
Theoretical Computer Science 90 (1991) 253-270

Elsevier

253

A bridge between constructive logic
and computer programming

N.N. Nepejvoda
Applied Logics and Systemotechnic Department, Kirova Str. 132, Izhevsk, SU-426001, USSR

Abstract

Nepejvoda, N.N., A bridge between constructive logic and computer programming, Theoretical

Computer Science 90 (1991) 253-270.

Some logic notions have their analogies among programming concepts and vice versa. But people

often try to understand these analogies in too straightforward a manner. A collection of analogies

arising between constructive logics and programming is summarized and illustrated here. Some

examples of complexities usually not taken into account are shown.

This paper is deliberately written informally. There are many works on applications

of constructive logics, but there is a lack of understanding of new views and

possibilities opened by these applications. It has been shown by more than 10 years

experience that informal understanding of these peculiarities is maybe more valuable

for many people than a rigorous formal technique (which is only necessary for

researchers in this domain). Here we do not try to be rigorous; precise constructions

have been presented in many papers (at least 70 from more than 10 authors) and

will be summarized and explained in our forthcoming book on applied constructive

logics.

1. Role of A.P. Ershov in bridging together theory and programming

Many people have said that there is a wall between practice and theory (even

inside the single mind of very experienced persons) (see, e.g., [S]). To destroy this

obstacle demands much effort. But for most programmers computer scientists there

is no such problem. Theory and practice peacefully coexistent like the two banks

of a deep river. Usually there is a mutual non-interference in the internal affairs.

Sometimes a challenge from one side is accepted by the other and a bridge arises.

Good examples are complexity theory, grammars and the theory of determinate

games.

This state of affairs is sufficiently more difficult in the area of logic and program-

ming. Although from the very beginning many basic ideas have been exported from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82494593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

254 N. N. Nepejuoda

logic (especially from computability theory) to programming and recently their has

been feedback (see e.g. dynamic logic and logic programming theory), many possible

interconnections have been frozen for more than forty years. One reason is that

both sides are here to adapt one for another, although many prejudicies of logic.

and programming interfere here.

The role of A.P. Ershov in the building of new bridges was the first. He is one

of the founders of partial and mixed computations, which has resulted in many

surprising connections between recursive functions and programs. Some results

provocated and supported by him are outlined here.

Our research in this area was influenced by two men. First, the speech of A.A.

Markov mentioned below gave a firm philosophical basis for the investigations.

Second, A.P. Ershov was the man who understood how a “high theory” can be

applied and constantly encouraged us to develop our work. A.P. Ershov stressed

that programming needs its own theory, but most of Computer Science is a theory

of completed programs. A.P. Ershov steered our investigations in the at first less

promising direction. He understood that logic program synthesis was not realizable

at that time, but he stressed that in this way we could see new, often surprising and

striking, correlations and contradictions in programming and logic concepts, and

to teach some powerful practitioners to use new programming methods. Only this

direction had proved its viability at the present time.

In 19751978 I was Associate Professor of Udmurt University and there was a

small group of promising young students interested mainly in applications. I was

not introduced to A.P. Ershov but from Professor Ceytin he had heard that some-

where at Izhevsk there was a young logician interested in some advanced problems

of programming, e.g. in more co-ordinated design of programming languages. He

invited me to join the Soviet Algol-68 Commission and there were some discussions

on the possibilities and on the need to apply logic to programming. But the “internal

wall” mentioned above hindered me from working in this direction. Then A.P.

Ershov published (in 1977) in the main Soviet Computer Science journal “Program-

ming”, a paper where he mentioned that there was a strong group at Izhevsk working

on programming theory and practice. The first thesis was at that time wrong, the

second one at least strongly exaggerating. It remained to us to save Ershov’s

reputation and to do something new immediately! So, in 1978 it came to light the

first five works on constructive logic applications.

The second important factor in the development of our research was that Ershov

in contrast to almost all logicians and mathematicians, supported my thesis that we

can exploit one usually forgotten peculiarity of mathematical proofs; moreover, this

is the informal definition of proof for our purposes.

Proofs are objects such that their syntactic correctness implies their semantic

correctness.

