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Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The
REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of
host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at
various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In
this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently
increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The
co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent
manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear
export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1
utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated
effects of MOV10 on HIV-1 life cycle.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Human immunodeficiency virus type 1 (HIV-1) is a relatively
small virus with approximately 9000 nucleotide-genomic RNA
which contains multiple splice sites. The unspliced viral tran-
scripts in infected cells are initially retained in nucleus (Mariani
et al., 2000). However, HIV-1 has evolved a Rev protein to trans-
port HIV-1 unspliced and partially spliced transcripts from the
nucleus to the cytoplasm, enabling the transition from the early
phase of gene expression to the late phase. The efficient export of
nuclear transcripts is accomplished by binding to the Rev
Response Element (RRE) within the unspliced/partially spliced
HIV-1 mRNAs. The RRE sequence is located within env gene, which
is not present in the fully spliced mRNAs of HIV-1.

HIV-1 Rev utilizes many host proteins especially RNA helicases
to accomplish its function (Brass et al., 2008; Cullen, 2009). RNA
helicases are ubiquitous proteins that bind to RNA or ribonucleo-
protein (RNP) to participate in many aspects of RNA metabolism,
including transcription, splicing, transport, translation, and decay
(Linder et al., 2001; Tanner and Linder, 2001). Since DDX3 was
firstly reported to be an essential co-factor of the Rev/RRE-
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dependent mRNAs export complex (Yedavalli et al., 2004), several
RNA helicases have been identified as co-factors for HIV-1 repli-
cation (Fang et al., 2004; Zhou et al, 2013b). Unlike HIV-1
depending on Rev/RRE axis, some retroviruses (such as Mason-
Pfizer monkey virus) contain a constitutive transport element
(CTE) and transport mRNAs through CTE-TAP-dependent nuclear
shuttle system (Pasquinelli et al, 1997). The independence
between these two paths has been proved by some studies (Pas-
quinelli et al., 1997; Saavedra et al., 1997).

MOV10 was firstly discovered from the MOV-10 mouse strain.
The MOV strains carried Moloney murine leukemia virus (M-
MuLV) in their germ line at different chromosomal positions.
Among the MOV strains, the MOV-10 substrain was found with
inactive provirus and unable to induce viremia (Jaenisch et al.,
1981; Schnieke et al., 1983). As containing a putative DEAG (D-E-A-
G=Asp-Glu-Ala-Gly) box RNA helicase motif, MOV10 was classi-
fied to the DExD-box RNA helicase superfamily and recently
described as an Upf1-like superfamily member (Abudu et al., 2012;
Gregersen et al., 2014). The putative RNA helicase function of
MOV10 was recently confirmed and described. It was reported
that MOV10 has an ATP-dependent 5’ to 3’ directional RNA heli-
case activity (Gregersen et al., 2014). Recently, MOV10 was also
reported to be co-purified with apolipoprotein-B-mRNA-editing
enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G) and
affect the assembly and maturation of microRNA-inducing silen-
cing complex (miRISC) (Gallois-Montbrun et al., 2007; Kenny et al.,
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Fig. 1. SiRNA-mediated knockdown of endogenous MOV10 impairs HIV-1 virus production and Gag expression in 293T cells. (A and B) MOV10 depletion decreases HIV-1 virus
production and intracellular Gag expression. Human 293T cells were transfected with pNL4-3AEnv-GFP (100 ng) (A) or pNL4-3 (100 ng) (B) and MOV10-specific siRNAs
(40 nM) or control-siRNA (40 nM). The supernatants were collected at 48 h p.t. and detected by HIV-1 p24 ELISA assay (top panel). Cells were lysed and analyzed by Western
blotting with anti-MOV10, anti-p24, and anti-p-actin antibodies (bottom panel). (C and D) The effect of MOV10 overexpression on supernatant p24 and intracellular Gag
expression. Cells were transfected with pNL4-3AEnv-GFP (100 ng) (C) or pNL4-3 (100 ng) (D) and MOV10-FLAG (200 ng) or pcDNA3.1 (200 ng). Top panel, ELISA assays of
supernatant p24 expression. Bottom panel, Western blot assays of MOV10-FLAG and intracellular p55 and p24 Gag expression. The means with + S.D. were calculated (n=3).
*Statistically significant, p < 0.05.
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2014; Liu et al., 2012). Endogenous MOV10 also plays a role in
polycomb-mediated repression of the tumor suppressor INK4a (El
Messaoudi-Aubert et al., 2010).

Interestingly, MOV10 has been proved to belong to the inter-
feron antiviral system and participate in the replication of multiple
viruses (Cuevas et al., 2014; Li et al., 2011; Schoggins et al., 2011;
Song et al., 2014; Wang et al,, 2010). MOV10 is required for the
replication of hepatitis delta virus (HDV) (Haussecker et al., 2008),
whereas inhibits several retroviruses and endogenous retro-
elements (Abudu et al., 2012; Arjan-Odedra et al., 2012; Burdick
et al., 2010; Furtak et al., 2010; Goodier et al., 2012; Li et al., 2013;
Wang et al.,, 2010). Recently, MOV10 has been described as a
restrictive factor of HIV-1 (Abudu et al., 2012; Arjan-Odedra et al.,
2012; Burdick et al., 2010; Furtak et al., 2010). It has been reported
that overexpression of MOV10 suppresses the production and
infectivity of HIV-1. The restriction of HIV-1 reverse transcription
by MOV10 overexpression has been demonstrated by several
groups, although different mechanisms were proposed (Burdick
et al., 2010; Furtak et al., 2010; Goodier et al., 2012). For instance,
MOV10 could inhibit the early HIV-1 cDNA synthesis (Furtak et al.,
2010; Wang et al., 2010), or exert the inhibitory effect at the late
stage of reverse transcription (Burdick et al., 2010). However, the
effect of endogenous MOV10 on HIV-1 supernatant p24 expression
demonstrated by siRNA knockdown is not consistent with that by
MOV10 overexpression. Previous studies have indicated that, with
the depletion of endogenous MOV10 via siRNAs, the viral pro-
duction could be unaffected (Arjan-Odedra et al., 2012) or reduced
(Burdick et al.,, 2010; Furtak et al,, 2010). It seems that, under
certain circumstance, endogenous MOV10 could function as a co-
factor, rather than an antiviral factor for HIV-1 replication. These
results also indicate that the effect of MOV10 on HIV-1 replication
is complicated and needs to be further investigated.

