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Abstracr: A cubic spline method for the numerical solution of a two-point boundary value problem posed on an 
infinite interval involving a second order linear differential equation is described. By reducing the infinite interval to a 
finite interval which is large and imposing appropriate asymptotic boundary condition at the far end. the resulting 
boundary value problem is treated by using the cubic spline approximation. The tridiagonal system resulting from the 
spline approximation is efficiently solved by the method of sweeps. The stability of the method is analysed and the 
theory is illustrated by solving test examples. 
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Introduction 

The development of improved methods for solving two-point boundary value problems of 
practical significance is of great importance in Science and Engineering. In many cases, the 
domain of the governing equations of these problems is infinite or semi-infinite so that the 
special treatment is required for these so-called infinite interval problems. These problems occur 
very frequently and are of great importance in areas such as fluid dynamics, aerodynamics, 
quantum mechanics and electronics, etc. A few notable examples for these problems are Von 
Karman flows [ll, 121, a combined forced and free convection flow over a horizontal plate [14], 
an eigen value problem for the Schrodinger equation [lo] and several others. Often in most cases, 
the analytical solutions for these problems are not readily attainable and thus the problem is 
brought to the problem of finding efficient computational algorithms for obtaining numerical 
solution. 

Ever since the pioneering work by Ahlberg et al. [l]. there has been a great deal of 
development in the theory of spline functions and their applications to several practical 
problems. Of these, the cubic splines have attained a prime place and have attracted the attention 
of many to solve, in particular, boundary value problems. This is possibly because these cubic 
splines are efficient and simple to use and possess important properties that are required of a 
good approximation. To cite a few, Bickley [5] has considered the use of cubic splines for solving 
linear two-point boundary value problems, which leads to the solution of a set of linear equations 
whose coefficient matrix is of upper Hessenberg form. The cubic spline method suggested by 
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Bickley has also been examined by Fyfe [8] in combination with deferred correction to solve 
two-point boundary problems. Albasiny and Hoskins [2] have obtained spline solutions by 
solving a set of equations with a tri-diagonal matrix of coefficients. In another paper by the same 
authors [3], the cubic spline approximation has been applied to an integral equation reformula- 
tion of the original differential equation. which has been shown to have smaller truncation error 
than would be obtained by direct use of the cubic spline on the differential equation itself. Daniel 
[6] has proposed the use of acceleration with collocation for various types of spline approxima- 
tion appropriate for two-point boundary value problems for both second order equations or first 
order systems. There are several other papers on this topic which we are unable to quote here due 
to lack of space, but little seems to have been done in using cubic splines to solve boundary value 
problems over infinite intervals. 

The purpose of the present paper is to report the cubic spline procedure for numerically 
solving two-point boundary value problems over infinite intervals. We restrict our analysis here 
to the solution of linear two-point boundary value problems. Unlike the familiar three point 
finite difference discretization, second order accuracy is maintained even with a nonuniform 
mesh and relatively large changes in the grid spacing. Also spline approximation described here 
leads to tridiagonal systems. In the next section, the asymptotic boundary condition for the 
infinite interval problem is derived. In Section 3, the cubic spline formulation and the procedure 
is discussed with derivative boundary condition. In Section 4, the method of sweeps is given to 
improve upon the efficiency and computer time, to solve the tridiagonal system. The stability of 
the method is discussed in Section 5. Numerical examples and results are shown in Section 6 and 
discussion is drawn in Section 7. 

2. Asymptotic boundary condition 

We consider the linear two point boundary value problems of the form 

&Y(x) =y” +p(x)u’ + cl(X)Y =f(x), 

y(a) = a, 

y(m)=P, or 

Lt y(x)=P 
x-Q) 

(2.1) 

(2.2) 

(2.3) 

where the functions p(x), q(x) and f(x) are continuous and q(x) < 0. 
In order to find the appropriate asymptotic boundary condition for the equation (2.1), rewrite 

(2.1) as a first order system in the form: Let y(x) = u(x), y’(x) = u’(x) = u(x), we have 

u’(x) = u(x), (2.4) 

u’(x) +&+J(x) + q(x)+) =f(x), (2.5) 

and correspondingly (2.2) and (2.3) become 

M( Cz) = CY, (2.6) 

