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Abstract 

Nepejvoda, N.N., A bridge between constructive logic and computer programming, Theoretical 

Computer Science 90 (1991) 253-270. 

Some logic notions have their analogies among programming concepts and vice versa. But people 

often try to understand these analogies in too straightforward a manner. A collection of analogies 

arising between constructive logics and programming is summarized and illustrated here. Some 

examples of complexities usually not taken into account are shown. 

This paper is deliberately written informally. There are many works on applications 

of constructive logics, but there is a lack of understanding of new views and 

possibilities opened by these applications. It has been shown by more than 10 years 

experience that informal understanding of these peculiarities is maybe more valuable 

for many people than a rigorous formal technique (which is only necessary for 

researchers in this domain). Here we do not try to be rigorous; precise constructions 

have been presented in many papers (at least 70 from more than 10 authors) and 

will be summarized and explained in our forthcoming book on applied constructive 

logics. 

1. Role of A.P. Ershov in bridging together theory and programming 

Many people have said that there is a wall between practice and theory (even 

inside the single mind of very experienced persons) (see, e.g., [S]). To destroy this 

obstacle demands much effort. But for most programmers computer scientists there 

is no such problem. Theory and practice peacefully coexistent like the two banks 

of a deep river. Usually there is a mutual non-interference in the internal affairs. 

Sometimes a challenge from one side is accepted by the other and a bridge arises. 

Good examples are complexity theory, grammars and the theory of determinate 

games. 

This state of affairs is sufficiently more difficult in the area of logic and program- 

ming. Although from the very beginning many basic ideas have been exported from 
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logic (especially from computability theory) to programming and recently their has 

been feedback (see e.g. dynamic logic and logic programming theory), many possible 

interconnections have been frozen for more than forty years. One reason is that 

both sides are here to adapt one for another, although many prejudicies of logic. 

and programming interfere here. 

The role of A.P. Ershov in the building of new bridges was the first. He is one 

of the founders of partial and mixed computations, which has resulted in many 

surprising connections between recursive functions and programs. Some results 

provocated and supported by him are outlined here. 

Our research in this area was influenced by two men. First, the speech of A.A. 

Markov mentioned below gave a firm philosophical basis for the investigations. 

Second, A.P. Ershov was the man who understood how a “high theory” can be 

applied and constantly encouraged us to develop our work. A.P. Ershov stressed 

that programming needs its own theory, but most of Computer Science is a theory 

of completed programs. A.P. Ershov steered our investigations in the at first less 

promising direction. He understood that logic program synthesis was not realizable 

at that time, but he stressed that in this way we could see new, often surprising and 

striking, correlations and contradictions in programming and logic concepts, and 

to teach some powerful practitioners to use new programming methods. Only this 

direction had proved its viability at the present time. 

In 19751978 I was Associate Professor of Udmurt University and there was a 

small group of promising young students interested mainly in applications. I was 

not introduced to A.P. Ershov but from Professor Ceytin he had heard that some- 

where at Izhevsk there was a young logician interested in some advanced problems 

of programming, e.g. in more co-ordinated design of programming languages. He 

invited me to join the Soviet Algol-68 Commission and there were some discussions 

on the possibilities and on the need to apply logic to programming. But the “internal 

wall” mentioned above hindered me from working in this direction. Then A.P. 

Ershov published (in 1977) in the main Soviet Computer Science journal “Program- 

ming”, a paper where he mentioned that there was a strong group at Izhevsk working 

on programming theory and practice. The first thesis was at that time wrong, the 

second one at least strongly exaggerating. It remained to us to save Ershov’s 

reputation and to do something new immediately! So, in 1978 it came to light the 

first five works on constructive logic applications. 

The second important factor in the development of our research was that Ershov 

in contrast to almost all logicians and mathematicians, supported my thesis that we 

can exploit one usually forgotten peculiarity of mathematical proofs; moreover, this 

is the informal definition of proof for our purposes. 

Proofs are objects such that their syntactic correctness implies their semantic 

correctness. 

Usually many partial properties of known proof classes are stressed, e.g. proof 

rules, three structure and so on. For each such property a counterexample is known 

today; namely, strange but useful structure classes are considered which can naturally 
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be regarded as proofs but do not have any likeness to the usual rule tree structure. 

For example, it has been shown so far back as the 19th century by J. Venn that 

some figures can be regarded as proofs of set theoretical judgements (so called Venn 

diagrams [18]) and there are nothing like rules in these diagrams. 

