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Abstract. Recently K. Culik I, J. Gruska, A. Saloma.. and D. Wood have studied the language
recognition capabilities of certain types of systolically opcrating networks of processors. Here
their model for systolic VLSI trecs is formalized in terms of standard tree automaton theory,
and we show how some known facts about recognizable forests and tree transduction: can be
applied in the VLSI tree theory.

1. Introduction

In a set of recent reports K. Culik II, J. Gruska, A. Salomaa and D. Wood
[2, 3, 4] have considered some regularly organized systolically operating networks
of processors in an attempt to estimate the language recogniticn power of VLSI
chips. Here we shall concentrate on one of their models, the systolic tree automaton.
The reader is referred to the above-mentioned writings for a more general treatment
of the subject.

In [4] it was noted that their VLSI tree automata operate like deterministic
frontier-to-root tree automata, but this fact is somewhat obscured by the formula-
tion of the theory, and no use of traditional tree automaton theory is made. I shall
try to make the connection more explicit by reformulating the VLSI tree theory
so that it becomes fully compatible with tree automaton theory. The new formulation
represents a slightly altered point of view, but it allows us to present formal proofs
in the style of tree automaton theory and to apply this theory, while the families
of languages to be studied remain unchanged.

In Section 2 the basic definitions relating to trees are presented. The underlying
structure of a VLSI tree is conveniently renresented by its domain.

Section 3 reviews some concepts and results from the theory of tree automata.
The authors favorite variant of the tree recognizer concept is quite suitable here
as it involves natural counterparts to the constituents of VLSI tree automata.
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In Section 4 a mode of operation is defined for tree recognizers ‘which makes
them act as systolic VLSI language recognizers. The families of languages to be
studied are introduced. Also, we comment on the relationships to the VLSI tree
theory as formulated by Culik et al.

In Section 5 we demonstrate the applicability of tree automaton thzory by giving
concise proofs for some basic results concerning the language families associated
with VLSI trees. In Section 6 it is shown that languages recognized by balanced
VLSI tree automata are target languages of root-to-frontier tree transducers. Hence
the theory of tree transformations appears also to be relevant to the VLSI tree
theory.

2. Tree domaias, trees and VLSI trees
Let N* be the free monoid generated by the set of positive integers which we

denote by N. The operation is denoted by - and the identity element by 0. The
depth d(p) of an element p € N* is defined inductively:

(1) d(0)=0,
(2) dip)=d{g)+1forp=q-iwithieN.

—q-iwithieN
s

1
A partial ordering < on is defined as follows: for any p,qe N*,

p<q iff p-p'=qforsomep'e N*

If p=q - i for some i € N, then p is the ith son of g and gq is the father of p.

Definition. A tree domain is a nonempty subset D of N* satisfying the following
three conditions:

D1. p<qand geD imply peD.

D2. p-jeDandi<jimplyp-ieD (i,je N

D3. There is a number n € N such that no element of D has more than n sons
in D,

A tree domain may be finite or infinite. The elcments of a tree domain are called
its nodes. Nodes maximal with respect to < are called leaves. The height hgtD) of
a finite tree domain is max(d(p): p € D). For each p in D, we w1 \»

D,={qgeN*.p-qeD}.

The rank rp(p) of a node p € D is the number of its sons in D. The width wdp(k)
of a tree domain D at level k =0 is defined as the number of nodes of D of depth k.

Example. The finite tree domain D ={0, 1,2, 1.1, 1.2, 1.2.1} is to be viewed as a
representation of the tree structure shown in Fig. 1. The height of /2 is 3, its leaves
are 1.1, 1.2.1and 2, rp (0 =rp(1) =2, rp(1.2)= 1, rpL. D) =1rpi1.2. DN =rp(2) =0,
wdp(0) =1, wdp(li=wdp(2) =2, wdp(3) =1, and wdp(k)=0fork =4.5,....
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Fig. 1.

Definition. A tree domain D is called a VLSI tree domain if it satisfies the following
two additional conditions:

D4. Every p in D has at least one son in D.

DS5. There is a constant ¢ > 1 such that wdp(k)>c* for all k >0.

Condition D4 is implied by the systolic mode of operation of the VLSI tree
automata. Condition DS is the exponential growth condition. A VLSI tree domain
is always infinite and it has no leaves.

