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Ahrtrrct. Recently K. Culik II, J. Gruska, A. Saloma; and D. Wood have studied the language 
recognition capabilities of certain types of systolically operating networks of processors. Here 
their model for systolic VLSI trcrs is formalized in terms of standard tree automaton theory, 
and we show how some known facts about recognizable forests and tree transduction; can be 
applied in the VLSI tree theory. 

1. Introduction 

In a set of recent reports K. Culik II, J. Gruska, A. Salomaa and D. Wood 

[2,3,4] have considered some regularly organized systolically operating networks 
of processors in an attempt to estimate the language recognition power of VLSI 
chips. Here we shall concentrate on one of their models, the systolic tree automaton. 

The reader is referred to the above-mentioned writings for a more general treatment 
of the subject. 

In [4] it was noted that their VLSI tree automata operate like deterministic 

frontier-to-root tree automata, but this fact is somewhat obscured by the formula- 
tion of the theory, and no use of traditional tree automaton theory is made. I shall 
try to make the connection more explicit by reformulating the VLSI tree theory 
so that it becomes fully compatible with tree automaton theory. The new formulation 
represents a slightly altered point of view, but it allows us to present formal proofs 
in the style of tree automaton theory and to apply this theory, while the families 

of languages to be studied remain unchanged. 
In Section 2 the basic definitions relsting to trees are presented. The underlying 

structure of a VLSI tree is conveniently renresented by its domain. 
Section 3 reviews some concepts and results from the theory of tree automata. 

The authors favorite variant of the tree recognizer concept is quite suitable here 

as it involves natural counterparts to the constituents of VLSI tree automata. 
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In Section 4 a mode of operation is defined for tree recognizers’which makes 
them act as systolic VLSI language recognizers. The families of languages to be 
studied are introduced. Also, we comment on the relationships to the VLSI tree 
theory as formulated by Culik et al. 

In Section 5 we demonstrate the applicability of tree automaton theory by giving 
concise proofs for some basic results concerning the language families associated 
with VLSI trees. In Section 6 it is shown that languages recognized by balanced 
VLSI tree automata are target languages of root-to-frontier tree transducers. Hence 
the theory of tree transformations appears also to be relevant to the VLSI tree 
theory. 

2. Tree domains, trees and VLSI trees 

Let N* be the free monoid generated by the set of positive integers which we 
denote by N. The operation is denoted by 9 and the identity element by 0. The 
depth d(p) of an element p E N* is defined inductively: 

(I) d(O)=O, 
(2j d(p)=d(q)+lforp=q*iwithiEN. 
A partial ordering d on N* is defined as follows: for any p, q E IV”, 

p<q iff p -p’=q forsomep’EN*. 

If p = q . i for some i EN, then p is the ith SW of q and cl is the f’clfkr of p. 

Definition. A tree dorrmirl is a nonempty subset D of N* satisfying the following 
three conditions: 

Dl. psq andyED implypfD. 
D2. p.j~Dandi<jimplyp’i~D(i,j~N!. 
D3. There is a number n EN such that no element of I) has more than tz sons 

in 0. 
A tree domain may be finite or infinite. The elements of a tree domain are called 

its rmdes. Nodes maximal with respect to 6 are called Ives. The bright hgtD )r of 
a finite tree domain is max(d(p): p E LV. For each p in D, we WI \ \ 

The rkznk rn( p ) of a node c E D is the number of its sons in LX The rt*itlflr wd& ) 

of a tree domain D at kwl k :2 0 is definud 3s the number of nodes of L? of dspth k. 

Example. The finite tree domain D = (0, 1 , 2, 1.1. 1.2, 1.2.1) is to be viewed as a 
representation of the tree structure shown in Fig. 1. The hslght of I? is 3, its leaves 
are 1.1, 1.2.1 and 2, rD(0) = r&J = 2, r&.2) = 1, ro!l.l)=rl,!l.2.1~=rn(2)=0, 
win(O) = 1, wdn(li = wdn(2) = 2, wdn(3) = 1, and wd&) = 0 for k = S, 5,. . . . 
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Fig. 1. 

Definition. A tree domain D is called a VLSI tree domain if it satisfi6.s the following 

two additional conditions: 
D4. Every p in D has at least one son in Q. 
D5, ‘There is a constant c z 1 such that wd&) >ck for all k > 0. 

Condition D4 is implied by the systolic mode of operation of the VLSI tree 

automata. Condition DS is the exponential growth condition. A VLSI tree domain 
is always infinite and it has no leaves. 