Lt u(x)=u,=p. (2.7) 
.X+00 

Letting U= (u,u)‘, (t denotes transpose), we can write the first order system (2.4)-(2.5) in the 
matrix vector form 

u’=A(x)U+ b(x) = F(x, rJ) (2.8) 
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where 

A(x)= -q(x) _;(x) ’ 
[ 

0 

1 
fe)= ;(x) . I 1 

A general theory for linear and nonlinear systems of the form (2.8) on semi infinite interval has 
been developed by Lentini and Keller [lo]. We assume that 

(i) lim,,, A(x) = A, a constant matrix. 
(ii) lim ,,,dA(x)/dx = 0, 
(iii) A(x) is piecewise continuously differentiable on (a, cc), and 

(iv) u, is required to be the root of lim, _ ,F( x, u) = 0. 
We also assume that A is in the canonical form such that A = EJE-’ # 0 ( a zero matrix) and 

J has the block diagonal form J = diag( J+, Jo, J-) where J+ contains eigenvalues of A with 

positive real part, Jo the eigenvalues of A with zero real part and J- the eigenvalues of A with a 
negative real part. The main idea is to find all bounded solutions and to eliminate the 
contribution from the unbounded solution of the equation (2.8). The behaviour at infinity of the 
solution of the system (2.8) is essentially given by the eigenvalues of the matrix. 

A,= Lt A(X)=[; ;] 
x-00 

where K = Lt, _ m - q(x) and L = Lt,,, -p(x). 
Suppose the matrix A, has the eigen value X, and X,, then depending upon Re X,, 

Re X, >, 0, we find the linearly independent solution which decay exponentially at infinity and 
the linearly independent solutions which are unbounded as x + cc. Since we need only one 
condition at the far end we expect only one eigen value with a positive real part and say, this 
eigen value is X,. We introduce the projection matrix P,,, of the form P,,, = [l, 01. (If the 
eigenvalue X, is with a positive real part, we have P,,, = [0, 11). 

Let E be a matrix of eigen vectors of A,, 

4, El2 
E= E 

[ 1 21 E22 * 

By calculating E -’ for which E-‘A,E = diag(X,, X2) we write the asymptotic boundary 
condition as 

lim P,,,E-‘F(x, u) = 0. 
x-m 

Equation (2.9) yields the condition at x = N where N is chosen by 
for which the computed solution approximates the actual solution. 

3. Cubic spline formulation 

In order to solve the finite interval problem obtained above, we 
combined with the method of sweeps. For the sake of brevity, we 
boundary condition (2.9) is of the form 

“oY(-CJ + Pou’(xco) = K 

(2.9) 

taking different values of X 

give cubic spline procedure 
assume that the asymptotic 

(3.1) 
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for x, = N, N large but finite. where CQ. & and K are known constants such that a&., 2 0 and 
] (Y,, ] = ] &I # 0. This guarantees the unique solution of the two-point boundary value problem 
given by (2.1), (2.2) and (3.1) (cf. Keller [9]). 

We consider a mesh with grid points a = x,, < X, . . . x, = N with h = X, - x,_, > 0. The cubic 
spline S(x) interpolating to the function v(x) at the grid points is given in general by the 
equation 

S(X)=M,_,(X,-X)~/~~+M,(~-X,_,)~/~~ 

+(~;_,-~h2~,-,)(xj-x)/h+(I;-~h2M,)(x-x,_,)/h 

where M, = Y/(x;) and y, =_v(x,). 

(3.2) 

Ahlberg et al. [l] have shown that if the function J(X) E C4[a, N], then the spline function 
S(x) approximates J(X) at all points in [a, N] to fourth order in h. The unknown derivatives M, 
are related by enforcing the continuity condition on S’(X). 