The independent and deep insight of A.P. Ershov can be illustrated by the 

following example from 1982. During one discussion I had remarked that the loop 

{a} while 91 do S od {B} (1) 

should be expressed logically as ‘U-% v 8, but this is out of sense. Ershov said 

that because it is natural there may be an interpretation such that it can be expressed 

in this way. Because to accept such an expressive form means to reject many of the 

best logical traditions, this idea was not realized until 3 years later as program 

schemes logics. These logics have loop formation rules such as 

%v93*Bvcr 

41=+cr 
(2) 

where 91 can be interpreted as a precondition, $3 as a loop invariant and Cr as a 

postcondition. This rule in some sense implies the “mad” injiniinite loop rule 

‘Ix=+81 

1% 
(3) 

1. How a constructive approach to programming came to light? 

It had been mentioned as early as at the beginning of our century that in modern 

mathematics two notions: “to exist” and “to be constructed” are different. Many 

theorems have been proved which state the existence of some objects without giving 

any way to construct them. The most striking example is the Lebesgue unmeasurable 

subset of [O,l]. It had been proven that each set of reals which can be defined in the 

set theory ZF cannot be proved to be unmeasurable. Moreover, it had been shown by 

L.E.J. Brouwer that the roots of this divergence are logical. Namely, the usual logical 

principle tertium non datur 91 v 1% implies (in each sufficiently strong theory) such 

a formula 3x E N A(x) that A(n) cannot be proved for each concrete n E N. Roughly 

speaking, it follows from the Godel Incompleteness Theorem and from the fact that 

tertium non dutur claims decidability of each problem. 

The theory is constructive if each proof contains an (implicit or explicit) construc- 

tion of objects which are proved to exist and all functions which can be defined by 

formulas of the form Vx E X 31~ E Y Bl(x, y) are computable. 

There are three ways to overcome the above obstacle and to reach constructive 

theories. 

First of all, we can restrict ourselves to weak theories and/or sublanguages. It 

has been proved, for example, that existence implies constructability in the elemen- 

tary theory of real numbers. Well known Horn theories are also in some sense 
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constructive. Namely, if the disjunction of elementary formulas is proved in a Horn 

theory, then one of these sentences is proved. 

Secondly, we can restrict our proofs to those that maintain constructivity, but 

here we have the disadvantages of non-classical logics without their advantages. 

And finally, we can use non-classical logics which grant constructivity and we 

hope that they have some advantages by using non-classical expressive means and 

new proof methods. 

The first known constructive logic was invented by Brouwer and formalized by 

Heyting in 1930. It is called intuition&k logic. It uses the same languages as classical 

logic (propositional connectives &, v, 3, 1, quantifiers V, 3) and all the classical 

axioms but two, tertium non datur and double negation principle: l-&I+%. Thus, 

it can be viewed at first sight as the result of the realization of the second method 

above: to omit some proofs which do not give constructions. Each intuitionistically 

valid formula is also classic tautology. But some consistent intuitionistic theories 

can contradict classical logic; for example, in intuitionistic logic it is possible to 

express the judgement “2l(x) is undecidable” in the following form: 

1vx (2l(X)Vl!x(X)). (4) 

Kolmogoroff and Heyting developed a new kind of interpretation of logic for- 

mulas. Intuitionistic formulas are understood as problems. Each problem demands 

the construction of some objects or some effective transformations of objects or 

some effective functionals transforming computable functions and so on. . . . 

Kolmogoroff’s interpretation was not a precise mathematical semantic because it 

remains indefinite which functionals can be regarded as computable. However its 

ideas are in the origins of constructive interpretation of programming activity. 

The most important constructive connective is a constructive implication =+. ‘u=+% 

means that each solution of ‘?I can be transformed in some uniform way into a 

solution of 23. The method of this transformation is regarded as a solution of %+B, 

so, (%+93)=+65 demands computablefunctionals from functions transforming sol- 

utions of ?I to solutions of ?B into solutions of Q. So, intuitionistic logic and many 

other constructive systems implicitly contain high order notions which can be 

expressed by a first order predicate (or even propositional) language. See undecida- 

bility of 2I above. 

Other constructive connectives correspond to the other usual transformations of 

solutions; conjunction (say) can be viewed in intuitionistic logic as a pair of solutions 

of both its conjunctive members. But the meaning of this connective can be changed 

in some constructive logics. 

Furthermore, Kleene [7] had constructed the notion of recursive realizability for 

formulas of constructive arithmetic. Here effective transformations are treated as 

recursive functions. Because a program for recursive functions can be encoded by 

natural numbers (Giidel numbers), high order functionals can be also treated as 

recursive functions from Giidel numbers to Godel numbers. It has been proved that 

we can extract from each constructive proof of an arithmetic sentence, a recursive 
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function realizing the proved theorem. Though Kleene’s construction of realizations 

for an arithmetic theorem was rather ineffective, it provided a way forward to logic 

program synthesis. 

Thus we can see that the very first review of constructive logic concepts can show 

us that it seems to be promising to state the mutual analogies of programming 

concepts and of constructive logics. 

