y)

)
(x,y) has Hilbert function (1, 2), then I

′
: (x, y) = (x, y)2 and since I ′ ⊂ I ′ : (x, y) =

(x2, xy, y2), the cubics p1, p2 ∈ I ′ can be expressed entirely in terms of eight linear forms.
If on the other hand

(
R/I ′:(x,y)

)
(x,y) has Hilbert function (1, 1), then by Proposition 1 we have

I ′ : (x, y) = (x, y)2 + (ax + by) with elements a, b such that ht(x, y, a, b) > 3. If the term ax + by
is linear, then I ′ contains quadrics – such as (ax + by)x and (ax + by)y – and pd(R/(f , g, h)) 6 4 by
Theorem 8. And if deg(ax+ by) > 2, then we are done by Remark 9.
Now suppose (R/I ′)(x,y) has Hilbert function (1, 1, 1, 1). Then the Hilbert function of

(
R/I ′:(x,y)2

)
(x,y)

is (1, 1) and by Proposition 1 we have I ′ : (x, y)2 = (x, y)2 + (ax + by) with elements a, b such that
ht(x, y, a, b) > 3. Again, if deg(ax+ by) > 2, then we are done by Remark 9.
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If deg(ax + by) = 1, then we may relabel the term ax + by as x so that I ′ : (x, y)2 = (x, y2).
In particular, x(x, y)2 = (x3, x2y, xy2) ⊂ I ′. Since (R/I ′)(x,y) has Hilbert function (1, 1, 1, 1), I ′ must
also contain a generator of the form cx + dy with (c, d) 6⊂ (x, y). Multiplying cx + dy with y2 and
reducing it modulo xy2, we see that dy3 ∈ I ′. As (R/I ′)(x,y) has Hilbert function (1, 1, 1, 1), we cannot
have (x, y)3 ⊆ I ′. But I ′ already contains (x3, x2y, xy2). So y3 /∈ I ′ and therefore d ∈ (x, y). (Recall that
I ′ is primary to (x, y).) In particular, dxy ∈ (x2y, xy2) ⊂ I ′. Multiplying cx+ dywith x and reducing it
modulo dxy, we see that cx2 ∈ I ′. As (c, d) 6⊂ (x, y) and d ∈ (x, y), we have c /∈ (x, y) and so x2 ∈ I ′.
Thus, I ′ contains a quadric and pd(R/(f , g, h)) 6 4 by Theorem 8.
〈e = 1, 3 | λ = 1, 1〉 I ′ = (x, y) ∩ P with independent linear forms x, y and a height 2 prime ideal
P of multiplicity 3. If P contains a linear form l, then I ′ contains a quadric – such as xl or yl – and
pd(R/(f , g, h)) 6 4 by Theorem 8. If on the other hand P is non-degenerate, then it is the ideal of
2× 2 minors of a 3× 2 matrix of indeterminates, that is, P is generated by three quadrics in at most
six variables. As I ′ ⊂ P , the cubics p1, p2 ∈ I ′ can be expressed entirely in terms of 12 linear forms.
〈e = 1, 1 | λ = 1, 3〉 I ′ = (u, v) ∩ I3 with independent linear forms u, v and an ideal I3 of type
〈e = 1 | λ = 3〉. That is, I3 is primary to (x, y)with independent linear forms x, y andλ

(
(R/I3)(x,y)

)
= 3.

In particular, (x, y)3 ⊂ I3 and the Hilbert function of (R/I3)(x,y) is either (1, 2) or (1, 1, 1). We know
that ht(x, y, u, v) > 3. If ht(x, y, u, v) = 4, then I ′ ⊂ (u, v) ∩ (x, y) = (xu, xv, yu, yv) and the cubics
p1, p2 ∈ I ′ can be expressed entirely in terms of 12 linear forms. So we may assume ht(x, y, u, v) = 3
and without loss of generality, we may replace u by x and write I ′ = (x, v) ∩ I3.
If (R/I3)(x,y) has Hilbert function (1, 2), then I3 = (x, y)2 and I ′ equals (x2, xy, y2v). It is easily

seen that R/I ′ is Cohen–Macaulay. Consequently, pd
(
R/I ′

)
= 2 and we have pd(R/(f , g, h)) 6 3 by

Theorem 3.
If on the other hand (R/I3)(x,y) has Hilbert function (1, 1, 1), then the quotient I3 : (x, y) is of type