Usually many partial properties of known proof classes are stressed, e.g. proof

rules, three structure and so on. For each such property a counterexample is known

today; namely, strange but useful structure classes are considered which can naturally

Consiructive logic and comparer programming 255

be regarded as proofs but do not have any likeness to the usual rule tree structure.

For example, it has been shown so far back as the 19th century by J. Venn that

some figures can be regarded as proofs of set theoretical judgements (so called Venn

diagrams [18]) and there are nothing like rules in these diagrams.

The independent and deep insight of A.P. Ershov can be illustrated by the

following example from 1982. During one discussion I had remarked that the loop

{a} while 91 do S od {B} (1)

should be expressed logically as ‘U-% v 8, but this is out of sense. Ershov said

that because it is natural there may be an interpretation such that it can be expressed

in this way. Because to accept such an expressive form means to reject many of the

best logical traditions, this idea was not realized until 3 years later as program

schemes logics. These logics have loop formation rules such as

%v93*Bvcr

41=+cr
(2)

where 91 can be interpreted as a precondition, $3 as a loop invariant and Cr as a

postcondition. This rule in some sense implies the “mad” injiniinite loop rule

‘Ix=+81

1%
(3)

1. How a constructive approach to programming came to light?

It had been mentioned as early as at the beginning of our century that in modern

mathematics two notions: “to exist” and “to be constructed” are different. Many

theorems have been proved which state the existence of some objects without giving

any way to construct them. The most striking example is the Lebesgue unmeasurable

subset of [O,l]. It had been proven that each set of reals which can be defined in the

set theory ZF cannot be proved to be unmeasurable. Moreover, it had been shown by

L.E.J. Brouwer that the roots of this divergence are logical. Namely, the usual logical

principle tertium non datur 91 v 1% implies (in each sufficiently strong theory) such

a formula 3x E N A(x) that A(n) cannot be proved for each concrete n E N. Roughly

speaking, it follows from the Godel Incompleteness Theorem and from the fact that

tertium non dutur claims decidability of each problem.

The theory is constructive if each proof contains an (implicit or explicit) construc-

tion of objects which are proved to exist and all functions which can be defined by

formulas of the form Vx E X 31~ E Y Bl(x, y) are computable.

There are three ways to overcome the above obstacle and to reach constructive

theories.

First of all, we can restrict ourselves to weak theories and/or sublanguages. It

has been proved, for example, that existence implies constructability in the elemen-

tary theory of real numbers. Well known Horn theories are also in some sense

256 N. N. Nepejvoda

constructive. Namely, if the disjunction of elementary formulas is proved in a Horn

theory, then one of these sentences is proved.

Secondly, we can restrict our proofs to those that maintain constructivity, but

here we have the disadvantages of non-classical logics without their advantages.

And finally, we can use non-classical logics which grant constructivity and we

hope that they have some advantages by using non-classical expressive means and

new proof methods.

The first known constructive logic was invented by Brouwer and formalized by

Heyting in 1930. It is called intuition&k logic. It uses the same languages as classical

logic (propositional connectives &, v, 3, 1, quantifiers V, 3) and all the classical

axioms but two, tertium non datur and double negation principle: l-&I+%. Thus,

it can be viewed at first sight as the result of the realization of the second method

above: to omit some proofs which do not give constructions. Each intuitionistically

valid formula is also classic tautology. But some consistent intuitionistic theories

can contradict classical logic; for example, in intuitionistic logic it is possible to

express the judgement “2l(x) is undecidable” in the following form:

1vx (2l(X)Vl!x(X)). (4)

Kolmogoroff and Heyting developed a new kind of interpretation of logic for-

mulas. Intuitionistic formulas are understood as problems. Each problem demands

the construction of some objects or some effective transformations of objects or

some effective functionals transforming computable functions and so on. . . .

Kolmogoroff’s interpretation was not a precise mathematical semantic because it

remains indefinite which functionals can be regarded as computable. However its

ideas are in the origins of constructive interpretation of programming activity.

The most important constructive connective is a constructive implication =+. ‘u=+%

means that each solution of ‘?I can be transformed in some uniform way into a

solution of 23. The method of this transformation is regarded as a solution of %+B,

so, (%+93)=+65 demands computablefunctionals from functions transforming sol-

utions of ?I to solutions of ?B into solutions of Q. So, intuitionistic logic and many

other constructive systems implicitly contain high order notions which can be

expressed by a first order predicate (or even propositional) language. See undecida-

bility of 2I above.