This has been attempted many times. The very first was the forgotten work of 

Curry [4] who showed that some kinds of proofs can be treated as implicit construc- 

tions of effective programs. Curry is famous due to his numerous original conceptions 

in mathematical logic. When Computer Science was emerging he proposed the 

original logic system not like the usual logic but in some sense constructive. Only 

30 years later this approach has come into consideration again. 

From 1968 there were numerous attempts to apply constructive logics to 

programming. 

At first they were considered as a promising tool of program synthesis. Bishop 

[l] proposed the scheme 

specifications + proof + program (5) 

based on the idea that it suffices to extract a program from a constructive proof and 

after that there is no need to prove its correctness or to debug it. 

In 1971, Constable [2] proposed to use Bishop’s idea to develop an automatic 

program synthesizer based on constructive arithmetic. This was a naive but valuable 

experiment. It was shown that there are many obstacles and complexities in this 

straightforward approach. It resulted in the program system CL [3] which illustrates 

many peculiarities of applied constructive systems. 

Constable’s claims led to a more serious theoretical analysis. Kreisel [lo] investi- 

gated many possible connections of constructive systems and programming and 

some possible constructive uses of classical systems. For example, his ideas opened 

the way to testing automatically whether the classical existential theorem Vx 3-v 

%(x,y) gives us an effective algorithm for computing y. He claimed that only a 

small part of the constructive proof really contains the desired construction. He 

pointed out many complexity and formalization technique problems arising when 

we try to use constructive systems. His work was the second after well forgotten 

Curry’s where real analogies between constructive logic and programming were 

studied. 

In 1973, Markov gave an informal but very deep analysis of real and misleading 

analogies between constructive mathematics and computer programming. He 

stressed that although the intuitionistic arithmetic proof of Vx 3y Yl(x, y) formally 

contains the algorithm to transform x into y, realZy it is a mere theoretical result. 

Kleene’s extraction algorithm appeals to a universal function; so, often the extracted 

algorithm is practically incomputable and almost always too complex. Moreover, 

proofs in the original system of constructive arithmetics are more complex than in 

the corresponding classical system, but it is known that the problem of proof search 
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in classical arithmetic is theoretically and practically undecidable. Thus Bishop’s 

scheme in its original form cannot be realized. 

There was one more important note in this lecture. It had been shown by the 

Soviet constructive school in the 1950s (see, e.g., [lo]) that many formulas of 

constructive arithmetic can be treated classically; so, many parts of a constructive proof 

cannot contain implicit construction for realization of our theorem. Thus, a constructive 

proof can be divided into two parts: active and passive. The passive part is merely 

a correctness proof of constructions made in the active part. Some formulas, so 

called normal formulas, can occur in the active part only as premises of some rules 

transforming active statements. So, each formula which is used only to prove a 

normal formula (even not normal itself) can be omitted during extraction. This is 

close to the ideas of Kreisel. But in most of the following works these observations 

are not taken into account. Only the recent book [6] tries to utilise them partially. 

In the second half of the 1970s constructive systems were used in some research 

projects. A very sophisticated and powerful system had been developed by Martin- 

LSf and his school [ll]. It uses transfinite types and Kreisel’s brilliant idea of 

formulas as types. 

We must mention here the interesting works of Tyugu and Mint [ 171. They proved 

that there is a natural constructive logic of the program synthesis system PRIZ and 

this logic is varying for different strategies of subproblem solving. For the most 

common case this logic is the intuitionistic propositional calculus. 

A new step in constructive logic applications is Girard’s idea of Linear Logic [5]. 

This logic is one more argument that different classes of programs and problems 

demand different constructive logics. This idea was stated in [13] which first sys- 

tematically described some methods of using constructive logics as tools to develop 

new programming methods and to investigate some theoretical properties of pro- 

grams and programming languages. 

In the addition to the above we can point out that some of the background of 

program verification seems to be unsound. The constructivist paradigm has an 

implicit consequence that each mathematical construction is made by a (hidden) 

constructive proof. Because correct program development can be viewed as a 

mathematical activity, it is natural to accept the following hypothesis: Each correct 

program for a precisely stated problem is the result of some (not expressed explicitly) 

mathematical demonstration. 

Therefore, the problem of program verification seems a bit idiotic: having a 

mathematical demonstration we at first make our best efforts to ignore it except for 

those parts which can be expressed in our programming language. And then we try 

to reconstruct the original proof. The main problem is not how to prove programs 

but how to write correct programs and how to specify them to simplify their reconstruction. 

There are numerous ways to solve this problem. The constructive way cannot be 

viewed as the best but it has its own interesting peculiarities and possibilities. 