In this report, we performed both overexpression and deple-
tion experiments side-by-side to compare the effects of MOV10 on
HIV-1 replication in the virus producer cells. We found that the
effects of overexpression or depletion of MOV10 on the expression
of HIV-1 p24 in supernatants are controversial but their effects on
intracellular HIV-1 p55 and p24 Gag expressions are consistent,
implying that MOV10 may have different effects at different steps
of HIV-1 replication in virus producer cells. Through various
approaches, we herein demonstrated that MOV10, which pre-
viously regarded as an anti-HIV-1 factor, also functions as a co-
factor of HIV-1 Rev in virus producer cells through interacting with
Rev to facilitate the nuclear export of HIV-1 mRNAs and subse-
quently increase the intracellular expression of HIV-1 late-stage
proteins.

Results
Endogenous MOV10 is required for HIV-1 production

In order to demonstrate the effect of MOV10 on HIV-1 repli-
cation in virus producer cells, we transfected MOV10-specific siR-
NAs into 293T cells to knock down the expression of endogenous
MOV10 and then examined HIV-1 p24 production from the HIV-1
molecular clone pNL4-3AEnv-GFP. We observed a significant
decrease in p24 expression in supernatant after efficient MOV10
depletion (Fig. 1A, top panel). At the same time, the intracellular
p55 and p24 Gag expressions were also consistently decreased
(Fig. 1A, bottom panel). The same results were observed with HIV-
1 wild-type proviral construct pNL4-3 in the similar experiments
(Fig. 1B). The effect of MOV10-specific siRNAs on MOV10 expres-
sion was confirmed by Western blotting (Fig. 1A and B) (Liu et al.,
2012). This phenomenon has not been discussed in previous
similar studies (Burdick et al., 2010; Furtak et al., 2010). These

results indicated that endogenous MOV10 in virus producer cells
most likely acts as a co-factor rather than an inhibitor for HIV-1
production. However, after overexpression of MOV10 in 293T cells,
we found that the p24 expression in supernatant was also reduced
significantly (Fig. 1C, top panel). This finding is consistent with
previous studies which identified MOV10 as a restricting factor for
HIV-1 replication (Abudu et al., 2012; Arjan-Odedra et al., 2012;
Burdick et al., 2010; Furtak et al., 2010; Wang et al., 2010; Zhao
et al.,, 2013). Surprisingly, we found that the cellular p55 and p24
Gag expressions were enhanced by MOVI10 overexpression
(Fig. 1C, bottom panel). The same phenotype was also recapitu-
lated with a wild-type HIV-1 proviral construct pNL4-3 (Fig. 1D) or
another deficient proviral construct pPCMVARS.2 (data not shown).
Accordingly, we hypothesized that MOV10, a multifunctional
protein, could be a helper as well as an inhibitor for HIV-1 at
different stages of viral replication.

It was reported that insufficient virus release at early stages of
HIV-1 assembly would decrease the expression of intracellular and
supernatant p24 Gag (Cano and Kalpana, 2011), while a defect in
the final stages of particle assembly would increase the accumu-
lation of the CA-SP1 Gag processing intermediate in the cytoplasm
(Cano and Kalpana, 2011; Garrus et al., 2001; Gottlinger et al.,
1991). However, it was reported that the expression of intracellular
p55 Gag cannot be increased by insufficient virus release in pre-
vious reports (Cano and Kalpana, 2011; Garrus et al., 2001; Got-
tlinger et al., 1991; Neil et al., 2008; Perez-Caballero et al., 2009).
Moreover, MOV10 overexpression had no effect on the expression
of intracellular Gag from pGag-GFP plasmid, while the Gag in
supernatant can be decreased by MOV10 overexpression (Fig. S4).
Thus, we believed that the accumulation of cellular p55 Gag could
not be caused by insufficient virus budding. The MOV10-specific
siRNAs used in our study are siRNA SMARTpool (Dharmacon)
including four siRNAs, providing advantages in both potency and
specificity. When we transfected the four siRNAs separately into
293T cells compared to siRNAs mixture (SMARTpool), we found
that MOV10-siRNA SMARTpool had higher knockdown efficiency
than any other individual siRNA (Fig. S1A). Furthermore, to
exclude the off-target effect of MOV10-specific siRNAs, we gener-
ated a MOV10 construct (rMOV10-FLAG) that is resistant to siRNA-
targeting by introducing silent mutations at the region targeted by
siRNAs. Co-transfection of rMOV10-FLAG with MOV10-specific
siRNAs could restore the expression of MOV10. Approximate
400 ng of co-transfecting rMOV10-FLAG plasmid was sufficient for
the rescue of 40 nM siRNA-mediated knockdown effect (Fig. S1B),
implying that MOV10-specific siRNAs did not have off-target effect.
Therefore, our data indicate that MOV10 simultaneously inhibits
and facilitates HIV-1 at different stages of HIV-1 replication in
virus producer cells.