〈e = 1 | λ = 2〉. By Proposition 1 we have I3 : (x, y) = (x, y)2 + (ax + by) with elements a, b such
that ht(x, y, a, b) > 3.
If deg(ax + by) = 1, then I3 = (x2, xy, y3, cx + dy2) by Engheta (2007, Lemma 13). In particular,

modulo (x, v) the ideal I3 is generated by two elements: (x, v)+ I3 = (x, v)+ (y3, dy2). To bound the
projective dimension of R/I ′, we consider the short exact sequence

0 −→
R
I ′
−→

R
(x, v)

⊕
R
I3︸ ︷︷ ︸

proj. dim.6 3

−→
R

(x, v, y3, dy2)︸ ︷︷ ︸
proj. dim.6 4

−→ 0 (4)

and note that by Engheta (2007, Lemma 12) the middle term has projective dimension 6 3, while the
right term is easily seen to have projective dimension 6 4. It follows from (4) that pd

(
R/I ′

)
6 3, and

so pd(R/(f , g, h)) 6 4 by Theorem 3.
If deg(ax+by) > 2, thenwe apply the argument of Remark 9 to the ideal I3. That is, unless the cubics

p1, p2 ∈ I ′ ⊂ I3 can be expressed entirely in terms of 12 linear forms, we have I3 = (x, y)3+(a′x+b′y).
As above, we observe that modulo (x, v) the ideal I3 is generated by two elements: (x, v) + I3 =
(x, v)+ (y3, b′y). So we have a short exact sequence similar to (4)

0 −→
R
I ′
−→

R
(x, v)

⊕
R
I3
−→

R
(x, v, y3, b′y)

−→ 0

in which the middle term has projective dimension 6 3 by Engheta (2007, Lemma 10), and the right
term is easily seen to have projective dimension 6 4. As above, pd

(
R/I ′

)
6 3 and pd(R/(f , g, h)) 6 4.

〈e = 2, 2 | λ = 1, 1〉 I ′ = (l1, q1) ∩ (l2, q2) with linear forms l1, l2 and irreducible quadrics q1, q2. As
I ′ contains the quadric l1l2, we have pd(R/(f , g, h)) 6 4 by Theorem 8.
〈e = 1, 1 | λ = 2, 2〉 By Proposition 1 we have

I ′ = (x2, xy, y2, ax+ by) ∩ (u2, uv, v2, cu+ dv)

where x, y, u, v are linear forms and ht(x, y, u, v) = 3 or 4. If ht(x, y, u, v) = 3, then, without loss of
generality, we may replace u by x. In this case I ′ contains the quadric x2 and pd(R/(f , g, h)) 6 4 by
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Theorem 8. If on the other hand ht(x, y, u, v) = 4, then I ′ ⊂ (x, y) ∩ (u, v) = (xu, xv, yu, yv). So the
cubics p1, p2 ∈ I ′ can be expressed entirely in terms of 12 linear forms.
〈e = 1, 1, 2 | λ = 1, 1, 1〉 I ′ = (x, y) ∩ (u, v) ∩ (l, q) with linear forms x, y, u, v, l and an irreducible
quadric q. If ht(x, y, u, v) = 3, then, without loss of generality, we may replace u by x and write
I ′ = (x, yv) ∩ (l, q). In this case I ′ contains the quadric xl and pd(R/(f , g, h)) 6 4 by Theorem 8. If on
the other hand ht(x, y, u, v) = 4, then I ′ ⊂ (x, y)∩ (u, v) = (xu, xv, yu, yv) and the cubics p1, p2 ∈ I ′
can be expressed entirely in terms of 12 linear forms.
〈e = 1, 1, 1 | λ = 1, 1, 2〉 By Proposition 1, I ′ admits a primary decomposition of the form I ′ =
(u, v) ∩ (s, t) ∩ (x2, xy, y2, ax + by) with linear forms u, v, s, t, x, y. If ht(u, v, s, t) = 4, then
I ′ ⊂ (u, v) ∩ (s, t) = (us, ut, vs, vt) and the cubics p1, p2 ∈ I ′ can be expressed entirely in terms
of 12 linear forms.
If on the other hand ht(u, v, s, t) = 3, then, without loss of generality, u = s and I ′ = (u, vt) ∩