Finally, the language of algorithmic logics consists of two poorly co-ordinated 

parts (logical conditions and program construction). Investigations of program and 
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algorithmic logic revealed many striking properties and many hidden inconsistencies 

in programming languages. They are also often useful to develop a constructive 

approach, but there is another tendency in constructive logics: to make a single 

language with two well co-ordinated interpretations, a logic one and a programming 

one. This sometimes allows us to see deeper, but often (when the corresponding 

programming concepts are not perfectly designed) it simply fails to work. Here (if 

our programming language is ill designed) algorithmic logics are out of comparison. 

3. Some basic considerations and analogies 

There is a frequent problem involved in attempting to bridge two domains. The 

easiest analogies are almost always misleading when we are interested in real, 

complex problems. On the other hand, deeper analogies and possible warnings 

usually cannot be explained (at least for a long time) by very simple model examples. 

Here we try to state a basic system of analogies and to explain some shortcomings 

of obviously more simple decisions. 

What is a logical analogy of a program and a programmer’s analogy of a proof? 

The simplest way is to state that proof is program. So, we can pose a claim such 

as “program = proof + control” [9], i.e. that we can execute the process of a proof 

search as a program (as in pure Prolog). This decision fails completely when we 

have not totally defined the function, so, to apply a function we must first state that 

it can be applied to given data. It is completely misleading when our constructive 

implications S=+‘B are understood as actions transforming states 2l into states ,%. 

These actions can be noninvertible and an attempt to compute an unfinished proof 

can lead to the same conclusions as attempting to cure an ill person without stating 

the diagnosis. So, a Prolog-based aberration that we can always accept Kowalsky’s 

thesis is wrong. This analogy can be applied only in some exclusive cases. 

The second attempt to save this simple analogy is to claim that a completed 

constructive proof is a program. This has its origins in the worth of Martin-Lof and 

Constable works, and the majority of linear logic application works. The scope of 

this analogy is wider, but there are some shortcomings. 

It is known that intuitionistic formulas of the form 1’21 cannot contain any 

nontrivial part of a solution of the desired problem. In other classes of constructive 

logics we can point out analogous classes of formulas (classical formulas in program 

scheme logics, negative ones in linear and so on). Moreover, we can point out that 

even for formulas such as 

VXYZ (Wx, Y> & WY, z>*w, z)), (6) 

all constructions to find a concrete value of y can become useless for the completed 

program: y is used here and nowhere else, including the conclusion of the proved 

theorem. So, passive formulas which do not affect the desired program but are 

necessary to prove its correctness, can be a major part of the constructive proof. It 

is not so dangerous as in the previous case if they are not taken into account. 
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Some danger can arise if our functions can fail. If we try to compute all parts of 

our proof, we can try to compute functions used (say) in the reductio ad absurdum. 

Their applicability is proved based on wrong suppositions, and our computations 

can fail due to parts which could be omitted. As a striking example we can see the 

infinite loop rule (3) which can prove only passive formulas and annihilates the 

conditions of each implication used in the proof of Yl+2l (as the result -I% is stated). 

Thus, we can formulate the following analogy. 

(1) Formulas and objects used in a proof are divided into active and passive ones. 

Each active item and no passive ones have their image in a program. 

The program is the image of the active part of a proof. The proof corresponds 

to the program together with its correctness proof. 

In program verification, some people independently discovered that to prove a 

program we often have to introduce new values and expressions (ghosts), but this 

was perhaps first pointed out by Tseytin [ 161 in 1971. Our passive objects corresponds 

to ghosts. 

After this weakening of the proof and program connections, we can strengthen 

them in another direction. Because during a complex problem solution we cannot 

grant that our problem formalization will remain the same and because all formaliz- 

ations of real domains can be viewed only as incomplete and partially correct, we 

should grant maintenance of as large a part of our logic proof as possible when the 

problem, program and formalization are changed. Moreover, the same demands are 

useful in theoretical analysis. Here we may keep the corresponding logical and 

program notions as close one to another as possible. It demands many mutual 

co-ordinations of logic and programming notions which are tiresome and seem to 

be small and unpromising. This is necessary for the success of the following informal 

and formal investigations and analysis. But it is more prominent to prove strong 

theorems without revision of the basic notions which proved their valuability in 

theoretic logic investigations. We choose the more difficult way. 

It was pointed out during the preparation of our very first work [12] in this area 

that the level of corresponding program and proof construction is different. Program- 

ming was a bit forward in the expressiveness and design of constructions, logic was 

incomparable in the severe choice of only basic primitives. The first step (see [ 131) 

was to develop a well co-ordinated programming language and logic calculus. None 

of the achievements of either area can be sacrificed during this process. It becomes 

possible to grant the following strong condition. 

(2) Each construction of a program is the image of a single construction of the proof 

Each active construction of a proof in turn generates only one construction of a program. 

Sorts of (active) proof and program construction are in one-to-one correspondence. 

This co-ordination level of proofs and programs is a good basis for deep theoretical 

and practical invasions. 