MOV10 enhances the expression of Rev/RRE-dependent reporter
genes

To examine our hypothesis, we tried to identify at which stage
(s) of viral replication that MOV10 facilitates HIV-1 replication.
Recently, it has been demonstrated that MOV10 has no effect on
HIV-1 viral RNA transcription or splicing (Burdick et al., 2010; Wang
et al., 2010). Consistent with these studies, we also found that HIV-1
RNA transcription or splicing was not affected by MOV10 over-
expression (data not shown). Since it has been demonstrated that
several RNA helicases are required for the function of HIV-1 Rev
(Edgcomb et al., 2012; Fang et al., 2004; Naji et al., 2012; Yedavalli
et al., 2004; Zhou et al., 2013b), we hypothesized that MOV10, an
RNA helicase, could play a role in the function of Rev. To this end,
we employed a Rev/RRE-dependent system, pDM628 in which the
firefly luciferase coding sequence has been inserted into the intron
domain (between the splice doner site and the splice acceptor site)
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Fig. 2. MOV10 increases the expression of a Rev/RRE-dependent reporter gene. (A) Diagram of the construction of pDM628 reporter system. (B) pDM628 (10 ng), pRL-TK (5 ng)
(as a transfection normalization reporter), pcDNA3.1-Rev-HA (50 ng), and pcDNA3.1-MOV10-FLAG (or empty vector) (400 ng) were transfected into 293T cells. After 48 h,
cells were collected and lysed for luciferase activity assay. (C) Dose-dependent effect of MOV10 on the expression of reporter gene from pDM628. Human 293T cells were co-
transfected with pDM628 (10 ng), pRL-TL (5 ng), pcDNA3.1-Rev-HA (50 ng), and different amounts of pcDNA3.1-MOV10-FLAG as indicated. Then, the cells were harvested at
48 h p.t. for Western blotting assay (left panel) or luciferase activity assays (right panel). (D) The effects of AGO1/2 or UPF1 on the Rev/RRE axis. The efficiency of relative
siRNAs was detected with real-time PCR (left panel). Human 293T cells were transfected with pDM628 (10 ng) and pcDNA3.1-Rev-HA (5 ng) along with indicated siRNAs
(40 nM) or control-siRNA (40 nM). After 48 h, cell lysates were prepared and measured by luciferase activity assay (right panel). Values in C represent portions of MOV10
normalized against actin relative to control values. Data in (A-D) represent mean + S.D. (error bars). *Statistically significant, p < 0.05.

that contains the RRE structure (Fig. 2A) (Fang et al., 2004; Zhou
et al.,, 2013b). The unspliced firefly luciferase transcripts are per-
mitted to transfer to the cytoplasm only in the presence of Rev. We
transfected 293T cells with pDM628, pcDND3.1-Rev-HA, pRL-TK (a
renilla luciferase expressing vector as an input control), and the
MOV10-expressing plasmid, and then detected the effect of MOV10
on firefly luciferase (expressed by pDM628) and renilla luciferase
(expressed by pRL-TK) activities. In absence of Rev, overexpression
of MOV10 had no effect on the activity of Rev/RRE-dependent
reporter gene. But when Rev was presented, overexpression of
MOV10 significantly enhanced the activity of the Rev/RRE-depen-
dent reporter gene (Fig. 2B). A dose-dependent experiment indi-
cated that the enhancing effect on the pDM628 system was closely
related to the cellular expression level of MOV10 (Fig. 2C). These
results suggest that MOV10 plays a role in the efficient function of
the HIV-1 Rev/RRE axis.

MOV10 is a multifunctional RNA helicase and involved in many
cellular activities. The well-defined functions of MOV10 include:
(1) a component of AGO-RISC complex (Izumi et al., 2013; Liu
et al.,, 2012; Meister et al., 2005a); (2) participating in nonsense-
mediated decay (NMD) pathway (Gregersen et al, 2014). To

elucidate whether MOV10 affects the expression of Rev/RRE
reporter gene through these pathways, we deactivated these
pathways by disrupting their key factors AGO1/2 or UPF1 (Fig. 2D).
The efficiency of indicated siRNAs was verified with real-time PCR
(Fig. 2D, left panel). We found that the depletion of neither AGO1/
2 nor UPF1 affected the expression of report gene from pDM628
(Fig. 2D, right panel), implying that the MOV10-mediated regula-
tion of the Rev/RRE shuttle system is independent on the RISC
complex or UPF1.

Rev is required for the transport of HIV-1 Gag-encoding mRNAs
which contain a RRE structure (Battiste et al., 1996; Heaphy et al.,
1990; Pollard and Malim, 1998). To further study the relationship
between MOV10 and Rev, we used the pMDLg/pRRE reporter
system which encodes the HIV-1 Gag-pol sequence. Unlike the
PMDLg/pRRE reporter system which contains the RRE element and
expresses HIV-1 Gag protein in a Rev/RRE-dependent manner
(Fig. 3A, top panel), the pMDLg/pCTE reporter system contains a
Mason-Pfizer monkey virus (MPMV) constitutive transport ele-
ment (CTE) and expresses HIV-1 Gag protein in a Rev-independent
manner (Fig. 3A, bottom panel) (Pasquinelli et al., 1997). It was
therefore chosen as a control plasmid in the following
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Fig. 3. MOV10 enhances the expression of Rev/RRE- but not CTE-dependent reporter gene. (A) Diagram of the construction of pMDLg/pRRE and pMDLg/pCTE reporter gene. (B-E)
Different effects of MOV10 overexpression (B and C) or depletion (D and E) on Rev/RRE- and CTE-dependent reporter gene. 293T cells were transfected with indicated
plasmids (pMDLg/pRRE and pMDLg/pCTE: 400 ng; Rev-HA: 50 ng; MOV10 or pcDNA3.1: 200 ng) or siRNAs (40 nM). After 48 h, cell lysates were analyzed by Western
blotting. The MOV10-FLAG (B and C) or endogenous MOV10 (D and E), p55 and p24 Gag expressions were normalized to p-actin which served as an input control. Values

represent portions of p55 or p24 normalized against actin relative to control values.