A ranked alphabet is a finite nonempty set 3 of symbols together with a mapping
r: X - N, which assigns a non-negative rank rio) to each symbol o € £. Usually we
do not mention r, but express X as a union £, %, v -, where for each m =0,
S.={oeX:rio)=m)}. Note that X,, #0 for a finite number of m's only. In what
follows, X will always denote a ranked alphabet.

Definition. A Y-rree over a tree domain D is a mapping f:D -3 such that
rifiph =rptp) for every p in D For each p in D, f(p) is called the label of p. D
is called the domain of f, and it is denoted by dom f. The subtree of f at node pe D
1s defined as the X-tree f,: D, » X, where f,(q)=f(p - ¢4) for every q € D,,. Finally,
a VLS! X-tree is a S-tree over a VL.SI tree domain with a finite number of different
subtrecs.

Note that a X-trce over a given tree domain D exists only in case X, # 0 for
every m = ( such that D contains a node with exactly m sons. On the other hand,
condition D3 implies that for every tree domain there exist ranked alphabets which
can be used to define trees over this domain. For each tree domain D we distinguish
4 minimum ranked alphabet I” such that for each m =0,
idym} WEm =rpip)forsomepe D,

re =
"l otherwise.

The concepts and notations defined above for tree domains are apptied to trees
in the natural way. For example, the height hg(r) of a finite tree ¢ (which means,
of course, that its domain is finite) is the height of its domain.
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3. Trec recognizers, recognizable forests, and languages

We shall now define tree recognizers, and review some basic facts about recogniz-
able forests and their relation to languages. For proofs and more information the
reader may consult, for example, [5, 7, 12, 13].

Let X be an alphabet disjoint from the ranked alphabet 2. Let £ * be the ranked
alphabet we get by adding the letters of X to X as nullary symbols. Then a X-tree
is a finite 3 *-tree as defined in the previous section. The set of IX-trees is denoted
by Ts(X). Subsets of Ts(X) are called EX-for: ts.

A YY ¢onn A4:F R C.tran

neo Fe 3
A 2A-ITEC Qiricrs irom a llllll.\v s ™ l e :. i

ealay 1en the tc
Ily il vial i
by letters from X. It is often more convenient to define XX-trees as S-terms in
variables X. Then Tx(X) is the smallest set si* a that

(1) Xul¥,cTs(X), and

(2) olty,...,tm)€ Tx(X)whenever m>0,0€ 3, and t;,..., t,, € Tu(X).

There is a simple inductive translation back to the original definition of Ty (X)),

so we may use the two defiuitions in parallel.

anmple. Suppose ye X, 7eX,, o€, and x, y € X. The YX-tree shown in Fig.
2 may also be written as the term (o (x, 7(y)), v ).

a

A

Fig. 2.

A X-algebra o consists of a mmemptv set A of clements in which an opcralion
o ¥ is defined for each r e X if c € X, then o ¥ is an m- ary operation A" - A, We
write of = (A, Y), and call & finire if A is finite.

Let of = (A, X) be a Y-algebra. Any mapping a ..\ ».A can be extended to a
mapping

a: T X)» A
as follows:

(D forve X letxa =xa:foroel,, letaa =«
. N K] -
(2 fr=ct o thenta = a7 ta, ... L)

Definition. A XX-recognizer A is a system (&, o, Ap), where
(I o/ =(A, X)is a finite S-algebra,
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(2) a:X - A is the initial assignment, and
(3) Ar < A is the set of fir:al states.
The forest recognized by A is the S X-forest

T{A)= {l e Tz X): (X € I‘F}.

A XX-forest T is said to be recognizable if T = T'(A) for some X X-recognizer A.
The set of all recognizable 3 X-forests is denoted by Rec(£, X).

The value fa of the term ¢t when evaluated in the algebra & for the assignment
a of values to the variables is interpreted as the state of the recognizer A when it
arrives at the root of the tree t. The tree ¢ is accepted iff this state is a final state.
A nondeterministic 3X-recognizer may have several choices for starting states
and next states in any given situation. It accepts a tree if there is a set of mutually
compatible choices such that the recognizer arrives at the root in a final state. We

omit the formal definition, but note the following fact.

Theorem 3.1. For each nondeterministic XX-recognizer one may construct an
equivalent X-recognizer.

The proof is by the usual subset construct.on. Also the following theorem can
be established by standard constructions.

Theorem 3.2. Recty, X)) is closed under all Brolean operations.