The second analogy gives a collection of more special realisations which are 

nevertheless very important and enlightening (maybe even more valuable or prac- 

tical). Now we list and illustrate them. 
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(3) (a) Proof rules correspond to program statements. 

(b) Subproofs correspond to blocks and procedures. 

(c) Terms correspond to basic type values. 

(d) Formulas correspond to compound type values. 

(c) Only elementary formulas which are parts of disjunctions can transfer into 
a program (as conditions of loops and guards of guarded commands). 

For example, the loop generation rule (2) corresponds to the loop statment 

{%?I} while B do f od {Cr}. (7) 

Here ?I and Q become comments to our program whilst ‘!I3 is used in the while 

part of the statement and is explicitly used in our program. 

Let us now consider another case. Functional formulas 

Vx,...x, (t?l,&..*&‘u,*3y,...yk (L!3,&-&B3,)) (8) 

correspond to procedures. xi can be interpreted as input values, y, can be understood 

as output values. What is the role of %, and Bq? They cannot always be interpreted 

simply as pre- and postconditions. This was the mistake made by Constable in his 

first work [2]. For example, if ‘?I1 is in turn a functional formula, it is interpreted 

as function parameter and realization of the whole formula becomes a functional 

of second order. This consideration illustrates our analogies on variables and 

formulas. 

Now subproofs will be considered. First, a subproof is used while proving an 

implication (constructive or not), say, to prove a functional formula. Here a subproof 

becomes a procedure body, and the whole rule does a procedure declaration. 

Assume % function f(a: a): b; 
. . . begin 
Prove B . . * 

f:=b; 

%*%I end; 

When induction is used, the subproof of the induction step 

(9) 

Assume ‘?I( n) 
. . . 

Prove t?X(n+l) 
(10) 

becomes the loop body. AnaJogously for case analysis, 

(w,v*.*v%Y~ 

Assume ‘%, . . . Assume %?I, (11) 
. . . . . 4 

Prove B Prove 8 

the corresponding subproofs become part of the case of statement. If-then-else 
conditional statement is generated by case analysis using ‘3 v +?l. 
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Summing up the previous considerations, we can claim: 

(4) Natural deduction proofs are closer to programs than Gilbert or sequential ones. 
Natural deduction proofs are characterized by the possibility of introducing 

assumptions, to deduce consequences from these assumptions and to forbid further 

use of assumptions and their consequences after our subgoal is reached. To reflect 

this, the proof (like programs in most languages) has a block structure; its blocks 

are subproofs; each subproof has its own assumptions which can be used only 

inside it and maybe some other local objects; subproofs can be embedded and form 

a subproof tree; the main proof is its root, and all blocks and procedures are 

subordinated to the main program. 

The last analogy is less common but very fruitful for logical analysis. 

In this section we consider intuitionistic theories without functions. Thus, terms 

are only variables and constants. 

The most important classes of intuitionistic formulas according to their role in 

program extraction are the following: 

(1) Constructions: 

VX, . . .x, (%*3y,. . .y,B(x, 9)). 

(2) Higher order constructions: 

Vx,. . .x, (% & %*3y,. . .y,%(x, F)). 

(3) Classifications: 

Vx,. . .X” (2ba,(n) v . * . v a,(a)). 

(4) Criteria I: 

vx,. . .xny,. . .yl (2x(x, y)*.%(Z)). 

(5) Criteria II: 

Vx,. . .x, WY,. . .Y/ %(x, v)*Qw). 

(6) Criteria III: 

Vx,. . .X” ((~,(X)~~~(X))~~,(k)). 

(7) Rejections: 

vx, . ..x. (~(x)Gd!3(~)). 

(8) Connections: 

vx,. . .x, (%(x)*%(Z)). 

(9) Facts: 

P(tr,. . ., t,) or iP( t,, . . . , t,). 

Here 3, 5-8, Bi are conjunctions of atomic formulas, ‘8 is a conjunction of 

constructions (maybe, of higher order also), Bi(Z) means that all variables of x 

occur in all atoms of !B3,, ‘Bi(y”) means that at least one variable of y occurs in each 

atom. 

Formulas of the nine listed classes are called standard. 
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Example 1. l(O= 1) is a fact, Vxy (x =yJxc,v) is a connection, Vxy Vz (x < 

z & z < y~x < y) is a criterion 1, Vxy (Vz (x E z+y E Z)JX c y) is a combination 

of criterion II and criterion III, Vxyz (z > O+y > x - z v y < x + z) is a classification, 

Vxy (y > 0*3z (y. z =x)) is a construction. 

Each intuitionistic theory can be reduced to a standard one, preserving extracted 

programs. 

(5) Duringprogram extraction, constructions give usfunctions, higher order construc- 

tions give functionals, classijications give conditional statements. Other classes of 

formulas cannot generate any construction in the resulting program. 