(x2, xy, y2, ax + by). Note that if u ∈ (x, y), then I ′ contains the quadric u2 and pd(R/(f , g, h)) 6 4
by Theorem 8. So we may further assume that ht(u, x, y) = 3. We now use the inclusion I ′ ⊂
(u, vt) ∩ (x, y) to bound the number of linear forms needed to write p1 and p2.
If vt /∈ (x, y), then I ′ ⊂ (ux, uy, vtx, vty) and the cubics p1, p2 ∈ I ′ can be expressed entirely in

terms of nine linear forms. If on the other hand vt ∈ (x, y), then either v ∈ (x, y) or t ∈ (x, y), for (x, y)
is a prime ideal. Say v ∈ (x, y) and, without loss of generality, relabel v as x. Now I ′ ⊂ (ux, uy, xt) and
p1, p2 ∈ I ′ can be expressed entirely in terms of ten linear forms.
〈e = 2 | λ = 2〉 I ′ is primary to a prime ideal P = (l, q)with a linear form l and an irreducible quadric
q such that λ

(
R
P
/I ′
P

)
= 2. Thus, locally at P , we must have P2

P
⊂ I ′

P
. But primary ideals are contracted

ideals in the sense that I ′ = I ′RP ∩R. Hence P
2
⊂ I ′ globally. So I ′ contains the quadric l2 and therefore

pd(R/(f , g, h)) 6 4 by Theorem 8.
〈e = 1, 2 | λ = 2, 1〉 By Proposition 1, I ′ admits a primary decomposition of the form I ′ = (x2, xy,
y2, ax + by) ∩ (l, q) with linear forms x, y, l, an irreducible quadric q, and elements a, b such that
ht(x, y, a, b) > 3. If l ∈ (x, y) or if deg(ax + by) = 1, then I ′ contains the quadric l2 or (ax + by)l,
respectively, and pd(R/(f , g, h)) 6 4 by Theorem 8. So we may assume that ht(x, y, l) = 3 and
deg(ax+ by) > 2, that is, x, y, l and x, y, a, b are both regular sequences.
As laid out in the proof of Remark 9, we may further reduce to the case where deg(ax + by) = 3

and ax + by = p1. (Recall that I ′ is linked to I = (f , g, h)unm via two cubics p1 and p2, that is,
I ′ = (p1, p2) : I .) Indeed, if deg(ax + by) = 2 or > 4, then the cubics p1, p2 ∈ I ′ can be expressed
entirely in terms of (at most) 12 linear forms. The same holds when deg(ax + by) = 3 as long as
(p1, p2) ⊂ (x, y)2. And if deg(ax+ by) = 3 and one of the cubics, say p1, has a non-zero contribution
from the term ax+by, thenwemay replace ax+by by p1without changing the ideal (x, y)2+(ax+by)
— cf. (3) et seq. on page 9. So without loss of generality ax+ by = p1.
Having replaced the cubic ax+by by p1, wemay no longer assume that a and b are reducedmodulo

(x, y). However, as p1 ∈ I ′, we now have ax+ by ∈ (l, q), say ax+ by = cl+ l′qwith a quadric c and a
linear form l′. This reduces the challenge of having to deal with three quadrics a, b, q to that of having
to deal with only two quadrics c and q. By Engheta (2007, Lemma 15) we have

I ′ =
[
(x, y)2 ∩ (l, q)

]
+ (cl+ l′q) ⊂ (x, y) ∩ (l, q).

To bound the projective dimension of R/I ′, first suppose q ∈ (x, y), say q = l1x + l2y with linear
forms l1, l2. Since cl+ l′q ∈ (x, y), it follows that cl ∈ (x, y) and as x, y, l form a regular sequence, we
must have c ∈ (x, y), say c = l3x+ l4y with linear forms l3, l4. Now we can place the generators of I ′
inside the subring k[x, y, l, l′, l1, l2, l3, l4]. So pd

(
R/I ′

)
6 8 and pd(R/(f , g, h)) 6 9 by Theorem 3.