experiments. The Rev/RRE-dependent intracellular expressions of
p55 and p24 Gag proteins from pMDLg/pRRE were significantly
enhanced by overexpressed MOV10 (Fig. 3B), while the expres-
sions of p55 and p24 Gag from pMDLg/pCTE were not affected by
MOV10 (Fig. 3C). To examine the effect of endogenous MOV10 on
the activity of Rev, we knocked down the expression of MOV10
using siRNAs and found that the depletion of endogenous MOV10
only decreased the Rev/RRE-dependent intracellular expression of
p55 and p24 Gag (Fig. 3D and E). All these results indicate that
MOV10 specifically regulates Rev/RRE-dependent but not CTE-
dependent gene expression.

MOV10 acts on the Rev/RRE-dependent export of mRNAs

To investigate whether the enhancement of Rev/RRE-depen-
dent gene expressions induced by MOV10 was due to the elevation
of the nuclear export of unspliced mRNAs, we co-transfected

pDM628, pcDNA3.1-Rev-HA, and pcDNA3.1-MOV10-HA into 293T
cells, and then fractionated the cells to measure the nuclear and
cytoplastic distribution of pDM628 mRNAs. We found that MOV10
did not affect the whole-cell mRNAs levels of the reporter gene
(Fig. 4A and B, right panel). However, the cytoplasmic/nuclear ratio
of the reporter mRNA was significantly elevated by MOV10 over-
expression (Fig. 4A) and decreased after depletion of endogenous
MOV10 (Fig. 4B). The similar effects were also observed with the
pMDLg/pRRE system (Fig. 4C and D). As a control, MOV10 had no
effect on the whole-cell mRNAs and the cytoplasmic mRNAs dis-
tribution of pMDLg/pCTE system (Fig. 4E and F). The cytoplasmic
and nuclear fractionations were separated efficiently and con-
firmed with Western blotting assay (Fig. S2) (Zhou et al., 2013b).
Collectively, these results demonstrate that MOV10 specifically
facilitates the export of Rev/RRE-dependent mRNAs from the
nucleus to the cytoplasm.
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HIV-1 mRNAs can be classified into three classes: unspliced,
partially spliced, and fully spliced mRNAs (Purcell and Martin,
1993; Schwartz et al., 1990a). The first two classes of viral mRNAs
which contain introns are efficiently exported from the nucleus to
the cytoplasm through the Rev/RRE-dependent shuttle system. To
further examine the effect of MOV10 on HIV-1 mRNAs nuclear
export, the cells transfected with the env-defective HIV-1 clone
pNL4-3AEnv-GFP and MOV10-FLAG were fractionated into
nucleus and cytoplasm and then the distributions of viral tran-
scripts in each fraction were measured. As shown in Fig. 5A, the
Rev/RRE-dependent cytoplasmic unspliced gag-pol mRNAs were
significantly increased by MOV10 overexpression, while the dis-
tribution of fully spliced tat mRNAs remained unchanged (Fig. 5B).
Accordingly, after depletion of endogenous MOV10, the distribu-
tion of gag-pol mRNAs in the cytoplasm was significantly
decreased (Fig. 5C), while the distribution of tat transcripts from
pNL4-3AEnv-GFP were not affected (Fig. 5D). These results sug-
gest that MOV10 is an important component for the nuclear export
system of HIV-1 unspliced and partially spliced transcripts.

HIV-1 late proteins are encoded by unspliced or partially
spliced viral transcripts. The unspliced viral mRNAs encode HIV-1
Gag and partially spliced mRNAs encode other four viral late
proteins including Vpu and Vif (Garrett et al., 1991; Schwartz et al.,
1990b). All these mRNAs contain an RRE structure and are trans-
ported from the nucleus to the cytoplasm by the Rev/RRE shuttle
system (Garrett et al., 1991; Malim et al., 1989). To further confirm

whether partially spliced viral transcripts could also be regulated
by MOV10, we took HIV-1 Vpu and Vif as examples to address this
issue. Interestingly, MOV10 increased the expression of Vpu and
Vif from HIV-1 proviral construct pNL4-3AEnv-GFP in a dose-
dependent manner (Fig. 5E and Fig. S3A). The similar experiments
were also performed in the presence of MOV10-specific siRNAs and
a consistent result was observed (Fig. 5F and Fig. S3B). In addition,
neither MOV10 depletion nor overexpression affected the
expression of HIV-1 early genes, Tat and Rev, which are encoded
by fully spliced mRNAs (Fig. S3C-F). Taken together, these data
indicate that MOV10 enhances the expression of HIV-1 late genes
in virus producer cells.

