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K. Steffens (“Injektive Auswahlfunktionen,” Schriften aus dem Gebiet der 
Angewandten Mathematik Nr. 2, Aachen, 1972) has shown that a family of 
finite sets has a transversal if and only if the collection of all “critical” sub- 
families forms a topology. In this paper these “transversal topologies” are charac- 
terized, as well as families whose transversal topologies satisfy separation axioms. 

1. INTRODUCTION 

Let & = (Ai 1 i E I) be an arbitrary family of finite nonempty subsets 
of a ground set E = Uie, Ai . We write 

A(J) = u Ai 
id 

and dJ = (Ai / iEJ) 

for J C I. The symbol J C Z shall indicate that J is a finite subset of Z; J C Z 
shall mean that .I is a proper subset of I. A set T C E is called a transversal 
of Oe if there is a bijection 43: T --f Z such that x E A@(%) for all x E T. The 
set of all transversals of & shall be denoted by TR(@‘). Finally, if 
&’ = (Ai / i E Z) and 9Y = (I+ j j E J) are two families with disjoint index 
sets, then the family &’ + %Y is defined as (C, / k E Zu J), where C, = A, 
or BI, depending on whether k E I or k E J. 

In [2] Hall proved the following necessary and sufficient conditions for the 
existence of a transversal: 

TIBOREM A. TR(&‘) # m if and only if / A(J)] > 1 J 1 for all J C I. 

Steffens [5] introduced the notion of a “critical” subfamily: 

DEFINITION A. A subfamily -olJ is called critical iff it has a unique trans- 
versal. 
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Remark 1. If dJ is a critical subfamily with transversal T, then T = A(J). 
Therefore, for a critical subfamily -Pe, we have j A(J)/ = / J 1. 

We shall make use of the following of Steffens’ results [5]: 

THEOREM B. Every critical subfamily is the union of finite critical sub- 
families. 

THEOREM C. TR(&) # @ l$ and only if there is no J c I and there is no 
i E I\J such that .@J is critical and Ai _C A(J). 

THEOREM D. TR(cQZ) # o if and only if ‘X(d) = i&J C & ) &J critical) v 
{ 0, d} is a topoIogy on &. 

DEFINITION 1. If TR(&‘) # o we call Z(d) the transversal topology 
of the family & and refer to its elements as the open subfamilies of s4. 

The purpose of this paper is to characterize transversal topologies as well 
as families whose transversal topologies satisfy separation axioms. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

For the following we assume that TR(&) # % and j 11 > 2. In [3] 
we introduced the following notations: 

Let A E J&’ and x E E. Then we shall write 

C(A) = ye (I A( - I J I> 
AEJ?fJ 

and C(x) = min C(A). 
X6AE.d 

In view of Definition A and Theorem B, C(A) = 0 means that A is con- 
tained in a critical subfamily while C(x) = 0 means that x is contained in 
every transversal of d. 

DEFINITION 2. An open subfamily z$ # % is called minimaliff dK $ Z(d) 
for all % C KC J. 

We write 2,E = (dJ E 5(d) j & minimal}. 

Remark 2. On account of Theorem B every dJ E Z,\(d) is a finite 
subfamily of &. 

LEMMA 1. Let &J E 2,) &KE%(&). Then either JCKor JnK= 0. 

Proof: Assume % C J A KC J. By Theorem D we have z?&, E 2(d) 
contradicting the minimality of dJ. 



256 REINHARD A. RAZEN 

LEMMA 2. Let A E ~4. Then there exists a smallest open subfamily &A 
containing A. 

Proof. If C(A) = 0 then, by Theorem B, we know that JS$ is finite. The 
uniqueness follows from Theorem D. If C(A) # 0 then d is the only open 
family containing A. 

DEFINITION 3. a(&) = (&\dJ / &, E X(d)} shall denote the set of all 
closed subfamilies of &‘. 

Finally, we briefly recall the separation axioms we shall deal with. More 
detailed information about them can be found in [l]. 

Let 6 be a topology on a set X and x E X. Then we write 

and 

{x}‘=(y#x/forallG~~(y~Gimpliesx~G)j 

W = n G \tX>. 
XEG6 

(Al) 6 is a T,-topology if and only if for all x, y E X with x # y 
thereexistsasetGE~suchthatxEGandy$GoryEGandx$G. 