Now suppose q /∈ (x, y). Since we may reduce qmodulo l without changing the ideal (l, q), this is
tantamount to having q /∈ (x, y, l), that is, x, y, l, q forma regular sequence. Thus, from ax+by = cl+l′q
we glean c ∈ (x, y, q), say c = l1x+ l2y+αqwith linear forms l1, l2 and a scalar α ∈ k. This places the
generators of I ′ inside the subring k[x, y, l, l′, l1, l2, q]. Let L denote the ideal generated by the linear
forms x, y, l, l′, l1, l2.
If q /∈ L, then the generators of L along with q form a regular sequence of length at most 7, in which

case pd
(
R/I ′

)
6 7 and pd(R/(f , g, h)) 6 8. If on the other hand q ∈ L, then q can be expressed in terms
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of the generators of L using nomore than six additional linear forms, in which case pd
(
R/I ′

)
6 12 and

pd(R/(f , g, h)) 6 13.
〈e = 1, 1, 1, 1 | λ = 1, 1, 1, 1〉 I ′ is the intersection of four height 2 prime ideals, each of which is
generated by two linear forms. Clearly, pd

(
R/I ′

)
6 8 and by Theorem 3 we have pd(R/(f , g, h)) 6 9.

2.3. Multiplicity 6

Using linkage and Theorem 3 as our main tools, we give a bound of 20 for the projective dimension
of R/(f , g, h) in the case ofmultiplicity 6. Let p1, p2 be any two cubics in the unmixed part I of (f , g, h)
which form a regular sequence and let I ′ denote the link (p1, p2) : I . We have e(R/I ′) = 9− 6 = 3. By
the associativity formula (1) there are five possible types for the link I ′, namely,

〈e = 3 | λ = 1〉, 〈e = 1 | λ = 3〉,
〈e = 1, 2 | λ = 1, 1〉, 〈e = 1, 1 | λ = 1, 2〉,

〈e = 1, 1, 1 | λ = 1, 1, 1〉.

In what follows we consider each of these cases and either exhibit a bound for the projective
dimension of R/I ′, and thereupon for that of R/(f , g, h), orwe infer that the cubics f , g, h are contained
in an ideal generated by a known number of quadrics which are expressed in terms of a fixed number
of linear forms.
〈e = 3 | λ = 1〉 I ′ is a height 2 prime of multiplicity 3. Thus, R/I ′ is Cohen–Macaulay with pd

(
R/I ′

)
=

2, and pd(R/(f , g, h)) 6 3 by Theorem 3.
〈e = 1 | λ = 3〉 I ′ is primary to (x, y), where x, y are independent linear forms, and λ

(
(R/I ′)(x,y)

)
= 3.

Either I ′ = (x, y)2 or, locally at (x, y), the Hilbert function of (R/I ′)(x,y) is given by (1, 1, 1). In the
former case R/I ′ is Cohen–Macaulay and we have pd(R/(f , g, h)) 6 3 by Theorem 3. In the latter case
Proposition 1 yields that I ′ : (x, y) = (x, y)2+(ax+by)with elements a, b such that ht(x, y, a, b) > 3.
Recall that I ′ = (p1, p2) : I . Thus, we have the following inclusion for any two cubics p1, p2 in the
unmixed part I of (f , g, h)which form a regular sequence:

(p1, p2) ⊂ I ′ ⊂ I ′ : (x, y) = (x, y)2 + (ax+ by).

(Here the elements x, y, a, b depend on the choice of the cubics p1 and p2.) We give a bound for
pd(R/(f , g, h)) by considering the degree of the term ax+ by.
If deg(ax + by) = 1 for some choice of p1 and p2, then, by Engheta (2007, Lemma 13), I ′ =

(x2, xy, y3, cx+dy2)with elements c and d such that ht(x, y, c, d) > 3. Thus, pd
(
R/I ′