MOV10 interacts with HIV-1 Rev

Ectopic expressed MOV10 was reported to co-localize with
AGO1/AGO2 in processing bodies (P-bodies) (Gallois-Montbrun
et al,, 2007; Izumi et al., 2013; Kenny et al., 2014; Meister et al.,
2005b). However, several groups found that endogenous MOV10
presents in the nucleus (El Messaoudi-Aubert et al., 2010; Nakano
et al., 2009; Sievers et al., 2012; Sim et al., 2012). Based on these
reports, we speculated that the cellular MOV10 could distribute in
both nucleus and cytoplasm. Moreover, HIV-1 Rev has been
identified to interact with many host factors including MOV10
through systematical affinity tagging and purification mass spec-
trometry method (Jager et al., 2012a). To examine the interaction
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Fig. 5. MOV10 facilitates the export of HIV-1 unspliced mRNAs but not fully spliced transcripts. (A-D) Different effects of MOV10 on the exports of HIV-1 unspliced mRNA and
fully spliced mRNA. (A and B) 293T cells were co-transfected with pNL4-3AEnv-GFP (100 ng) and pcDNA3.1-MOV10-FLAG (200 ng) (pcDNA3.1 as negative control). Cells were
collected at 48 h p.t. for fractionation of cytoplasmic or nuclear components and then RNA extraction. (C and D) Cells transfected with indicated siRNAs and plasmids were
collected and analyzed as above. Real-time PCR was performed using primers specific to gag-pol (A and C) or tat (B and D) mRNA. (E and F) The effect of MOV10 on the
expression of HIV-1 Vpu from pNL4-3AEnv-GFP. 293T cells were transfected with pNL4-3AEnv-GFP and different amounts of pcDNA3.1-MOV10-FLAG (E) or MOV10-specific
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Western blotting. (B and C) Co-immunoprecipitation analysis of HIV-1 Rev and ectopic MOV10. Human 293T cells were transfected with a plasmid expressing MOV10-FLAG
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between MOV10 and Rev, 293T cells were transfected with
pcDNA3.1-Rev-HA or pcDNA3.1-GFP-HA. After immunoprecipi-
tated with anti-HA agarose beads, immunoprecipitates were ana-
lyzed by immunoblotting with anti-MOV10 antibody. MOV10
interacted with Rev-HA but not with negative control, GPF-HA
(Fig. 6A). This interaction is RNA independent, since the levels of
MOV10 binding to Rev were not affected by RNase mixture
treatment (Fig. 6A, third lane of IP). In addition, ectopic expressed
MOV10 could also be co-immunoprecipitated by Rev-HA (Fig. 6B
second lane of IP) and Rev could interact with MOV10-HA in the
immunoprecipitation assay (Fig. 6C, second lane of IP). These data
suggest that HIV-1 Rev binds to MOV10 in an RNA-independent
manner.

The helicase activity of MOV10 is required for its enhancement
activity on Rev function

The DEAD (D-E-A-D=Asp-Glu-Ala-Asp) box motif is very
important for the function of the DEAD-box RNA helicase family,
especially for ATP binding and hydrolysis (Chen et al., 2013; Cordin
et al, 2006). MOV10 is a DEAG-box RNA helicase containing a
DEAG-box motif within the second helicase domain (Gregersen
et al., 2014; Wang et al., 2010). The DEAG-box mutant was recently
reported to impair the helicase activity of MOV10, implying that it
is required for the helicase activity of MOV10 (Gregersen et al.,
2014). To evaluate whether the DEAG-box motif is required for the
interaction between MOV10 and HIV-1 Rev, a point mutation was
introduced in the DEAG-box motif of MOV10 (from DEAG to
DQAG) as described previously (Askjaer et al., 2000; Furtak et al.,
2010). Human 293T cells were then co-transfected with pcDNA3.1-
Rev-HA and pcDNA3.1-MOV10-FLAG or pcDNA3.1-MOV10-EQ-
FLAG. After co-purification of Rev-HA, it revealed that Rev-HA
binds to wild-type MOV10 and MOV10-EQ mutant at similar levels
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(Fig. 7A). These results suggest that the DEAG-box motif of MOV10
is not involved in the binding between MOV10 and Rev. Interest-
ingly, when analyzing the effect of MOV10-EQ mutant on lucifer-
ase activity of the pDM628 system, we found that the MOV10-EQ
mutant inhibited the luciferase expression in a dose dependent
manner in the presence of Rev (Fig. 7B). Further, we found that
both the intracellular Gag and the supernatant p24 from pNL4-
3AEnv-GFP were inhibited by MOV10-EQ mutant in a dose-
dependent way (Fig. 7C). These results indicate that MOV10-EQ
mutant has dominant-negative activity in Rev/RRE axis.

The helicase activity of MOV10 is not required for its inhibitory effect
on HIV-1 virus budding

So far, we still need to verify whether the effect of MOV10 on
Gag expression was the result of post-translation regulation. To
this end, we used pGag-GFP in our experiments, which was con-
structed by a Rev/RRE-independent HIV-1 Gag inserted into the
multiple clone sites of pEGFP-N1 vector (Hermida-Matsumoto and
Resh, 2000). We found that the intracellular expression of Gag-GFP
from pGag-GFP or the expression of GFP from pEGFP-N1 was not
affected by overexpression MOV10 or MOV10-specific siRNAs (data
not shown), which suggested that MOV10 does not participate in
the regulation of cellular HIV-1 Gag post-translation.