(A2) 6 is a T,-topology if and only if for all x E X there exist an open 
set G and a closed set C such that (x} = G n C. 

(A3) 6 is a T,-topology if and only if for all x E X ( y E {x}” implies 
lY}- = 0). 

(A4) 6 is a T,-topology if and only if 6 is a T,-topology and for all 
x, y E X(x # y implies 1(x}” n (y}- / < 1). 

(A5) G is a T,,-topology if and only if 6 is a T,-topology and 
i(x)” / < 1 for all x E X. 

(A6) ‘S is a T,,-topology if and only if either of the following cases 
holds: 

(i) {x}” = m for all but at most one x E X, 

(ii) {x)’ = 0 for all but at most one x E X. 

(A7) 6 is a T,-topology if and only if {x}” = o for all x E X. 

Remark 3. All these topologies satisfy the T,-property. 

(A8) G is regular if and only if for all x E X and for all closed sets 
C with x $ C there exist disjoint open sets G, and Cc with x E G, and C C Cc . 
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3. MAIN THEOREMS 

THEOREM 1. A topology 6 on X is homeomorphic to a transversal topology 
2(d) if and only if!?3(6) = (G E 6 j / G 1 < N,} U {X} is a base for 6. 

Proof. The necessity follows from Theorem B. 
Sufficiency: We write X* = IJGEC,tX) G. If x E X* let G, denote the smallest 

GE b(G) such that x E G. If x E X\X* let G, = {a,, b,}+ such that 
G, n X* = o and Gzl c\ Gxz = iii for all x1, x2 E X\X* with xi # x2. 
Then 

d=(G,lx~X) 

is a family of finite sets with TR(&) # o. Define 

f:X-+d by f(x) = G, . 

f is a bijection since if G, = G, for x # y we distinguish between the two 
sets according to their indices. To show that f is open and continuous it 
suffices to consider the elements of the bases. 

(a) Let GE b(6). If G = o or G = X, then J& = @ or &G = & 
which are both elements of x(54). Now let 0 C G C X. Then G is finite, 
say G = {xi ,..., xk} and we have 

k = 1(x, ,..., x,)1 < I G1u -.* u G,, I ,< 1 G j = k, 

which means that z& is critical. 

(b) Let Y C X with & E (JZ$ C & / &$ critical, finite} u { 0, &‘}. 
If YE{o,X}then YE& Assume @ CYCX. Then Yc&,,G, = A(Y). 
Since J& is critical, 

I A(Y)I = I Y I < j u G, i = I A(Y 
llEY 

and therefore Y = lJYEY G, E 6, which completes the proof. 

LEMMA 3. If Z(d) is a T,-topology, then / J j = 1 for all .s$ E 2,, . 

Prooj: 1 J 1 3 2 for dJ E 5, would imply that no two sets in &, could 
be separated by open subfamilies. 

LEMMA 4. If Z(d) is a T,,-topology, then there is at most one Ai E d 
with C(A,) # 0. 

Proof. Assume C(A,) # 0, C(A,) # 0 for i # j. By Lemma 2, the only 
open subfamily containing Ai is &’ itself, which also contains Aj , and vice 
versa. 
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Let S(JZZ’) be a T,-topology. Then we write I* = I\{i 1 C(A,) # 01. 

THEOREM 2. The following statements are equivalent: 

(a) 2(d) is a TO-topology, 

(b) Z(s4) is a T,-topology, 

(c) there exist an ordinal a and a bijection 4: 01+ I* such that 

(d) there exist an ordinal (y. and a bijection #: cy --f I* such that 

dm = G%(Y) I Y 6 B> is criticalfor all /3 < 01, 

(e) there is exactly one injective choice function of J$. 

Proof. (c) $ (d). We shall use transfinite induction. 

(1) sZ& = (A,(,,) is critical since I Al(,) I = 1. 

(2) If /I has an immediate predecessor /3 - 1, then -aZ,(,j = &~$,(a.-~) + 
(A,&. By induction hypothesis .&&I) is critical and therefore by (1) also 
4(s) . 