Differentiating (3.2). we get 

S’(x)=M,_,[-+(x;-x)*,‘h+ih] +M,[+(x-x,_,)2/h-~h] +(y,-y,_,)/h. (3.3) 

From (3.3) we have the one sided limits of the derivative as 

S’(X,+)= -+hM;--:hM,+,+(y,+,-y;)/h. i=O, 1,2 ,..., n-l, (3.4) 

and 

.S’(x;)=~hM,+~hM,_,+(y,-y,_,)/h, i=l,2 . . . . . n. (3.5) 

The continuity condition S’( x,?) = S’( x,-) yields the relation 

~hM;_,+~hM;+~hM;+,=(yi+l-2y;+y,_,)/h, i=l,2 ,..., n-l. (3.6) 

We now consider collocation of equation (2.1) at the equispaced grid points xi = x0 +jh 

(j=O, 1 1..., n) with x0 = a, x, = N using as approximating function the cubic spline S(x) 
which interpolates to the function v(x) at these points. Using an approach similar to one in [2], 
the following tridiagonal system of equations is obtained: 

B,Y;+ 1 -C;_y,+D,y,_,=E;, i=l,2 ,..., n-l (3.7) 

where 

B,=a,(l +fhpi+r +ih24i+r), (3.8) 

C; = a,(1 + fhpi+,) +b,(l - +hp,_,) - $h2q;di, (3.9) 

D,=6,(1 -fhp,_, +~h24i-1), (3.10) 

E, = ;h2(6,f;_, + 4d,f, + Q+,)r (3.11) 

a, = 1 - fhp,_, + +hpi - &h’p,p,_,, (3.12) 

b, = 1 - fhp, + :hp,+, - &h2p,pi+,, (3.13) 

d,=l -&h’pi-,pi+1 +Sh(Pl+,-Pi-,)* (3.14) 
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To solve the tridiagonal system given by (3.7) we make use of the method of sweeps. We seek 
a difference relation of the form 

YiCl = H$y+T,, i=o, 1,2 ,..., n-1 

where W, and T correspond to W( xi) and r( x,) and are to be determined. 
By using (4.1) in (3.7), we have 

(4.1) 

(B.T - E) 
’ = (c; -D;,K) ‘-I + cc,‘-’ B,<) . (4.2) 

But from (4.1) we have 

r, = y_,q_, + _r-,. (4.3) 

From (4.2) and (4.3) we get 

4-1 = Q/(C, - B;y), (4.4) 

T 1-1 = (B;T-Et)/(C;-Biy)* (4.5) 

To solve these recurrence relations for y and T (i = n - 2,. . . , 0) we need to know the values of 
W n-, and T,_,. 

From (3.1) for x = nh, we have 

“OY, + BOY, = K. (4.6) 

Equation (4.6) can be approximated at x = x, by using the result 

S’(x,)=:hM,+;hM,_, +(I:,-_&J/h (4.7) 

where from [2], we have 

and 

M,= (l/b,-,)[(A,- fhp,-,f,-~hp,f,-,)-y,(q,-)hp,-,q, 

+p,/h-f(p,p,-,))+Y~-,(p,/h-:(P,-,p,)+~hp,q,-,)] (4.8) 

M n-l = u/%J[~L-1 +hL-, +ik,f,h,-,(q,-, +:h,qn-, -Pn-,/A 

-~P,,P,,-,) -y,,(p,,-,/h + ihpn-,a + +pnpn-111 

With b,_, and a, defined by (3.13) and (3.12) for i = n - 1 and n respectively. 
Thus the discrete form of the asymptotic boundary condition (3.1) is given by 

“IYn - PrYPI- = Yl 

where 

(~1 = a,, + :h'qJPo( -4, -p,,/h - ip,.,/h + @p,-,q, + :P,,P~-I + 3a,/h2), 

P, = f(h/a,)&( -p,/h - fp,,-l/h + hz-, + +P,,P,-I + 3~‘h’)7 

., ~1 =K+ f(W,)Po(-A,%,-1 +ihPn-d,). 

From (4.3) for i = n we have 

y, = W,_,Y,_, + T,_,. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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Comparing (4.10) and (4.14) we have 

W n-l = l-v% (4.15) 

T n-l = ?$/a, 3 (4.16) 

Then 4’s and T,‘s (i=n-2, n-3 ,..., 0) are obtained recursively in the backward sweep by 
using (4.15)-(4.16) as the initial values for W’s and T’s. Using the values of 4”s and 71’s and 
knowing the value of ~a solution .v,‘s (i = 0,. . . , n) can be obtained by forward process by using 
(4.1). 