Moreover, criteria and rejections allow us to omit some constructions which are 

necessary to prove the correctness of the resulting program but are useless during 

its execution. So, they can turn some values or even pieces of proof into passive 

ones, which have no images in the resulting program. Often the necessity to remember 

these constructions leads programmers to the decision to write down something like 

used criteria and rejections as comments to the program. They may write: 

“Case when x > 0 cannot appear and is omitted”. 

Connections cannot generate any program constructions and, in turn, cannot 

make some potentially active constructions passive. They usually disappear com- 

pletely from the program, and from its comments. But they form that “knowledge 

base” which is necessary to understand the program and comments. 

To end this section, we mention one comparatively simple result from 1978 (one 

year after the beginning of our work) which at first proved the power of constructive 

logical analysis. It had been proven that having a proof of a program we can 

reconstruct a constructive proof which cannot be more than twice as long and which 

allows us to extract a program for the same goal. So, if our specifications are strong 

enough, the unique way to prove a program is to remember its construction. 

4. Incomplete proof structures and programming 

Practical constructive reasoning is almost always incomplete; and the whole proof 

rarely can be transformed into a program. Thus, it is very interesting to develop 

such proof fragments that are sufficient to reach our principal goal (e.g. to extract 

programs from). These fragments help us (say) to avoid the problem of a full 

automatic proof search. It is known that this last is theoretically undecidable and 

very difficult in practice. We try to replace it by more realistic ones, for example 

by enlargement of fragments created during man-machine dialogue up to proof. 

Our considerations are based on the notion of a proof as a graph [ 141. Nevertheless, 

no prior knowledge is presumed because our explanation is rather informal. 

Graph structures can represent not only the result of a proof search but also its 

various stages. This was stated in [14]. We start by considering a simple example. 
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Example 1. Let we consider a very simple calculus a:,,. Its formulas are classical 

propositional formulas and constructive implications ‘~?l+% (read: “Each state 2l 

can be transformed into state %“). The rules for constructive implications are the 

following: 

Let us add a slightly unusual rule: a gap rule: 

. %=9-E 

AGap 

f 63% 

(13) 

?I=323 and cS+s\ are not connected here syntactically. We can conclude every 

constructive formula from every other. It is obvious that each theory is Curry 

inconsistent if a&= &,+Gap (i.e. each formula is derivable). a&, will be called 

a calculus of incomplete proofs for OOO. 

Nevertheless Oi,, is restrictive when it is considered as description of some stages 

of proof search. We can conclude only constructive implications from constructive 

ones. This means that all classical formulas used by incomplete proofs are completely 

proved. Each application of the gap rule can be considered as a subproblem: derive 

cS+B from ‘%+?I?. ai, can be interpreted as a calculus representing one of the 

most general strategies of proof search: divide the problem into simple subproblems. 

Similarly, we can construct incomplete proof calculi for a& and fl& by adding 

the Gap rule. But here we must give new global conditions: there cannot be more 

than one Gap in an incomplete proof; for ano + its conclusion must be the theorem; 

for O,‘& its premise must be an axiom. 

Example 2. Let we have the theory 

A=+B, B-C, C=+D, DJE; HJE, JJH, IJJ; 

AJK, K*L. (14) 

The following are incomplete proofs of AJE in different calculi: 

O$: 

ZJJ J=+H 

A”,‘: Gap Lzi Gap 
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f2;*: 

AJB B*C 

R,‘,: 

A=+B 

A*D 
Gap 

D+E 

A*E (15) 

It is intuitively clear that although CJE and AJE are derivable, the first 

incomplete proof is “bad”; it contains a gap between IJH and C* E which 

cannot be repaired. Second and third proofs can, of course, be enlarged up to a 

complete proof of our goal. 

So, we can define piece of a proof II in a calculus 4 as its full subgraph 0 such 

that it contains a rule iff all its premises and conclusions belong to 0, and it contains 

a structure vertex (subproof and so on) iff all its subordinated formulas belong to 

0. If formula vertex 91 is a conclusion of the rule not belonging to 0, 2l is called 

an entry of 0. If 8 is a premise of the rule not belonging to 0, ?I is called a result 

of 0. 

Now we can define the notion “2 is a calculus of incomplete proofs for 9”. Its 

main properties can be outlined as follows. 

Formulas of 2 can be considered as metaexpressions for ones of 4. Rules of&r 

are divided into two classes: rules of .9 and gaps. Each correct application of 4-rule 

n in the calculus 9 is transformed into its correct application in 4 by substitution 

for all metaexpressions. 