(3) If j3 is a limit ordinal then &&) = (A,(,) 1 y < fi) + (A,&, 
where 

is critical. Again using (1) we obtain that s$,(,) is critical. 
(d) 3 (b). Take Ai E &. If C(AJ # 0, then (AJ E E(d) and (4) = 

& n (Ai). If C(AJ = 0 there exists an ordinal /3 such that #(fl) = i and 
J$&) E 1(d). Furthermore, JY\&~ J+,) E a(&) and (4) = J&Q) n 
(sZ\U,<~ J&,,,). Therefore 2(d) is a TD-topology. 

(b) 3 (a). Remark 3. 
(a) = (c). By Lemma 3 we know that there is at least one set (say A,) 

in d with ) A0 I = 1. To establish the bijection JI we define z&O) = 0, and 
if +(y) has already been defined for y < /3, set I#) = iO where i, satisfies 
I AiJUY<O 4b(v) ! = 1. 

It remains to show that as long as t+(r) / y < /?j C I*, a suitable i,, can be 
found. Assume the contrary: there is a minimal &, such that 

1 AI\2 Ati 1 f 1 for all i E I*\{+(r) I y < PO},). 
33 

By the same argument as in (c) => (d) we can deduce that (A,(,) \ y < PO) 
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is critical, therefore 1 Ai\Uv.+ A&(,) j = 0 would contradict Theorem C. 
On the other hand, if 

fix i and let dAi be the smallest open subfamily containing Ai . Since i E I*, 
s$Aj is finite. Now -@ii\ S (AM I Y < PO) since the contrary would imply 
that &A* u (A&(,,, ) y < /?,,) is critical, contradicting (2). Therefore, there exists 
j E Z”\{tw I Y ( AlI7 j f i with A, E dAi . Now &A j = d. i would be a contra- 
diction to the T,,-property. So dAj C &.., and we can apply the same argu- 
ment as before to dAs . Continuing this process we arrive after finitely many 
steps either at a contradiction to the T,-property or we obtain a critical sub- 
family -Qla, with / J$ 1 = 1 which contradicts (2). 

(c) + (e). See [6]. 
Before dealing with the other separation axioms we observe that 

while 
(A,)’ = (Aj I j # i, Ai E 4J, 

(AJ” = (Aj I j # i, Aj E s4i). 

THEOREM 3. 2(d) is a T,-topology if and only if one of the following 
conditions holds: 

(i) IfZ*CZthen IZ\Z*I = 1 andIA,/ = lforalliEZ*, 
(ii) ZfZ* = Z then 

j A,\,!=~ A$ / = 1 ,for all iEZ. 
, 
hi 

Proqf. (i) Necessity: From Remark 3 and Lemma 4 we deduce that 
1 Z\Z* I = 1. Let Ai be the set with C(A,) # 0 then (AJ” = (Aj ) j E I*). The 
T,-property now implies that I Aj ) = 1 for all j E I*. 

The sufficiency is obvious. 
(ii) Necessity: Let I Ai I > 1 and &,+ = (A3, ,..., A,,). Then, by the 

T,-property, we have 1 Aill / = 1 for all j, # i and the assertion follows. 

Sufficiency: Let Aj E (Ai)“. From 

it follows that all but one element of Ai = {x1 ,..., x3 are contained in sets 
(xh} E&’ (1 < h < k - 1, say). Therefore 

“ai = (Cd-,..., {L,>, Ai), 
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hence 

(Aj)” = 0. 

THEOREM 4. 2(&) is a T,-topology if and only if 2(d) is a T,-topology 
and ( Ai n A, / < 1 for all i # j. 

Proof. We may assume Z* = Z. 
Necessity: Assume {x, y}+ Z Ai n Aj . The T,-property implies {x> E & 

or { y} E &. But if { y} 6 &, then y would be the representative of both Ai 
and Ai, which is, of course, a contradiction. Theorem C implies ((xl, {y)) C 
-“e,$ n && and so l(Ai)” n (A$)” I 3 2. 

Sufficiency: Assume (A,, A,) C (AJ- n (AJ”. From the T,-property we 
derive A, = {xl} and A, = {x2}. But {x1} E &A, implies x1 E Ai . Analogously 
we get x2 E Ai as well as {x1, x2} C Aj and therefore / Ai n Aj / >, 2. 