)
6 3 by Engheta

(2007, Lemma 12) and pd(R/(f , g, h)) 6 4 by Theorem 3.
If deg(ax + by) > 2 for some choice of p1 and p2, then we are in the position to invoke an

argument which was already used in Section 2.2. By Remark 9, either pd
(
R/I ′

)
6 3 and consequently

pd(R/(f , g, h)) 6 4, or the cubics p1, p2 can be expressed in terms of 12 linear forms. So, unless
pd(R/(f , g, h)) 6 4, every pair of cubics p1, p2 ∈ I which form a regular sequence can be expressed
entirely in terms of 12 linear forms, while any single cubic in I can be expressed entirely in terms of 8
linear forms. Thus, f , g, h can be written entirely in terms of 20 linear forms and pd(R/(f , g, h)) 6 20.
〈e = 1, 2 | λ = 1, 1〉 I ′ = (x, y) ∩ (l, q) with linear forms x, y, l and an irreducible quadric q. It was
shown in Engheta (2007, Section 4, Case 3) that either ht(x, y, l, q) = 3 and R/I ′ is Cohen–Macaulay,
or ht(x, y, l, q) = 4 and pd

(
R/I ′

)
= 3. Hence pd(R/(f , g, h)) 6 4.

〈e = 1, 1 | λ = 1, 2〉 By Proposition 1, I ′ admits a primary decomposition of the form (u, v) ∩
(x2, xy, y2, ax+ by)with independent linear forms u, v, independent linear forms x, y, and elements
a, b such that ht(x, y, a, b) > 3. As so often, we study this intersection through the short exact
sequence

0→
R
I ′
→

R
(u, v)

⊕
R

(x, y)2 + (ax+ by)︸ ︷︷ ︸
projective dimension 6 3

→
R

(u, v)+ (x, y)2 + (ax+ by)︸ ︷︷ ︸
projective dimension 6 5

→ 0 (5)



B. Engheta / Journal of Symbolic Computation 45 (2010) 60–73 71

in which the projective dimension of the middle term is 6 3 by Engheta (2007, Lemma 10), and the
projective dimension of the right term is easily verified to be 6 5. (The right term has projective
dimension 5 unless either ht(u, v, x, y) = 3, or (a, b) ⊂ (u, v, x, y), or deg(ax + by) = 1.) Thus,
pd
(
R/I ′

)
6 4 by (5) and pd(R/(f , g, h)) 6 5 by Theorem 3.

〈e = 1, 1, 1 | λ = 1, 1, 1〉 I ′ is the intersection of three height 2 prime ideals, each of which is
generated by two linear forms. Clearly, pd

(
R/I ′

)
6 6 and by Theorem 3 we have pd(R/(f , g, h)) 6 7.

3. Three cubics of projective dimension 5

In this section we construct an ideal generated by three cubic forms whose projective dimension
equals 5.While this answers the question ofwhether an ideal generated by three cubic forms can have
projective dimension greater than 4, it is not known whether this is the largest value possible.
Our construction, which was motivated by part (c) of the following theorem, leads to an ideal of

multiplicity 5 and corresponds to the case in Section 2.2 where the link I ′ of the unmixed part I is of
type 〈e = 4 | λ = 1〉. Note that an upper bound of 5 was established in that particular case.

Theorem 10 (Brodmann and Schenzel, 2006, Theorem 2.1). A non-degenerate, irreducible projective va-
riety V of multiplicity 4 and codimension 2, which is not a cone, is one of the following:

(a) A complete intersection of two quadric hypersurfaces.
(b) dim V 6 4 with Betti diagram

0 1 2 3
0 1 − − −

1 − 1 − −

2 − 3 4 1

(c) (The exceptional case) V is a generic projection of the Veronese surface V5 ⊂ P5 with Betti diagram

0 1 2 3 4
0 1 − − − −

1 − − − − −

2 − 7 10 5 1

The starting point of our construction is I(V5), the defining ideal of the Veronese surface V5 ⊂ P5.
Note that ht(I(V5)) = 3. In order to obtain an ideal of height 2, we project V5 from a general point
of P5 onto P4 and denote the defining ideal of the resulting variety by I ′. (This notation is consistent
with that of Section 2.2, as I ′ will be linked to the unmixed part of the three cubics that we are about
to construct.) By part (c) of Theorem 10, I ′ is generated by seven cubics and pd

(
R/I ′

)
= 4. Now, if I ′

is linked to the unmixed part I of an ideal generated by three cubic forms f , g, h, then it follows from
Theorem 3 that pd(R/(f , g, h)) = pd

(
R/I ′

)
+ 1 = 5.