A ranked alphabet is a finite nonempty set S of symbols together with a mapping 

r : L --, Nt, which assigns a non-negative rarrk r(a) to each symbol cr E Z. Usually we 
do not mention r, but express 2 as a union &,L & v - * l , where for each m 3 0, 
X- =(WC: -rn r(a) = m). Yote that Z, f 0 for a finite number of IH’S only. In what 

follows. E will always denote 3 ranked alphabet. 

Definition. A ~‘-wc over a tree domain D is a mapping f‘: D -+ C such that 
r(f( p )) = rD( p) for eaery p in D For each p in D, f(p) is called the lahd of p. D 
IS called the ciornairl off. and it is denoted bv dom f. The d-mv off at node p E D 
PS Mmed as the Z-tree _&,: .D, +cV, where f,(q I = fip * y ) for every q E D,. Finally, 

3 HL!W ,V-fief is 8 Z-tree over a VLSI tree domain with a finite number of different 

subt reus. 

Note that a C-tree over a given tree domain D exists only in case Lr,,, f 0 for 
e\ery FFZ 13 0 such that D conkins a node with exactly m sons. On the other hand, 
condition I33 implies that for every tree domain there exist ranked alphabets which 
c’dn bc used to define trees over thus domain, For each tree domain D we distinguish 
;i minimum ranked alphabet f n such that for each ~1 3 0. 

The concepts and notations defined above for tree domains are applied to trees 

in the natural way. For example, the height hg(r) of a finite tree f (which means, 

elf course, that its domain is finite, is the height of its domain. 
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3. Tree recognizers, recognizable forests, and languages 

We shall now define tree recognizers, and review some basic facts abollt recogniz- 

able forests and their relation to languages. For proofs and more information the 

reader may consult, for example, [S, 7, 12, 131. 
Let X be an alphabet disjoint from the ranked alphabet E. Let C* be the ranked 

alphabet we get by adding the letters of X to 2 as nullary symbols. Then a 2X-&v 
is a finite EX-tree as defined in the previous section. The set of XX-trees is denoted 
by TX(X). Subsets of TX(X) are called EX-~OF* ts. 

A S--tree differs from a finite E-tree only in that its leaves may also be labelled 

by letters from X. It is often more convenient to define 2X-trees as Z-terms in 
variables X. Then TE(X) is the smallest set sv n that 

(1) X u&~ &(X1, and 
(21 U(ll, . . . , t,,)~ T’(X) whenever NI >(I, v ES,,, and tl, . . . , I,,, E TX(X). 
There is a simple inductive translation back to the original definition of T2r,Yl. 

st) we may use the two definitions in parallel. 

Example. Suppose y E &, 7 E Z 1, fr E -V2 and A-, v E X, The :X-tree shown in Fig. 
2 may also be writtetl as the term G(U(X, r(y)), ~9. 
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( 2) a : X -, A is the irtiticlf assignment, and 
(3) AF c A is the set of fital states. 

The forest recognized by A is the XX-forest 

T(A) = {t E TX(X): d E &}. 

A 2X-forest T is said to be recognizable if T = T(A) for some x.X-recognker A. 

The set of all recognizable Z’X-forests is denoted by Rec(C, XL 

The value t& of the term t when evaluated in the algebra ~2 for the assignment 
by of values to the variables is interpreted as the state of the recognizer A when it 
arrives at the root of the tree t. The tree t is accepted iff this state is a final state. 

A nondeteministic ,eX-recognizer may have several choices for starting states 

and next states in any given situation. It accepts a tree if there is a set of mutually 
compatible choices such that the recognizer arrives at the root in a final state. We 

omit the formal definition, but note the following fact. 

Theorem 3.1. For QCK~ rtortd~Bterrnirristic LX-recognizer one may cunstruct a~ 

quiwdiw t 1SX-recogriizer. 

The proof is by the usual subset construct,on. AISO the following theorem can 

be established by standard constructions. 

Theorem 3.2. Rcc( 2, .Y) is clostd under all Bxdean operatim:. 

Let 0 be a ranked alphabet and let Y be an alphabet. Suppose we are given a 

mapping Iis * Y -+ Y, and for each 111 QZZ 0 such that E,,, f d, a mapping /z,, : EII1 + fh,. , 

I Hence O,, it 0 whenever 5 A ,I‘ # 53.) The cllphnbetic tree Iroiltc,rnorphisnl determined 

by these mappings, is the mapping 

defined as follows. For each SX-tree r, hit) is the RY-tree over the same tree 

domain as t defined as follows: 
I 1 I if I == .\ 1 E A’ 1, then 11 (t ) = hu (x 1; if t 5 u( E So), then Iz 0) = Izdd, 

(2) if f - tr(f,, . . . , I,,,) MI :-(I), then IN, = I?,,(aHh(fl), . . . , Ir(f,,h 

Hcnw an alphabetic tree homomorphism just relabels the nodes of a tree without 

shanging its ‘shape’. The two statements of the following theorem hold even for 

morr‘ general t rt’e homomorphisms. 