Other constructive connectives correspond to the other usual transformations of

solutions; conjunction (say) can be viewed in intuitionistic logic as a pair of solutions

of both its conjunctive members. But the meaning of this connective can be changed

in some constructive logics.

Furthermore, Kleene [7] had constructed the notion of recursive realizability for

formulas of constructive arithmetic. Here effective transformations are treated as

recursive functions. Because a program for recursive functions can be encoded by

natural numbers (Giidel numbers), high order functionals can be also treated as

recursive functions from Giidel numbers to Godel numbers. It has been proved that

we can extract from each constructive proof of an arithmetic sentence, a recursive

Constructive logic and computer programming 257

function realizing the proved theorem. Though Kleene’s construction of realizations

for an arithmetic theorem was rather ineffective, it provided a way forward to logic

program synthesis.

Thus we can see that the very first review of constructive logic concepts can show

us that it seems to be promising to state the mutual analogies of programming

concepts and of constructive logics.

This has been attempted many times. The very first was the forgotten work of

Curry [4] who showed that some kinds of proofs can be treated as implicit construc-

tions of effective programs. Curry is famous due to his numerous original conceptions

in mathematical logic. When Computer Science was emerging he proposed the

original logic system not like the usual logic but in some sense constructive. Only

30 years later this approach has come into consideration again.

From 1968 there were numerous attempts to apply constructive logics to

programming.

At first they were considered as a promising tool of program synthesis. Bishop

[l] proposed the scheme

specifications + proof + program (5)

based on the idea that it suffices to extract a program from a constructive proof and

after that there is no need to prove its correctness or to debug it.

In 1971, Constable [2] proposed to use Bishop’s idea to develop an automatic

program synthesizer based on constructive arithmetic. This was a naive but valuable

experiment. It was shown that there are many obstacles and complexities in this

straightforward approach. It resulted in the program system CL [3] which illustrates

many peculiarities of applied constructive systems.

Constable’s claims led to a more serious theoretical analysis. Kreisel [lo] investi-

gated many possible connections of constructive systems and programming and

some possible constructive uses of classical systems. For example, his ideas opened

the way to testing automatically whether the classical existential theorem Vx 3-v

%(x,y) gives us an effective algorithm for computing y. He claimed that only a

small part of the constructive proof really contains the desired construction. He

pointed out many complexity and formalization technique problems arising when

we try to use constructive systems. His work was the second after well forgotten

Curry’s where real analogies between constructive logic and programming were

studied.

In 1973, Markov gave an informal but very deep analysis of real and misleading

analogies between constructive mathematics and computer programming. He

stressed that although the intuitionistic arithmetic proof of Vx 3y Yl(x, y) formally

contains the algorithm to transform x into y, realZy it is a mere theoretical result.

Kleene’s extraction algorithm appeals to a universal function; so, often the extracted

algorithm is practically incomputable and almost always too complex. Moreover,

proofs in the original system of constructive arithmetics are more complex than in

the corresponding classical system, but it is known that the problem of proof search

258 N. N. Nepejvoda

in classical arithmetic is theoretically and practically undecidable. Thus Bishop’s

scheme in its original form cannot be realized.

There was one more important note in this lecture. It had been shown by the

Soviet constructive school in the 1950s (see, e.g., [lo]) that many formulas of

constructive arithmetic can be treated classically; so, many parts of a constructive proof

cannot contain implicit construction for realization of our theorem. Thus, a constructive

proof can be divided into two parts: active and passive. The passive part is merely

a correctness proof of constructions made in the active part. Some formulas, so

called normal formulas, can occur in the active part only as premises of some rules

transforming active statements. So, each formula which is used only to prove a

normal formula (even not normal itself) can be omitted during extraction. This is

close to the ideas of Kreisel. But in most of the following works these observations

are not taken into account. Only the recent book [6] tries to utilise them partially.

In the second half of the 1970s constructive systems were used in some research

projects. A very sophisticated and powerful system had been developed by Martin-

LSf and his school [ll]. It uses transfinite types and Kreisel’s brilliant idea of

formulas as types.

We must mention here the interesting works of Tyugu and Mint [171. They proved

that there is a natural constructive logic of the program synthesis system PRIZ and

this logic is varying for different strategies of subproblem solving. For the most

common case this logic is the intuitionistic propositional calculus.