A relation “proof II of 9” is an enlargement of an $-proof 2. @(II, 2) is defined 

such that there is an injective map + of $-rule applications of 2 into the same rule 

applications of 27 and there is a piece O(6) of E for each gap rule 6 of I7 such 

that its entries can be mapped one-to-one onto premises of 6. This results in 

conclusions of 6, and there is a substitution for all metaexpressions occurring into 

premises and conclusions of 6, resulting in corresponding information into entry 

and result vertices of O(6). 

Usually proofs of&t, viewed as an incomplete proof calculus for 9, are divided 

into two classes: complete and incomplete w.r.t. 9. In most cases, the proof is complete 

iff it does not contain gap rules. An incomplete proof is enlargable if it has an 

enlargement. 

Example 3. Our calculi L?&, 0,$, a& are incomplete proof calculi for &. The 

first proof of Example 3 is not enlargable for our theory Th. The second and third 

can be enlarged obviously. 

A calculus of incomplete proofs 9 is adequate to a proof search strategy 9. If 

each stage of the proof search according to Y corresponds to an incomplete proof 
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of 9 and if II is an incomplete proof of &t, corresponding to some stage of the 

proof search resulting accordingly to Y in a proof E, and there occurs no backtrack- 

ings on the way from I;T to E according to Y, then @(17,2). 2 is filly adequate to 

9, if each incomplete proof of ,$ corresponds to some proof search stage of 3’. 

For example, Sz,‘, and Sz,‘, are fully adequate for inverse and direct proof search 

strategies, respectively. 

For the first time incomplete proofs have been introduced for the natural deduction 

intuitionistic logic to perform logic analysis of so called “structured gotos”, exit 

operators or “continuations”. Here we outline this construction. 

An & statement serves as an escape from some innermost procedures during 

structured program execution if they become obsolete. For example, if we search 

for data in deeply hierarchical structures and the desired data are found, all 

introduced search trees, all search and access procedures are of no use; we may 

return to the point where these data were requested. 

Intuitionistic logic provides a good basis for structured functional programming. 

It has helped us to discover many fine peculiarities of high order programming 

(programming by using and introducing functionals of higher types; do not confuse 

it with typeless functional programming). There are interesting logical analogies for 

functionals, data flow, loops, recursion. . . Why not for structured gotos? 

Let IPCo be the intuitionistic predicate calculus without v and 1. We introduce 

an incomplete proof calculus EY’~ by adding the gap rule of the form 

Ld 
0 gap 

d1 

i3,. ..i, 
where %?li are IPCO formulas and !Bj can contain metavariables. Though premises 

and conclusions of this rule are completely independent as formulas, global condi- 

tions imply that they belong to the same subproof. A subproof containing a gap 

rule is called non-completed. Global conditions are extended by the demand that 

each subproof can contain no more than one gap. 

A 93’~ proof is complete if in each gap n = k, and there are substitution terms t 

for metavariables such that after the substitution 21i = %i[xlt]. If such substitution 

exists for a subproof and its subordinated subproofs then the subproof is completed. 

Complete proofs can be easily transformed into 9V0 proofs. 

9@, corresponds to a global top-down proof search strategy but allows for each 

subgoal to combine forward and backward search strategies. To restrict ourselves 

by forward search only, it suffices to demand that each conclusion of the gap is a 

result of the subproof (99’~+ calculus). 

99’~’ calculus allows us to find logic analogs of exit statements. Namely, a 

subproof is to be developed until our current results (premises of the gap) can be 
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unified with the desired ones (subproof results which are determined by the FD 

rule). But what happens if we deduce the desired results of a greater subproof? 

This situation is very similar to a, a more global goal having been reached than 

the current one. To finish the formalization of this feature, it is sufficient to introduce 

the goal transfer rule (CT) (it was called in [ 151, slightly ironically, the good surprise 

rule) which allows us to place the goals of the embedding proof into the embedded 

one, and to define quasicomplete proofs, if each gap has as conclusions the whole 

set of formulas subordinated to some goal of the current subproof or to a transferred 

goal and its premises and conclusions are unified. 

Proposition. ‘21 is derivable from 7h by a quasicompleteproof of IPL: zx% is a classical 

theorem of Th. 

So, exit and high order functionals are in some sense incompatible; exit can 

destroy the structure of our arguments and lead us to inconstructivity when the 

extracted solution cannot be executed correctly. It has been stated that transforma- 

tion semantics cannot show this failure. The results of our analysis clarified some 

roots of the errors in the ELBRUS system (its hardware supports high order 

functional programming) and were taken into account by its designers. 

There is one more important notion induced by graph proofs, proof fragments. 