The set of all words over an alphabet X is denoted by X*. The empty word is 
&noted by t’. A language o\*er X will also be called an X-language. 
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The yield yd(t) of ? xX--tree I is defined inductively thus: 

(I) forxEX,ydix+ x ; if u E CO, then yd(a) = e, 

(2) if t =c(tl, . . . , L,, ), then ydtr) = ydh) w l * ydk,,). 
Hence we have a mapping yd: ?‘xrX)-, X* which assigns to each XX-tree the 

word spelled c& by the labels of its leaves when read in order from left to right 

ignoring leaves labelled by nulIary symbols. The yd-mapping is extended to forests 
in the natural way: the yield of a XX-forest T is the X-language yd(T) = 

(ydit): I E 7’). 

Definition. The fangmge recognized by a EX-recognizet A is the X-1anguaj.e 
L,(A) = yd(T(A)f. 

Hence a word over X is accepted by A iff it is the yield of at least one ccc 
accepted by A. The following theorem lists some of the basic facts about tree 

recognizsrs and languages. 

4. Systolic ianpage recognition 
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Definition. Let f be a VLSI E-tree, X an alphabet and A= (5$, a+, AF) a ZX- 
recognizer. The lartgrtag~ f-recognized by A is the X-language 

An X-language is said to be f-recognizable if it is f-recognized by some 2X- 
recognizer, and it is said to be systolically recognizable if it is f-recognizable for 

some VLSI tree f. If D is a VLSI tree domain, then a language is said to be 
D-recognizahl~~ if it is f-recognizable for some VLSI tree f such that dom f = D. 

Hence a word H’ is in tJA1 iff A accepts the systolic tree f”. Let 2, denote the 
family of ail /kecognizabie languages. Similarly, .&J denotes the family of D- 

recognizable languages for a given VLSI tree domain D. For any alphabet X, let 

W;CS 1 and Y,&I I denote the set of all X-languages belonging to 2’{ and .YD, 
rcspeetively. 

It should be fairly obvious that the definitions stated above provide us with a 

formalism and terminology for discussing the families of languages introduced by 
Cuiik ct al. 0ur ranked alphabet 2 is their ‘processor alphabet’, our X is their 
‘terminal aiphabet’, the state set A corresponds to their ‘operating alphabet’, the 

VLSI tree domain dam f accounts for their ‘underlying structure’ of a VLSI acceptor 
etc. However, some details deserve special comments. 

In OUT formulation languages are recognized by ordinary tree automata in the 
usual manner except that the input trees are restricted to the systolic forest. In [4] 

it is thought that the input words are fed into tree shaped networks of processors. 
The latter point of view may, however, be maintained here too simply by assuming 

that the tree recognizers are realized as iterative tree networks (cf. [lo]). 
We have also altered slightly the manner in which input symbols are encoded 

rnto internal states. In [41 the processors themselves act as encoders, which requires 
that they are equipped with input terminals for receiving external inputs. It also 
means that Ihe input alphabets compatible with a given VLSI chip are fixed in 
advanc:. By using the initial assignment o[, which stands for separate input-to-state 

encoders, we make external and internal alphabets independent of each other-. 
hJoreo,ver, this approach fits better into our definition of tree recognizers. The 

condition that a VLSI tree has just a finite number of different subtrees assures 

that this difference in the input process will not chs?&e the families of languages 
to be studied. 

5. Some basic properties of the families A!‘! and .& 

I‘hr~wghout this suction Z IS a ranked alphabet with the single nullary symk~l 

3, J‘ is VLSI Z-tree, and A’ is an alphabet. Having fixed f and X, we denote S&X) 

simply by S. 
The following lemma is immediately clear from the definition of f-recognition. 
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Lemma 5.1. For any X-language L, L E .9,-(X ) ifi there exisrs R r3cogrritnbk Z’X- 
forest R such that L = yd(R nS). 

One immediate consequence of this lemma and Theorem 3.1 is that the families 
& would not change if we allowed nondeterministic tree recognizers. For every 
,‘X-forest R and any word w EX”, ‘ct’ E yd(R n S) iff f’” E R. Parts (b) and (c) of 

the next lemma follow from this observation; part (a) is of course valid for all forests. 