Let 2 be a ranked alphabet and let Y be an alphabet. Suppose we are given a
mapping hy - X - Y, and for each m >0 such that £,, #, a mapping f,,: £, > (.
‘Hence £2,, # O whenever X, # 0.) The alphabetic tree homomorphism determined
by these mappings, is the mapping

h: T X)=> T Y)

defined as follows. For each 3X-tree 1, h(1) is the 2Y-tree over the same tree
domain as r defined as follows:

() if e =a0e X)), then hir) = hy(x);if £ = ol € Xy), then i) = holo),

2y ifr=alty, ..., 6 (m>>0), then hir)y=h, () hity), ..., ().

Hence an alphabetic tree homomorphism just relabels the nodes of a tree without
changing its “shape’. The two statements of the following theorem hold even for
more general tree homomorphisms.

Theorem 3.3, If h: TviX) - T, (Y ) is an alphabetic tree homomorphism, then
(a) T e Rec(X, X implies h{T)e Rec(£2, Y), and
by T eRectd2, Yy implies h '1TreRecl S, X),

The set of all words over an alphabet X is denoted by X *. The empty word is
denoted by e. A language over X will also be called an X-language.
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The yield yd(t) of a X-tree 1 is defined inductively thus:

(1) forxe X, yd(x)=x; if o €3y, then yd(o) =,

(2) if r=al(ty, ..., 1), then yd(t) = yd{ry) - - - yd(1,,,).

Hence we have a mapping yd: Tx(X)—-> X™* which assigns to each YX-tree the
word spelled cut by the labels of its leaves when read in order from left to right
ignoring leaves labelled by nullary symbols. The yd-mapping is extended to forests
in the natural way: the yield of a XX-forest T is the X-language yd(T)=
{yd(t):teT}.

Definition. The language recognized by a XX-recognizer A is the X-languae
L(&)=yd(T(A)).

Hence a word over X is accepted by A iff it is the yield of at least one ree
accepted by A. The following theorem lists some of the basic facts about tree
recognizers and languages.

Theorem 3.4. (a) Every language recognized by a tree recogn  er is context-free, i.c.
T e Rect Y, X ) implies that yd(T) is a context-free X-language.

by If Xo# 0 and X, # 0 for at least one m > 1, then every context-free X-language
is recognized by a XX-recognizer.

we) If L is a regular X-language, then yd '(L)e ReetS, X).

4. Systolic language recognition

From here on, the ranked alphabets are assumed to include exactly one nullan
svmbol which we take to be §. A modified vicld operation

ydy: To (X)) = (X w{§h?

is introduced. Tt differs from the original one only in that vd($1 = §.

Definition. let f: D - X be a VLSI X-.ree and let X be an alphabet. The svsrolic
SX-forest S/(X) of f over X consists of the one-node trees $ and v (v €X' and all
YX-trees ¢ of height & >0 which satisfy the following conditions:

St. domreD.

S2. dip) =k for every maximal node p of dom ¢,
S3. vdo() = w8, where we X* and wd, (k- D ethwis wd ok,
S4. For all nonmaximal nodes p of domue, rip) = fpo.

[t s obvious that for each word w in X" there 18 at most one ¢ in §,(X1 such
that ydiri = w. On the other hand, the exponential growth condition D5 satisiied
by £ assures that such a tree exists for every word. Therefore we may state

Lemma 4.1, Let f be a VLSI Y-tree and X an alphabet. Then ydiS, i X 0V =X™ and
for every w ¢ X* there is a unique £ ot (X)) such that vd(4™ 1 = .
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Definition. Let f be a VLSI 3-tree, X an alphabet and A= (o, a, Ar) a ZX-
recognizer. The language f-recognized by A is the X-language

LiA)={weX* f"d € Ar}.

An X-language is said to be f-recognizable if it is f-recognized by some IX-
recognizer, and it is said to be systolically recognizable if it is f-recognizable for
some VLSI tree f. If D is a VLSI tree domain, then a language is said to be
D-recognizable if it is f-recognizable for some VLSI tree f such that dom f=D.

Hence a word w is in L. (A) iff A accepts the systolic tree f". Let %, denote the

f'amllu of all f.ram\gnnnhlp languages, Similarly, GP.\ denotes the f"mnlu of D-

IRV It eSO myw D WPriasaalaay SAAVRL S saaw alaaiza

recognizable languages for a given VLSI tree domain D. For any alphabet X, let
£(X) and ¥ X) denote the set of all X-languages belonging to ¥, and %),
respectively.