The studies above have demonstrated that both endogenous and
exogenous MOV10 function as co-factors for HIV-1 Rev so that the
expression of intracellular Gag is upregulated by overexpression of
MOV10 or reduced by MOV10-specific siRNAs. However, the incon-
sistent supernatant p24 levels in overexpression and depletion
experiments remain to be further clarified (Burdick et al., 2010;
Furtak et al., 2010). We argued that MOV10 could exert an inhibitory
effect on HIV-1 budding albeit it has an enhancement effect on the
function of HIV-1 Rev. To examine our hypothesis, we used two
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Fig. 7. The DEAG-box motif mutant of MOV10 fails to facilitate the HIV-1 Rev/RRE axis. (A) HIV-1 Rev co-immunoprecipitated with MOV10-EQ mutant. Lysates from cells
transfected with 2 pug of pcDNA3.1-GFP-HA (lane 1, 3) or pcDNA3.1-Rev-HA (lane 2, 4) together with 1 pg of pcDNA3.1-MOV10-FLAG (lane 1, 2) or pcDNA3.1-MOV10-EQ-FLAG
(lane 3, 4) were subjected to co-immunoprecipitation analysis using anti-HA agarose beads and detected by Western blotting. (B) The MOV10-EQ mutant inhibits the
luciferase expression of pDM628 system. Human 293T cells were transfected with pDM628 (10 ng), pRL-TK (5 ng), and pcDNA3.1-Rev-HA (50 ng) together with different
amounts of MOV10-EQ mutant and lysed and analyzed with dual-luciferase reporter system at 48 h p.t. (C) Dose-dependent effect of MOV10-EQ mutant on the expression of
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collected for Western blotting assay (bottom panel) and the supernatants were analyzed with HIV-1 p24 ELISA kit (top panel). Data are representative of at least three

independent experiments.
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systems, the pMDLg/pCTE system and the pGag-GFP plasmid,
which express Gag protein independent of Rev/RRE axis, in our
following experiments. We found that the supernatant p24 level
from pMDLg/pCTE was decreased after overexpression of MOV10
(Fig. S4A); however, was not affected after depletion of MOV10
(Fig. S4B). As shown in Fig. 3C and E, the intracellular Gag expression
from pMDLg/pCTE was also not affected by MOV10. The same phe-
nomenon was observed using pGag-GFP plasmid (Fig. S4C and D,
upper panels), while the intracellular expressions of Gag remained
unchanged (Fig. S4C and D, lower panels). These results suggest that
MOV10 exerts an inhibitory effect on HIV-1 budding, while it also
enhances the function of HIV-1 Rev.

To further analyze the role of MOV10 RNA helicase activity in
HIV-1 budding, the MOV10 EQ-mutant plasmid together with
pGag-GFP was transfected into 293T cells. After collecting the
supernatant for VLP assay, we found that the mutant decreased
the virus budding the same as wild-type MOV10 did (Fig. S4C),
indicating that the DEAG-box of MOV10 is not involved in the
inhibition of HIV-1 budding. This data further demonstrate that
MOV10 plays differential roles in Rev/RRE axis and HIV-1 budding
with different functional domains.

Discussion

Since anti-HIV-1 protein APOBEC3G (A3G) was discovered to be
co-purified with MOV10 (Gallois-Montbrun et al.,, 2007; Izumi
et al., 2013; Kozak et al., 2006; Liu et al., 2012), many groups have
focused on the relationship between MOV10 and HIV-1. Previous
studies have reported MOV10 as an anti-HIV-1 factor, because
overexpression of MOV10 can inhibit HIV-1 reverse transcription
and p24 production (Abudu et al., 2012; Arjan-Odedra et al., 2012;
Burdick et al., 2010; Furtak et al., 2010; Izumi et al., 2013; Wang
et al., 2010). In line with previous reports, we observed a sig-
nificant decrease in supernatant p24 level after MOV10 over-
expression. Interestingly, we observed an inconsistent effect on
p24 production when endogenous MOV10 was knocked down,
which has been described by several groups (Burdick et al., 2010;
Furtak et al., 2010), but the underlying mechanism(s) is unclear. In
order to solve this puzzle, it is important to find the HIV-1 repli-
cation step(s), at which both overexpressed and endogenous
MOV10 show a consistent effect. We have demonstrated that the
intracellular Gag expression and the Rev/RRE-dependent export of
RNAs were consistently enhanced by MOV10, with both over-
expression and depletion means (Figs. 1-3). It was reported that
MOV10 could be packaged into HIV-1 virions through binding to
the nucleocapsid (NC) region of Gag (Abudu et al., 2012; Wang
et al., 2010), implying that the inhibitory effect of MOV10 over-
expression on HIV-1 viral particles may occur at the stage of virus
budding. It has been reported previously that MOV10 over-
expression reduces HIV-1 p24 expression in supernatant (Arjan-
Odedra et al., 2012; Burdick et al., 2010; Furtak et al., 2010),
whereas HIV-1 supernatant p24 expression was inconsistently
inhibited after MOV10 depleted (Burdick et al., 2010; Furtak et al.,
2010). In our report, we tried to clarify the mechanism of this
controversial phenomenon. Through pMDLg/pCTE and the widely
used pGag-GFP system in HIV-1 budding study (Barr et al., 2008;
Garrus et al, 2001), we confirmed that HIV-1 budding was
inhibited by MOV10 overexpression (Fig. S4), whereas not affected
by the depletion of endogenous MOV10. These results have
explained the discordant expressions of HIV-1 supernatant p24
between MOV10 overexpression and depletion. It is possible that
HIV-1 has already evolved to tolerate the moderate inhibitory
effects by endogenous MOV10 which also benefits to the Rev
activity. But when the expression of MOV10 exceeds far over its
regular physiological level, the inhibitory effects of MOV10 on HIV-

1 replication will become overwhelming, and then HIV-1 replica-
tion will be significantly suppressed.