Lemma 5.2. For arl:r~ EX-jorests RI und Rz, 

(a) yd((R1uR7_)~S)=yd(RIMQuyd(RznS), 
(b) yd((R1nRhS)=yd(R1nS)nyd(RznS),mi 
(4 yd((R,--R&W=yd(R1nSb--yd(RznS). 

By combining these two lemmas with the obvious fact that A’* E Y, CX 1, WC get 
the following result. 11 differs from Theorem 3 of [4] in that here the \WGI tree. 

and not just the domain, is fixed. 

The nest thewem is the cotmtcrpart to Theorems 1 and 2 t>f [-I]. 

‘Klworern 5.5. Y’, -= Y; . 
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every Z&forest R, 

yd(R ~9 = yd((t(R)nSFC(X)!, 

and for ewry fX-forest T. 

ydth ‘(Tk-6) =yd(TnS,-(X)). (21 

Ikgether with Theorem 3.3 and Lemma 4.1, (1) and (2) imply that for any 
X-language I,, L 65 9&Y b iff t E J&-(X L [1J 

By using Theorem S.3 we also get the following corollary which appears as 

Theorem 3 in 141. 

6. Balanced VLSI trees and tree transducers 

To focus the attention on balanced VLSI trees not only simplifies matters, but 
may also ht justified from a practical point of view. One of the simplifying factors 

is that for a balanced VLSI tree it is easy to control the condition S3 concerning 
the length of the yield of a systolic tree. 

For each tt1 2 2 there is a unique VLSI tree domain HID in which every node 
has rank IN. Assuming that a fixed tn is given, let fl be a ranked alphabet consisting 
~1 a single tn-ary symbol w and the O-ary symbol 3. The unique VLSI R-tree 

rnf : trlD --+ R 

is called the wary VLSI trw. Jointly the m-arv VLSI trees (HZ 3 2) a1.e called 
hJitJrld k/-L.!?/ CWVS. 

A trw transformatiort is a relation T E T,(X) x Tfl( Y ), where 2 and f2 are ranked 

4phahets (not restricted by the assumption made above), X and Y are alphabets. 
Tree transformations may be defined by VW tratlsdrrcers. One of the main types of 
thcsc is the root-to-frontier trm tramhcer, or the R-trartsdwcr for short, which 
transforms input trees into output trees working from the root toward the leaves. 

The formal definition is given for a special case, which is the only type to be 
considered here. 

Definition. A 1 -wutr~ R-tratzsducer is a system $8 = tC, X, B, a, Y, &, P) where C 
is a ranked alphabet consisting of a single unary symbol cf, X and Y’ are alphabets, 
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B is a finite set of states which are viewed as unary symbols, f2 is a ranked alphabet, 
Bo( c B) is the set of initial sfafcs, and P is a finite set of productions which are of 
type (1) or of type (2): 

(1) bx+r,wherebEB,xEXandrETa(Y): 
(,2) bcr + r, where 6 E B and r E Tfl( Y u B(e)). Here 4 is a new symbol and 

ES([) = {b(S): b EB}. 
Furthermore, it is assumed that B is disjoint from the other alphabets involved. 

Note that now 

T~(X)=(v”(X):tt H.l,XEX}, 

where 

2(x) =x and a”‘(x) = u((T’(x)) for i 3 0. 

In order to describe the operation of such a 9 we shall first define a set 0 of 
trees which represent possible initial, intermediate and final stages in a transforma- 
tion process. Let B(Tx(X)) be the set of all trees b(s) where h E B and s E T’(X). 

The presence of such a tree h(s) means that the transducers remaining tasks include 
thlt transforming of s, which is a subtree of the original input tree, starting in state 

6. Now U is defined as the smallest set such that 
(1) Yu12,uB(Tx(X))c U, and 

(2) o(r.1, - * * , t,,,) E U whenever 111 2 1, o E .R,,, and 11, . . . , t,,, E U. 

Note that B (T,(X)) c U and T1,C I’) c U; each successful transformation begins 

with a tree h(s) E B&(X)), where 71 E Bo, and ends in a tree I belonging to ?& 1’1. 
The stepwise transformation process is modelled by the relation=MC U y CV 

defined as follows. For any sl, s, E IL s I =+u: iti there are strings s’ and s” such that 
either 

(i) st =s’@W and s2 = As” for some production IW -+ r of type t I) belonging 
to P, or 

{ii) s1 = s’b((~“(S))si’andsl I-. s’r!( +- (r” ‘(.~~).i”.wherc~~ :- l,tr”~s hi TL(SIJcr -+ 

r is a production of type (2, in P, and r# +- U” ’ r.t% is the tree in U which is 
&tained when every occurrence of 5 in r is replaced bv U” ‘;s\. 