5. Stabiiity 

We will now show that the method is computationally stable. By stability. we mean the effect 
of an error made in one stage of calculation is not propagated into larger errors at latter stages of 
computation. In other words, local errors are not magnified by further computation. 

Let us now examine the recurrence relation given by (4.4). Suppose a small error Ej has been 
introduced in the calculation of y then we have 

q= wi+Iz,, (5.1) 

and we are actually solving 

*-, = D,/( c, - B;W,). (5.2) 

From (4.4) and (5.2), we have 

E;_,=D,/(C;-B,(W,+E,))-Di/(ci-BiW,) 

=D,BiE,[c;-Bi(W,+Ei)-‘][ci-Bi~~-*= W,_,(B,/D,)E,~_, (5.3) 

under the assumption that initially the error is small. 
Let us assume that B, > 0 and Di > 0 for 1 G i < n - 1. Then from the definition of Bi, Ci and 

D, and since q(x) < 0, it can easily be verified that C, > Bi + Di for 1 < i < n - 1. From (4.15), 
we have 

W n-l = PI/% 

and 1 W,_, 1-c 1, if M> 0 and p, > - +M, where 

M = % + f(h/%)P,( -4, - &,-I + %I-A). (5 *4) 

Under this condition and making use of the assumptions on B,, Ci and D,, it follows very easily 
from (4.4) that 

/M/;/Cl fori=n-2,n-3 ,..., 0, (5.5) 

and thus 

Iql<l, i=O,l,..., n-l. (5 -6) 

From (5.3), it then follows that 

I~,_r/=lw_,I~ 2 IEiI<IEil, providedIBiI<IDiI 
I I 1 

(5.7) 
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the recurrence relation (4.4) stable. Similar arguments will show that the recurrence 

(4.5) is also stable. 

6. Test examples and numerical results 

Example 1. To illustrate our method we solve: 

LY( x) = -y” - 2~’ + 2y = e-2”, (6.1) 

y(0) = 1.0. (6.2) 

y(c0) = 0.0. (6.3) 

This problem has earlier been solved by Robertson [13] and its exact solution is given by 

u(x) = f e -o+fi).r + t e-2”a 
(6.4) 

The asymptotic boundary condition for this example can be written as 

f&(x,) + &q -1+ G)jJ’(x,) = 0. (6.5) 

The boundary value problem given by (6.1), (6.2) and (6.5) has been solved using cubic spline 
with method of sweeps and the numerical results are presented in Table 1. 

Example 2. As a second example, we solve: 

LY(x) = -y” + (1 + l/x)y = l/x2, 

y(1) = 0.0, 

y(c0) = 0.0. 

(6.6) 

(6.7) 

(6.8) 

Table 1 
Numerical solution for Example 1 

XCC =N x h=& h=& h=& Exact solution 

10 3.0 
6.0 
8.0 
10.0 

11 3.0 0.13759746 E-02 
6.0 0.31078456 E-05 
8.0 0.56400702 E-07 
10.0 0.10750475 E-08 
11.0 0.23189027 E-09 

12 3.0 0.13759546 E-02 
6.0 0.31078433 E-OS 
8.0 0.56391087 E-07 
10.0 0.10334734 E-08 
12.0 0.31376740 E-10 

0.13759746 E-02 
0.31078798 E-05 
0.56548516 E-07 
0.171415437 E-08 

0.137691756 E-02 
0.31095814 E-05 
0.56572160 E-07 
0.16931479 E-08 

0.13769176 E-02 
0.31095483 E-05 
0.56428997 E-07 
0.10741567 E-08 
0.22904771 E-09 

0.13769176 E-02 
0.31095461 E-05 
0.56419684 E-07 
0.10338912 E-08 
0.30992060 E-10 

0.13771534 E-02 
0.31100070 E-05 
0.56576829 E-07 
0.16824897 E-08 

0.13771534 E-02 
0.31099744 E-05 
0.56435997 E-07 
0.10735823 E-08 
0.22760567 E-09 

0.13771535 E-02 
0.31099723 E-05 
0.56426836 E-07 
0.10339729 E-08 
0.30796922 E-10 

0.13772321 E-02 
0.31101148 E-05 
0.56428597 E-07 
0.10312569 E-08 

0.13772321 E-02 
0.31101148 E-05 
0.56428597 E-07 
0.10312569 E-08 
0.13951780 E-09 

0.13772321 E-02 
0.31101148 E-05 
0.56428597 E-07 
0.10312569 E-08 
0.18878562 E-10 
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Table 2 
Numerical results for the Example 2 