Vertices v of proofs are labelled by Inf(v). Let a partial ordering G be given for 

information entities Inf( v). If we omit a formula preserving its free variables, it can 

be considered as an example of s. Let 17 be a proof in a calculus 2. Graph 22 is 

a fragment of 17 if there is an injective map rp of its vertex set V, into the vertex 

set V,, and the type of v is the same that q(v) and Inf(rp(v)) 2 Inf(v) and there is 

a path from cp(source( a)) into q (destination (cr )). If .$ is an algorithm totally defined 

on pairs of graphs, then 2 is called a c-fragment of II, if 2 is a fragment of I7 and 

&(z; n) = 0. 

This formal definition is inspired by considering a fragment as a graph with some 

vertices deleted and the information of the remainder weakened down according 

to some rules (these last can be tested by 5). The resulting graph preserves in some 

sense the structure of the whole proof (this is expressed by the demand on the 

paths). It is natural to consider fragments as proofs in some generalized calculus 

2” which can be constructed analogously to incomplete proof calculi. 5 itself is 

described, as a rule, by outlining informally the decidable condition which is to be 

tested. 

Example 4. For each calculus %? there is a natural fragment calculus; its global 

conditions are the same and all its information vertices are omitted. This calculus 

will be called structure calculus for 72, and its proofs proof structures of %. 

We can see here all the subproofs, rules and data flows. 

Proposition. If the relation G is decidable, the problem whether 2 is a fragment of II 

is decidable. 
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Definition 1. The problem of &correct enlargement up to proof in a generalized calculus 

X is decidable for 2, if there is an algorithm A, which is total on derivations of 2 

and a derivation 2 is processed into false; if it is not a &fragment of any proof 17 

of .N, and into such proof n otherwise. 

Definition 2. A is called a calculus of &skeletons for N, if the problem of &correct 

enlargement up to proofs in X is decidable for .&-derivations, and each &fragment 

of each proof of Jv is a &-derivation. 

Let us consider the calculus obtained by weakening some rules of the intuitionistic 

calculus 99 in the following manner. The functional formulas Vx (%(x)+Zly 

%(x, y)) are to be given explicitly; all arguments %[x] t] can be omitted; all results 

B[xlt] can be omitted also. The deduction rule FD (to prove functional formulas 

by a subproof of 53 from ‘2I) can be weakened by omitting formulas %, %. Derivations 

in this calculus are called typizable skeletons. 

The enlargement problem is decidable for typizable skeletons. 

This kind of skeleton can be considered as a way to make the problem of finding 

data structures having the structure of function calls (the problem of typization for 

a functional program) more precise. Each rule applying a functional formula defines 

a call in an extracted program. All axioms are given; our goal is also given. So, the 

omitted formulas define data types of values. Because these types can be easily 

reconstructed, it is not reasonable to demand explicit data declarations in a functional 

program. If actual and formal parameter types do not match, our program contains 

a semantic error and this error can be detected automatically by our compiler. Thus 

one of the main demands of structured programming - to specify types of all 

variables - cannot be regarded as universal. 

Let us now weaken the rules in another manner: we can omit the main premises 

(functional formulas) and arguments ?l are to be preserved. Let the FD rule be 

weakened by omitting all formulas, preserving only the structure of the subderiva- 

tions; let the axiom generation rule be weakened by omitting its conclusion, an 

applied axiom. The resulting calculus is called the calculus of argument skeletons. 

The enlargement problem is also decidable for argument skeletons. Argument 

skeletons can be considered as problems of synthesis of a functional program having 

their data structures and the structure of data flow. It can be seen that these problems 

can also be solved automatically. So, it is sufficient to give explicitly only one side 

of the coin, whether functions or their arguments. The other side can be reconstructed 

automatically. But you may remember that our arguments are based on the assump- 

tion that all our functions (data) are completely specified in logical language. 

What is the weakest fragment which can be regarded as a skeleton? We, obviously, 

cannot give a precise answer, but it suffices only to give the proof structure. 

There are no known lower bounds for the complexity of the structure enlargement 

problem, but all known algorithms are more than exponentially hard (formula 
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unification is a difficult problem, and there are numerous backtrackings). This kind 

of skeleton can be considered as formalization of the program analysis problem. 

Finally, we can see that the problem of enlargement of fragments including gaps 

is, of course, undecidable. But the problem of l-correct enlargement can be deci- 

dable. For example, let our 771 consist of standard axioms. Let fragments contain 

gaps, and let 5 test whether the proof piece substituted for each gap consists only 

of criteria, rejections and connections. This is called a constructive skeleton. 

Proposition. The problem of &‘-correct enlargement is decidable for constructive 

skeletons. 

Constructive skeletons can be interpreted as the formulation of program verijcation 

problems. All constructions and classifications, giving us functions and conditional 

statements, are given explicitly. We may only test conditions on their input and 

output values. 

5. Conclusion 

These are only some insights into a strange new world, Applied Constructive 

Logic. It is interesting not only due its new possibilities but as a domain demanding 

unusual formalization techniques, hard logical considerations, and new insights into 

old ideas. 
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