It should be fairly obvious that the definitions stated above provide us with a
formalism and terminology for discussing the families of languages iniroduced by
Culik et al. Our ranked alphabet I is their “processor alphabet’, our X is their
‘terminal alphabet’, the state set A corresponds to their ‘cperating alphabet’, the
VLSI tree domain dom f accounts for their ‘underlying structure’ of a VLSI acceptor
etc. However, some details deserve special comments.

In our formulation languages are recognized by ordinary tree automata in the
usual manner except that the input trees are restricted to the systolic forest. In [4]
it is thought that the input words are fed into tree shaped networks of processors.
The latter point of view may, however, be maintained here too simply by assuming
that the tree recognizers are realized as iterative tree networks (cf. [10]).

We have also altered slightly the manner in which input symbols are encoded
into internal states. In [4] the processors themselves act as encoders, which requires
that they are equipped with input terminals for receiving external inputs. It also
means that the input alphabets compatible with a given VLSI chip are fixed in
advanc.. By using the initial assignment a, which stands for separate input-to-state
encoders, we make external and internal alphabets independent of each other.
Moreover, this approach fits better into our definition of tree recognizers. The
condition that a VLSI tree has just a finite number of different subtrees assures
that this difference in the input process will not change the families of languages
to be studied.

§. Some basic properties of the families £, and &,

'l‘hmug,hnul this scction X 1s a ranked alphabet with the single nullary symbol

§. 7 is VLSI 3-tree, and X is an alphabet. Having fixed f and X, we denote S;(X)
slmply by S.

The following lemma is immediately clear from the definition of f-recognition.
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Lemma 5.1. For any X-language L, L € £, X)) iff there exists a recognizable XX-
forest R such that L =yd(R N §).

One immediate consequence of this lemma and Theorem 3.1 is that the families
%#; would not change if we allowed nondeterministic tree recognizers. For every
IX-forest R and any word we X™*, weyd(R nS) iff f* € R. Parts (b) and (c) of
the next lemma follow from this observation; part (a) is of course valid for all forests.

Lemma 5.2. For any XX-forests Ry, and R,
(@) yd((RiUR2)~S)=yd(RinS)uyd(R;NS),
(b) yd((RinR2)NE)=yd(R,nS)nyd(R:nS), and
(¢) yd((R{~R3)Nn8)=yd(R\nS)~vd(R,;NS).

By combining these two lemmas with the obvious fact that X * € £,(X), we get
the following result. It differs from Theorem 3 of [4] in that here the VLSI tree.
and not just the domain, is fixed.

Theorem 5.3. £:(X) is closed under all Boolean operatiors.

The next theorem is the counterpart to Theorems 1 and 2 of [4].
Theorem 5.4. 7 includes the family of all regular languages.
Proof. For any regular language L < X'*, vd '(Lie Reat, N ). By Le nma 5.1 this
implies L < 7, (X)) as
L =ydiyd (1)~ S)
by Lemma 4.1, ]
Let dom / = D. We denote the minimum alphabet 17 by £ and the unique VLS]

[-tree over D by f'. The following theorem includes the “normal form theorem’
fi.e., Theorem ) of [4].

Theorem 5.5, 7 = .7,

.

Proof. We may assume that every symbol from |
unique alphabetic tree homomorphism

appears in £ Fhen there s a

e Toi X - TrX)

such that /iy is the iden:ity mapping of X. Obviouslv, yduriehy - vairy for every
t£ To X (Two yield-mappings are involved, but our notation does not distinguish
between them.) Moreover, it (/") =" for every w € X ™. These facts imply that tor
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every YX-forest R,

yd(R nS) = yd(h(R) " S;( X)), ' (1)
and for every I'X-forest T,

ydth "(ThVnS)=yd(T ~nS;(X)). (2)

Tcgether with Theorem 3.3 and Lemma 4.1, (1) and (2) imply that for any
X-language L, L e (X iff Le #p(X). T

Corollary §.6. If f and g are VLSI trees such that dom f =dom g, then *; = %,
Corollary §.7. For anv VLS tree |, ;= F aom 1-

By using Theorem 5.3 we also get the following corollary which appears as
Theorem 3 in [4].

Corollary 5.8. For any VLSI tree domain D and any alphaber X, £1(X ) is closed
under all Boolean operations.

6. Balanced VLSI trees and tree transducers

To focus the attention on balanced VLSI trees not onlv simplifies matters, but
may also be justified from a practical point of view. One of the simplifying factors
is that for a balanced VLSI tree it is easy to control the condition S3 concerning
the length of the yield of a systolic tree.