X h=l h=+ h=a h=+ 

0.00000000 EO 
0.39104661 E - 1 
0.2004548 E - 1 
0.119570277 E- 1 
0.42735006 E - 2 
0.15507248 E- 2 
- 
- 
- 
- 
- 
- 
- 

h=& 

1.0 O.OOOOOOOO EO 
5.0 0.40360315 E - 1 
7.0 0.20131629 E- 1 
9.0 0.11950688 E- 1 

15.0 0.42725024 E - 2 
25.0 0.15525067 E-2 
30.0 0.10821151 E-2 
31.0 0.10140307 E- 2 
45.0 0.48447366 E - 3 
55.0 0.32530015 E- 3 
65.0 0.23342259 E - 3 
75.0 0.17396594 E - 3 
77.0 0.153022182 E- 3 

0.00000000 EO 
0.39381625 E - 1 
0.20066824 E - 1 
0.11955937 E- 1 
0.42132625 E - 2 
0.15525367 E- 2 
0.108212507 E- 2 
0.10140887 E - 2 
0.48447452 E - 3 
0.32530616 E- 3 

0.00000000 EO 
0.39157992 E - 1 
0.20049654 E - 1 
0.119568133 E- 1 
0.42734530 E - 2 
0.15525442 E-2 
0.10821275 E- 2 
0.101409079 E - 2 
0.46808327 E - 3 

- - 

0.00000000 EO 
0.39091525 E- 1 
0.20044453 E - 1 
0.119570816 E- 1 
0.42734978 E - 2 
- 
- 
- 
- 
_ 
- 
- 
- 

This problem has earlier been considered by Fox [7] and later by Robertson [13]. The asymptotic 
boundary conditions in this case is given by 

$y( XJ + fy’( x,) = 0. (6.9) 

The resulting boundary value problem (6.6), (6.7) and (6.9) has been solved by the method 
described earlier and the numerical results are presented in Table 2. 

7. Discussion 

A cubic spline technique in combination with the method of sweeps has been presented for the 
approximate solution of two-point boundary value problems over infinite intervals. The method 
has been analysed for stability. Test examples, tackled earlier by Fox [7] and Robertson [13] have 
been solved to demonstrate the efficiency of the proposed method. For these examples, the 
asymptotic boundary condition at x, = N was first derived and the value x, = N was then 
varied until no significant change in the solutions was noticed. The computation was done on a 
DEC-1090 computer system in double precision arithmetic to ensure minimum round-off errors. 

Table 1 represents the numerical solutions for Example 1 at some selected points by taking 
different mesh sizes (h) and different values of x, = N. The values of N taken for computation 

are N = 10, 11 and 12 for different values of h. The exact solution of the problem is also 
presented and it is observed that the computed solutions compare favourably well with the exact 
solution. It is known for this example that the solution decays exponentially and this fact is 
reflected in the computer solutions for different values of N. It can be seen that the computed 
solutions for N = 12 show six to eleven place accuracy and thus N = 12 can be taken to represent 
the point at infinity for the problem. 

The numerical solutions for Example 2 for different values of h are given in Table 2. It is 
evident from this table that the solutions decay relatively slowly which agrees with the observa- 
tion made by Fox [7]. The computed solutions also compare very well with that obtained by 
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Robertson [13] and at X, = N = 9. the solutions compare upto five places of decimal. The 
advantage in using cubic spline is that it not only gives an approximation to the solution _v( s) 
but also an approximation to the derivative y’(x) at every point of the interval. Secondly. the 
cubic spline approximation approximates the given problem with a local truncation error of 
0( h4) especially when the function f(x) = 0 or is equal to a constant, and leads to the solution 
of a tridiagonal system of equation the property, which is not normally shared by usual finite 
difference methods. 
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