THEOREM 5. 2(d) is a T,,-topology if and only if / Ai / < 2 and 

Proof. Necessity: j Ai I > 3 would imply I L&‘~~ I > 3 and therefore 
j(Ai)” / > 2. Similarly, Ai = (x, y}+ with {x} 6 L&’ and { y} $ z%’ would yield 
I hi I >, 3, since 4, = ({x, Y)z ,-lx, r> 1 + would contradict the T,,-property. 

Sufficiency: If [ Ai I = 1, then \(A$ / = 0. If ( Ai I = 2, say Ai = {x, y}z , 
then by hypothesis (x} E L!I or { y} E ~4, hence 1 &A{ I = 2 and ](A&” I = 1. 

THEOREM 6. iz(Oe) is a T,,-topology if and only if either of the following 
conditions holds: 

(a) jAij = lforallbutatmostoneiEZ, 

(b) there exists a set Ai E &’ with I Ai / = 1 such that 1 Af\Ai / = 1 
for aN j E Z\(i). 

Proof. Statement (a) is equivalent to part (i) of the definition of a T,,- 
topology. 

Necessity: Assume (Ai)’ # D but (A,)’ = o for all j # i. Then &Al = (Aj) 
or zZA. = (Aj , AJ and since &A, = (A,) the assertion follows. 

Sumciency: If ] Ai j = 2 then hi E @YAj and therefore 

(A+)’ = (Ai 1 1 Aj j = 2}, 

but (A,)’ = B. 
Since Ai is the only set in ~4 which can be subset of others, we also have 

(A,)’ = u forallj # iwith) Aj / = 1. 



TRANSVERSAL TOPOLOGIES 261 

THEOREM 7. The following statements are equivalent: 

(a) ir(J;s) is a T,-topology, 

(b) / Ai / = 1 for all i E I, 

(c) i2(-@‘) is the discrete topology. 

Proof. (A,)“= JZ ifandonlyif/Ai/=l. 

LEMMA 5. Let C(x) = 0 for all x E E and K = U.t~,~z, J C I. Then A(K) n 
A(M) # ia. 

Proof. Assume the contrary. We know that all elements of E are needed 
to represent the sets of JZI and since z& is critical (Theorem D) the elements 
of A(K) can only represent the sets of dK. Therefore all elements of A(I\K) are 
needed to represent J& which implies that J&E 2(H). But then there 
exists a minimal open subfamily of ,Qa,,, contradicting the definition of K. 

Let .K be as in the previous lemma. Then we write 

ZK = (dJ E %,I A(J) n A(I\K) # ia}. 

LEMMA 6. Let L = (Z\K) u UJY;+ J. Then &$ is the smallest open 
. . 

subfamily contammg d,,, . 

Proof: Certainly, dL E X(4). Let SZ”, E 2(d), with Z\K C L’. The proof 
of Lemma 5 has shown that Z\K C L’. Furthermore, we have L’ n J f m 
for all J with -pl: E ZK , since A(L’) contains at least one element of A(J) 
which must not be used to represent J&T . But then, by Lemma 1, we have 
J C L’ and hence L _C L’. 

THEOREM 8. The following statements are equivalent: 

(a) 2(d) is regular, 

(b) d is the union of minimal open subfamilies, 

(c) 2(d) = a(d). 

Proof. The theorem is true if Z(d) = (0, &}, so assume there is at 
least one critical subfamily not equal to d. 

(a) 3 (b). The regularity (every set Ai and every closed subfamily &, 
not containing Ai are contained in disjoint open subfamilies) implies that 
C(A) = 0 for all A E s!. For, if A # JX$ then A E &\-c9, E Z(d); if A E &J 
then there is an open subfamily _cP$ with A E &, C &,, CM’. It follows that 
C(x) = 0 for all x E E. 

Now assume K = UdJEzm J C I. By Lemma 6, the smallest open subfamily 
containing S& contains at least one &, E 2,. Take an A, E dJ, then A,, and 
.G& E K.(d) violate the definition of regularity. 
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(b) * (c). Since & is the union of minimal open subfamilies we derive 
from Lemma 1 that every Sy; E 2(d)\{ ia) is also 

Therefore 

which implies dJ E C&zZ), hence 2(d) C C(d). 
(c) 3 (a). Trivial. 
Applications of these results to counting finite topologies can be found 

in [4]. 
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