For each m =_ there is a unique VLSI tree domain mD in which every node
has rank m. Assuming that a fixed m is given, let £2 be a ranked alphabet consisting
of a single m-ary symbol w and the 0-ary symbol §. The unique VLSI (2-tree

mf:mD -}

1s called the m-ary VLSI tree. Jointly the m-ary VLSI trees (m =2) are called
halanced VLSI trees.

A tree transformation is a relation 7 € T (X)X Tt Y), where ¥ and (2 are ranked
alphabets (not restricted by the assumption made above), X and Y are alphabets.
Tree transformations may be defined by tree transducers. One of the main types of
these is the root-to-frontier tree transducer, or the R-transducer for short, which
transforms input trees into output trees working from the root toward the leaves.
The formal definition is given for a special case, which is the only type to be
considered here,

Definition. A 1-unary R-transducer is a system 8 = (3, X, B, 12, Y, By, P) where ¥
is a ranked alphabet consisting of a single unary symbol o, X and Y are alphabets,
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B is a finite set of states which are viewed as unary symbols, {2 is a ranked alphabet,
Bo(< B) is the set of initial states, and P is a finite set of productions which are of
type (1) or of type (2):

(1) bx »r,where beB,xe X andre Tp(Y):

(2) bo->r, where beB and re Tp(Y UB(£)). Here € is a new symbol and
B(£)=1{b(¢):beB}

Furthermore, it is assumed that B is disjoint from the other alphabets involved.

Note that now
Ts(X)={o"(x):n=0,xe X},
where
o’)=x and o'x)=c(@'(x)) for i=0.

In order to describe the operation of such a 8 we shall first define a set U of
trees which represent possible initial, intermediate and final stages in a transforina-
tion process. Let B(Tx(X)) be the set of all trees b(s) where be B and s € Tx(X).
The presence of such a tree b(s) means that the transducers remaining tasks include
the transforming of s, which is a subtree of the original input tree, starting in state
b. Now U is defined as the smallest set such that

() YuouB(Ts(X))c U, and

(2) wlty,...,tw)eU wheneverm=1,wefd, andt,,... .1, € U.

Note that B(Ts(X))< U and T,,(Y)< U each successful transformation begins
with a tree b(s)e B(Tx (X)), where b € By, and ends in a tree ¢ belonging to T(Y').

The stepwise transformation process is modelled by the relation=>(c U x U)
defined as follows. For any sy, s:€ U, s, =>s; iff there are strings s’ and s” such that
either

(i} s, =s'h(x)s" and s: = s'rs" for some production bx - r of tvpe (1) belonging
to P, or

(i) sy =shle"(x)s"andss =srif«a” ()" .wheren = Lo e To(X), bo -
r is a production of type (2) in P, and r(£«o" '(x)) is the trec in U which is
obtained when every occurrence of ¢ in r is replaced by o™ 'ix).

Let =>* be the reflexive, transitive closure of ==, Then the 1-tnary R-transformua -
tion defined by ¥ is

ra={ ) e Ty X)L t'e To(Y s, bin) =" for some b € B
If 7 is such a I-unary tree transformation and 7' is a recognizable X X-forest, then
T7={" (t,therforsomere T}

is called a L-unary R-surface forest, and the language vdi7T711s a 1-unary R-target
langiage.
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Theorem 6.1. For every m =0, all mf-recognizable languages are 1-unary R-target
languages.

Proof. Let L € £,.(X) be a language mf-recognized by an £2X-recognizer A =

(A, a, Ar). ({2 consists again of the single m-ary symbol @ and the 0-ary symbo!

Yoy Ny 2F SI3dis & J isaUNIa v

§) Let T=23,={o} and let Z ={z}. We define a 1-unary R-transducer B =
(2, Z, B, 1, X, By, P) as follows:
(a) B=A X{O, 1,2, 3} and By = Ar % {0},
(b) P consists of the following four lists of productions:
(0) All productions (xa, 0)z »x such that x € X and xa «.4f, the production
(§‘”", 0)z > § in case §” € Af, and aii productions
(a, ) »w((a@;, IME),...,(a; INE), (@is1, 2)E),

(an:. 3)(5). ce ey (ams 3)({))

such that «r“'(u,, cesm)=a,a€ A, and 1 i< m.
(1 All productions (xa, 1)z = x with x € X, and all productions

@, Do »wlla,, D&, ..., (a,, I11E)

such that (r“'(a,. R N o
(2) All productions (xa, 2)z = x with x € X| and all productions

ta, D »wtta,, L&), ..., ta, DO, (a, ., 2)E),
(a,.:.3E) ..., i@, 3NEN

such that o “'tu,. cos@m)=a and 0= i <m.
{3) The production (§*, 3)z = § and all productions

wa, 3)(7 _’(U((a}‘ 3)(5), s ey (dm) 3“5))

such that a""(a., Lo, an)=a.
for any (a,i)e B and n =0, let

Twunm)={te T X ) (a, io (z))=>*1}.