To construct an ideal I which is linked to I ′, we choose two generic cubics p1, p2 ∈ I ′ and set
I := (p1, p2) : I ′. In the computation carried out below using the computational algebra program
Macaulay 2 (Grayson and Stillman, 1993), the resulting ideal I is generated by five cubics. Choosing
f , g, h as three generic linear combinations of these five cubics yields an ideal with (f , g, h)unm = I
and hence pd(R/(f , g, h)) = 5.
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Macaulay 2, version 0.9.95
with packages: Classic, Core, Elimination, IntegralClosure,

LLLBases, Parsing, PrimaryDecomposition,
SchurRings, TangentCone

i1 : S = QQ[y_0..y_5];

i2 : veronese = trim minors(2, genericSymmetricMatrix(S, y_0, 3))

2 2 2
o2 = ideal (y - y y , y y - y y , y y - y y , y - y y , y y - y y , y - y y )

4 3 5 2 4 1 5 2 3 1 4 2 0 5 1 2 0 4 1 0 3

o2 : Ideal of S

i3 : Sbar = S/veronese;

i4 : R = QQ[x_0..x_4];

i5 : link = trim kernel map(Sbar, R, random(Sbar^{1}, Sbar^5));

o5 : Ideal of R

i6 : degrees link

o6 = {{3}, {3}, {3}, {3}, {3}, {3}, {3}}

o6 : List

i7 : p1p2 = ideal(mingens link * random(R^7, R^2));

o7 : Ideal of R

i8 : unmix = p1p2 : link;

o8 : Ideal of R

i9 : degrees unmix

o9 = {{3}, {3}, {3}, {3}, {3}}

o9 : List

i10 : fgh = ideal(mingens unmix * random(R^5, R^3));

o10 : Ideal of R

i11 : top fgh == unmix

o11 = true

i12 : betti res fgh
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0 1 2 3 4 5
o12 = total: 1 3 8 10 5 1

0: 1 . . . . .
1: . . . . . .
2: . 3 . . . .
3: . . . . . .
4: . . 8 10 5 1

o12 : BettiTally

Certain outputs of the above computation – in particular, the output of the cubics f , g, h in line
o10 – were purposely suppressed, for the generic choice of the coefficients renders a printout of the
resulting polynomials infeasible. Yet, to provide the reader with a somewhat manageable example,
we repeat the above computation, this time over the finite field Z3 = Z/3Z rather than the rationals
Q, and obtain the following example.

Example. Let R = Z3[X0, . . . , X4] and consider the cubic forms

f = X30 − X
2
0X2 + X0X1X2 + X0X

2
2 + X1X

2
2 − X

2
0X3 − X1X2X3 − X

2
2X3

− X1X23 − X2X
2
3 − X

3
3 + X

2
0X4 − X0X1X4 − X

2
1X4 − X1X2X4

− X0X3X4 + X1X3X4 + X2X3X4 − X23X4 + X2X
2
4 + X3X

2
4 + X

3
4 ,

g = X0X21 − X
3
1 + X

2
0X2 − X0X1X2 − X0X

2
2 − X1X

2
2 + X

2
0X3

− X0X1X3 − X1X2X3 + X22X3 + X0X
2
3 − X

3
3 − X0X1X4

− X21X4 + X0X2X4 + X1X2X4 + X0X3X4 + X2X3X4 + X
2
3X4,

h = X20X1 − X
3
1 − X

2
0X2 + X0X1X2 − X

2
1X2 − X

2
0X3 − X1X2X3 + X1X

2
3

+ X0X1X4 + X21X4 + X0X2X4 − X1X2X4 + X0X3X4 + X1X3X4 + X1X
2
4 .

Then R/(f , g, h) has Betti diagram as in line o12 above. In particular, the projective dimension of
R/(f , g, h) equals 5.

As a caveat, it is worth noting that when performing the above computation over the finite field
Zp, one should verify that the ideal link generated in line o5 – which is the defining ideal of the
projection of the Veronese surface from a general point of P5 onto P4 – is indeed generic, that is, it is
generated by seven cubic forms. This check is performed in line i6.
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