Let =+* be the reflex&e, transitive closure of ~3. Then the I -lirltlry R-rrt~t~~~r~~~ I 

iion &fhd /IV V is 
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Theorem 6.1. For every m Z= 0, all mf-rewgnizable languages are l-unary R-target 

languages. 

Proof. Let L E .5?,,,,(X) be a language ntf-recognized by an flX-recognizer A = 
M, a, A&. (f? consists again of the single m-ary symbol w and the 0-ary symbol 
9.) Let ,f = & = (u) and let 2 = (2). We define a l-unary R-transducer B = 

(Z, 2, B, R, X, &, P) as follows: 
(a) B = A x {0.1,2,3) and B,, = AF x {O), 

(b) P consists of the following four lists of productions: 
(0) All productions (m, 0)~ 3.x such that x E X and xcy t &, the production 

(O”, Ok + $ in case Q”’ E AF, and all productions 

(a, O)o-w((aI, l)(l), . l l , b-h,l)(5)9 (G+ h2)fri3 

such that cr’rcz,, . . .,r~,)=~~,ms&aand lsisrn. 
( 11 611 productions (XCL, 1 k + .r with x E X, and all productions 

suchfhatm”(aI ,..., n,,)=tr. 
(2) All productions (sa, 2): 2 x with s E X, and all productions 

SUL% that (r ‘IU I, . . . , a,,, ) = TV and 0 c_ i < t?l. 

(3 I The production t$ *‘, 3 k + # and all productions 

such that 10 “la lr . . . , a,,) = u. 

for any (a, i) E B and n 2 0, let 

Moreover, for every tt 2 0, let E, denote the set of all OX-trees t such that dl y I = tt 

for every leaf p of dom 1. 
By induction on tl, me may easily verify that for all tz 3 0 and (1 E A, the folio-fling 

claims (Cl k(C3 are valid: 

ccl\ f i,,,1 ,(n ) = {t E E,, : r& = a, yd&) E X”}. 

SZ) 7 :‘,,;!,(tz ) = (t E E,: t & = a, yd$(r) = M’ 3‘ with M* E X ’ and i = ttt n - [n* 1). 

(c-3) Ttc;.; ,ttl ) = (t E E,, : tcS = 11, yd,(r) = k”““). 
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Any derivatio:] of an output tree t from an input tree a”(2 I begins with the 
application of one of the productions in list (0). If IZ = 0, then the possible I’S are 
the letters x such that xcy EAF, i.e. x E T(A), and B in case #E T(A). If o >O, then 
the first productian used creates the root of the output tree and nl copies of U” ‘(2 1. 

From (CI)--(C3) we see that the choice of this first production determines in which 
of the IN main subtrees of t the rightmost letter from X wiil appear; it appears in 

the subtree which is derived fron the copy of (I” ‘(2) starting in state (a,, 1.2). 

The location of the division line within the subtree is determined by the subsequent 
choices of productions from list (2). Because the leftmost U” ‘(2) is transformed 
starting in a state (Q, 1) and the next one in state (a,,, 1) or (c12.2), the output tree 

will satisfy condition S3. In fact, it should now be obvious that if we ignore the 
restrictions expressed in terms of the first components of the state% of ‘3, all systolic 
OX-trees of height II can be derived from gn (z ), and that these conditions restrict 
the output trees to those accepted by A. Hence 

This implies that 

which rn~‘ans that I_ is a 1 -unary target Ianguayc. . :‘ 



Corolhy 6.5. For arty III z= 2, Y,,,, is a proper subfamily of the family of EOL. 

la tl~:tctqp. 

7. Concluding remarks 

We have seen that the theory of VLSI systolic tree acceptors can be formalized 

in terms of conventional tree automaton theory, and that a number of basic results 
follows immediately from this formalization. Although the systolic mode of oper- 

ation adds a distinctive flavour to the VLSI tree theory, one might still view it as 
a new branch of the theory of tree automata, where it raises some new questions. 

In particular, it seems to motivate 3 closer study of some special tree transformations. 
Our formulation of the theory is intended to reflect the intentions of the 

originators of the theory (14th the exception of the way inputs are handledi. 
94owcver, the model itself seems still to be open to some discussion. For example, 
some rather unnatural casts could be excluded by requiring that all subtrees of a 
VLS9 tree arc also VLSI trees. But such changes would not call for any changes 
in our formalism, and the balanced VLSI trees would probably remain the most 
natural objects of study under any reasonable definition. One might also argue that 
there is no reason to associate the theory of systolically operating networks too 
exclusivelv with the forthcoming VLSI technology, but that it should rather be seen _ 
as a new outgrc)wth of the general theory of iterative networks. 
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