In our study, neither overexpression nor depletion of MOV10
affects the transcription of HIV-1 mRNAs, splicing, or post-transla-
tion, which is consistent with the findings of other groups (Izumi
et al., 2013; Wang et al.,, 2010). In addition, the depletion of MOV 10-
associated proteins AGO1/2 or UPF1, the important components of
ribonucleoprotein complexes, had no effect on the Rev/RRE axis,
indicating that the enhancing effect of MOV10 on the Rev/RRE axis
is independent on the miRISC or the NMD-related ribonuleoprotein
complexes. To determine the relationship between MOV10 and
HIV-1 Rev, two simple Rev/RRE-dependent reporter systems
(pDM628 and pMDLg/pRRE) were used in our study. These two
kinds of reporter systems have been used and described by our
group (Zhou et al., 2013b), and similar systems have also been
applied previously to prove DDX3 as a co-factor for HIV-1 Rev
(Yedavalli et al., 2004). Therefore, the reporter systems used in our
study are well defined and useful in HIV-1 Rev research. HIV-1 Rev
transports viral mRNAs from the nucleus to the cytoplasm by
directly binding to nuclear export receptor CRM1, which mediates
the nuclear export of cellular proteins or RNPs bearing a leucine-
rich nuclear export signal (NES) (Askjaer et al., 1998; Ossareh-Nazari
et al., 1997). It was reported that the export of Ro60, a nuclear-
cytoplasmic shuttling protein which was co-purified with MOV10 in
a complex, is dependent on CRM1, indicating that the export of
MOV10 may also dependent on CRM1 (Gallois-Montbrun et al.,
2007; Sim et al, 2012). In addition, human Staufen-2, a newly
discovered HIV-1 Rev co-factor (Banerjee et al., 2014), was also
found to interact with MOV10 by affinity purification assay (Miki
et al,, 2011). The Rev/RRE/CRM1 pathway (such as pMDLg/pRRE)
uses a nucleo-cytoplasmic shuttle pathway which transports pro-
teins, small nuclear RNAs, and rRNAs from the nucleus into the
cytoplasm (Fukuda et al., 1997; Neville et al., 1997), whereas the CTE
pathway (such as pMDLg/pCTE) utilizes host protein TAP, which is
involved in cellular mRNAs transport (Bear et al., 1999; Stutz et al,,
2000). Previous studies have demonstrated that the Rev/RRE/CRM1
pathway is not involved the export of fully spliced HIV-1 mRNA and
cellular mRNAs (Clouse et al., 2001; Pasquinelli et al., 1997; Van
Baalen et al., 1998; Yedavalli et al., 2004). All of these lines of evi-
dence strongly suggest that MOV10 participates in Rev/RRE/CRM1
pathway specifically.

MOV10 is a multifunctional RNA helicase. However, the func-
tion of the helicase domains of MOV10 has rarely been described
(Furtak et al., 2010; Gregersen et al., 2014). In our study, we sur-
prisingly found that the DEAG-box motif of MOV10, which belongs
to the second helicase domain and is required for the helicase
activity of MOV10 (Gregersen et al., 2014), is an indispensable
motif for MOV10/Rev/RRE-dependent viral mRNAs nuclear export.
We found that the MOV10-EQ mutant can effectively interact with
Rev and is also an effective suppressor of the expression of intra-
cellular Gag, which makes it the firstly discovered dominant-
negative form of MOV10. This potent inhibitory effect further
confirms that endogenous MOV10 acts as a co-factor for HIV-1
replication. More importantly, the different effects of MOV10-EQ
mutant on two steps of HIV-1 replication confirmed that MOV10
performed various functions at various steps of HIV-1 replication
(Figs. 7 and S4).

Although the regulation of MOV10 by signaling pathways is
rarely reported, it has been shown that type I interferon (IFN) can
regulate the expression of MOV10 (Cuevas et al., 2014; Schoggins
et al,, 2011). Interferon signaling pathways provide an early innate
immune response to invading pathogens, such as HIV-1 (Mogen-
sen et al, 2010; Yan and Chen, 2012). Conversely, HIV-1 has
evolved to resist the innate immune response, including interferon
signaling, to establish a productive infection (Cullen, 2009; Her-
beuval and Shearer, 2007; Jager et al., 2012b; Sheehy et al., 2003).
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For instance, adenosine deaminase acting on RNA-1 (ADAR1),
induced by IFN, strongly enhances the overall accumulation of
HIV-1 proteins in virus producer cells (Doria et al., 2009; Phu-
phuakrat et al., 2008). This is one of the reasons why the treatment
of HIV-1 infected patients with IFN alone always gets poor out-
comes (Herbeuval and Shearer, 2007). IFN can stimulate the
expression of MOV10 to reduce HIV-1 production (Schoggins et al.,
2011). Nevertheless, in virus producer cells, HIV-1 Rev hijacks
MOV10 to facilitate the export of unspliced/partially spliced HIV-1
transcripts and increases the late HIV-1 products such as Vpu
(Fig. 5E and F), one important accessory viral protein, to counteract
another IFN-stimulated anti-HIV-1 host factor Tetherin. Collec-
tively, the anti-HIV-1 activity of MOV10 and the enhancement
effect of MOV10 on HIV-1 mRNAs export is a battle between host
and virus, which is complicated and worth being further studied.

Conclusion

In summary, our study has identified a novel function of
MOV10 that it acts as a co-factor of Rev, facilitating HIV-1 repli-
cation at viral transcripts export stage in virus producer cells.