Morcover, for every n =0, let E,, denote the set of all 2X-trees ¢ such thatd{p)=n
for every leaf p of dom+.

By induction on n, one may easily verify that for all n =0 and a € A, the following
claims (C1)-(C3) are valid:

(CH rom)={teE,: ta =a, yds(t) e X*}.

1C2) ranm)={teE, ;1@ =a,yds(t)=w§ withweX "andi=m"- |w|}.

(C3) rosm={teE, 1a =a,ydy(1)=§""}.
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Any derivation of an output tree ¢ from an input tree ¢"(z) begins with the
application of one of the productions in list (0). If n =0, then the possible t's are
the letters x such that xa € Ag, i.e. x € T(A), and § in case § T(A). If n >0, then
the first production used creates the root of the output tree and m copiesof ™ '(z).
From (C1)-(C3) we see that the choice of this first production determines in which
of the m main subtrees of ¢ the rightmost letter from X will appear; it appears in
the subtree which is derived fron the copy of ¢" '(z) starting in state (a, ., 2).
The location of the division line within the subtree is determined by the subsequent
choices of productions from list (2). Because the leftmost ¢ '(z) is transformed
starting in a state (a,, 1) and the next one in state {(a., 1) or (a,. 2), the output tree
will satisfy condition S3. In fact, it should now be obvious that if we ignore the
restrictions expressed in terms of the first components of the states of , all systolic
f2X-trees of height n can be derived from o"(z), and that these conditions restrict
the output trees to those accepted by A. Hence

Ta={a L 0in =0,1e T(AIANS, (X)), hett)=n).
This implies that
T(A) f\S,,,f = Tg(Z }ra,

which means that I is a 1-unary target language.

We shall now note a few facts which can be derived by Theorem 6.1 from the
theory of tree transformations. For the first three corollaries the special nature of

our R-transformations is not needed. The first one follows from a result due o
Baker [1).

Corollary 6.2, Forany m =2, 4., is a proper sublaniily of the family of deterministic
context-sensitive languages. '

The next two corollarics follow by results due to Rounds [8]. Corollary 6.3 was
proved (for the binary case) in [3]in a direct way.

Corollary 6.3. The emptiness problem is solvable for mf-recognizable languages
(m = 2),

Corollary 6.4. The finiteness problem s selvable tor mf-recognizable languages
{m =2,

Engelfriet [6] has shown that the 1-unary target languages are exactly the FOIL.
languages (ef. [9]. for example). Hence the following result of {3} (proved there
for m =21 is also a corollary of Theorem 6.1, The properness of the inclusion
follows, for example, from the fact that the EOL language {t"v":n =0} is not
mf-recognizable for any m.
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Corollary 6.5. For anv m =2, ¥, is a proper subfamily of the family of EOL.
languages.

7. Concluding remarks

We have seen that the theory of VLSI systolic tree acceptors can be formalized
in terms of conventional tree automaton theory, and that a number of basic results
follows immediately from this formalization. Although the systolic mode of oper-
ation adds a distinctive flavour to the VLSI tree theory, one might still view it as
a new branch of the theory of tree automata, where it r .
In particular, it seems to motivate a closer study of some special tree transformations.

Our formulation of the theory is intended to reflect the intentions of the
originators of the theory (with the exception of the way inputs are handled).
However, the model itself seems still to be open to some discussion. For example,
some rather unnatural cases could be excluded by requiring that all subtrees of a
VLSI tree are also VLSI trees. But such changes would not call for any changes
in our formalism, and the balanced VLSI trees would probably remain the most
natural objects of study under any reasonable definition. One might also argue that
there is no reason to associate the theory of systolically operating networks too
exclusively with the forthcoming VLSI technology, but that it should rather be seen
as a new outgrowth of the general theory of iterative networks. '

aises some new
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