Materials and methods
Plasmids construction and siRNAs synthesis

The MOV10-FLAG- and MOV10-HA- expressing plasmids were
constructed as described previously (Liu et al., 2012). The siRNA-
resistant MOV10 expressing plasmid was generated by mutating the
MOV10 siRNAs target sequences in the MOV10-FLAG expressing
plasmid with multiple silent mutations in MOV10 (sites of muta-
tions are underlined: 5-GGGGGCACACAATCCGTGA-3'; 5'-
GCTCCGACATTTCCAAGCA-3’; 5-GCAAGAGTATCGCGTGTTG-3"; 5'-
CGGGAAAACCGTGACCTTG-3"). The MOV10 DEAG-box mutant
expressing plasmid, pcDNA3.1-MOV10-EQ-FLAG was generated via
a PCR-based mutagenesis method from pcDNA3.1-MOV10-FLAG by
introducing a point mutation (E — Q) within the DEAG-box motif of
MOV10 (Furtak et al, 2010). HIV-1 proviral constructs (pNL4-3,
pNL4-3-AEnv-GFP, and pCMVARS.2), reporter vectors (pDM628,
pMDLg/pRRE, and pMDLg/pCTE), pcDNA3.1-GFP-HA, and pcDNA3.1-
Rev-HA have been described in our previous reports (Huang et al.,
2007; Zhou et al., 2013a). Renilla luciferase expressing vector, pRL-
TK, was obtained from Promega and used as an input control for
transfection. The pGag-GFP plasmid, which contains inhibitory
sequence-mutated HIV-1 gag fused to gfp, was obtained from AIDS
Reference Reagent Program of NIH (Hermida-Matsumoto and Resh,
2000).

The siGENOME SMART pool small interfering RNAs (siRNAs)
against MOV10 or AGO1/2 and siRNAs for negative control were
designed by Dharmacon and the target sequences for siRNAs were
described previously (Liu et al., 2012; Yin et al., 2015; Zhang et al.,
2014b; Zhou et al,, 2013a). UPF1-specific siRNA was designed as
previous report (Kim et al,, 2005). All siRNAs were synthesized
from Ribobio (China).

Cell culture and transfection

Human 293T cells were obtained from ATCC (American Type
Culture Collection) and cultured in Dulbecco's modified Eagle's
medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine
serum (FBS) (Invitrogen) and 1% penicillin-streptomycin (Invitrogen)
at 37 °C with 5% CO,. The cells were transfected with the indicated
plasmids or siRNAs using Lipofectamine 2000 (Invitrogen). The

procedures described by the manufacturer's instructions were
followed.

HIV-1 p24 ELISA

Supernatant in a 24-well-plate was collected at 48 h post-
transfection (p.t.) and cells from three wells were collected toge-
ther for Western blotting. The supernatant p24 expression was
determined by ELISA assay. HIV-1 p24 ELISA assays were per-
formed with HIV-1 p24 ELISA kit according to the instructions of
manufacturer (Clontech).

Dual-luciferase reporter assay

Human 293T cells in a 24-well-plate were transfected with
pDM628, Rev (or not), pRL-TK together with MOV10 expressing
plasmid or MOV10-specific siRNAs or corresponding control plas-
mid or siRNA. The cells were collected at 48 h after transfection
and lysed for dual-luciferase reporter assay. Firefly luciferase and
renilla luciferase activities were analyzed with Dual Luciferase
Reporter Assay Kit (Promega) as described previously (Zhang et al.,
2014a).

Cell fractionation and real-time PCR

The cytoplasmic and nuclear RNA fractions were isolated using
the PARIS kit (Ambion). The isolated RNAs were treated with
DNase (Promega) by incubated in 1xRQ1 RNase-Free DNase
Reaction buffer, 1 pl RQ1 RNase-Free DNase and 7 pl Nuclease-free
water at 37 °C for 30 min. The DNase was inactivated by incubated
with 1 pl RQ1 DNase Stop Solution at 65 °C for 10 min and then
the treated RNAs were used to synthesize cDNA with PrimeScript
RT reagent Kit (Takara). Real-time PCR was performed using SYBR
Green methods as previously described with a CFX96 real-Time
System (Bio-Rad) (Yin et al., 2015). The primers used were listed in
the additional files. The primers for detection of unspliced and
spliced mRNAs from pDM628, gag-pol, and tat have been descri-
bed previously (Zhou et al., 2013a). All primers were synthesized
by Invitrogen and human B-actin and/or GAPDH mRNA was
measured as an internal control.

Co-immunoprecipitation and Western blotting

Co-immunoprecipitation and Western blotting assays were
performed as described previously (Liu et al., 2012). Briefly, cells
were lysed in lysis buffer (150 mM NaCl, 50 mM Tris-HCI [pH 7.5],
1 mM EDTA, 1% Triton X-100, 0.5% NP-40, plus PMSF and protease
inhibitor cocktail [Sigma]) for 30 min on ice. The cell lysates were
then clarified and mixed with anti-HA agarose beads (Sigma) for
4h at 4°C, followed by washing four times with ice-cold lysis
buffer and eluting in protein gel loading buffer. Where indicated,
RNase mixture (DNase-free, Roche) (20 pg/ml) was added to the
lysates and incubated at 4 °C for 1 h prior to IP. The immunopre-
cipitated samples were then analyzed by SDS-PAGE and detected
by Western blotting. Different primary antibodies were used in the
Western blot assay: anti-HA antibody (mouse monoclonal, Cov-
ance); anti-FLAG antibody (rabbit polyclonal, MBL); anti-p-actin
antibody (mouse monoclonal, BD); anti-GAPDH antibody (rabbit
polyclonal, MBL); anti-MOV10 antibody (rabbit polyclonal,
Abcam); anti-Vpu antibody (obtained from NIH AIDS Research);
andti-Vif antibody (rabbit polyclonal, Abcam); anti-Tat antibody
(mouse polyclonal antibodies made by our lab); anti-Rev antibody
(mouse monoclonal, Santa cruz); anti-GFP antibody (mouse
monoclonal, Santa cruz); anti-HIV-1 p24 Gag and anti-TBP anti-
bodies (rabbit polyclonal antibodies made by our lab) (Zhou et al.,
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2013b). Quantity One program (Biorad) was applied to quantify
the Western blotting results.
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