A new step in constructive logic applications is Girard’s idea of Linear Logic [5].

This logic is one more argument that different classes of programs and problems

demand different constructive logics. This idea was stated in [13] which first sys-

tematically described some methods of using constructive logics as tools to develop

new programming methods and to investigate some theoretical properties of pro-

grams and programming languages.

In the addition to the above we can point out that some of the background of

program verification seems to be unsound. The constructivist paradigm has an

implicit consequence that each mathematical construction is made by a (hidden)

constructive proof. Because correct program development can be viewed as a

mathematical activity, it is natural to accept the following hypothesis: Each correct

program for a precisely stated problem is the result of some (not expressed explicitly)

mathematical demonstration.

Therefore, the problem of program verification seems a bit idiotic: having a

mathematical demonstration we at first make our best efforts to ignore it except for

those parts which can be expressed in our programming language. And then we try

to reconstruct the original proof. The main problem is not how to prove programs

but how to write correct programs and how to specify them to simplify their reconstruction.

There are numerous ways to solve this problem. The constructive way cannot be

viewed as the best but it has its own interesting peculiarities and possibilities.

Finally, the language of algorithmic logics consists of two poorly co-ordinated

parts (logical conditions and program construction). Investigations of program and

Constructive logic and computer programming 259

algorithmic logic revealed many striking properties and many hidden inconsistencies

in programming languages. They are also often useful to develop a constructive

approach, but there is another tendency in constructive logics: to make a single

language with two well co-ordinated interpretations, a logic one and a programming

one. This sometimes allows us to see deeper, but often (when the corresponding

programming concepts are not perfectly designed) it simply fails to work. Here (if

our programming language is ill designed) algorithmic logics are out of comparison.

3. Some basic considerations and analogies

There is a frequent problem involved in attempting to bridge two domains. The

easiest analogies are almost always misleading when we are interested in real,

complex problems. On the other hand, deeper analogies and possible warnings

usually cannot be explained (at least for a long time) by very simple model examples.

Here we try to state a basic system of analogies and to explain some shortcomings

of obviously more simple decisions.

What is a logical analogy of a program and a programmer’s analogy of a proof?

The simplest way is to state that proof is program. So, we can pose a claim such

as “program = proof + control” [9], i.e. that we can execute the process of a proof

search as a program (as in pure Prolog). This decision fails completely when we

have not totally defined the function, so, to apply a function we must first state that

it can be applied to given data. It is completely misleading when our constructive

implications S=+‘B are understood as actions transforming states 2l into states ,%.

These actions can be noninvertible and an attempt to compute an unfinished proof

can lead to the same conclusions as attempting to cure an ill person without stating

the diagnosis. So, a Prolog-based aberration that we can always accept Kowalsky’s

thesis is wrong. This analogy can be applied only in some exclusive cases.

The second attempt to save this simple analogy is to claim that a completed

constructive proof is a program. This has its origins in the worth of Martin-Lof and

Constable works, and the majority of linear logic application works. The scope of

this analogy is wider, but there are some shortcomings.

It is known that intuitionistic formulas of the form 1’21 cannot contain any

nontrivial part of a solution of the desired problem. In other classes of constructive

logics we can point out analogous classes of formulas (classical formulas in program

scheme logics, negative ones in linear and so on). Moreover, we can point out that

even for formulas such as

VXYZ (Wx, Y> & WY, z>*w, z)), (6)

all constructions to find a concrete value of y can become useless for the completed

program: y is used here and nowhere else, including the conclusion of the proved

theorem. So, passive formulas which do not affect the desired program but are

necessary to prove its correctness, can be a major part of the constructive proof. It

is not so dangerous as in the previous case if they are not taken into account.

260 N. N. Nepejvoda

Some danger can arise if our functions can fail. If we try to compute all parts of

our proof, we can try to compute functions used (say) in the reductio ad absurdum.

Their applicability is proved based on wrong suppositions, and our computations

can fail due to parts which could be omitted. As a striking example we can see the

infinite loop rule (3) which can prove only passive formulas and annihilates the

conditions of each implication used in the proof of Yl+2l (as the result -I% is stated).

Thus, we can formulate the following analogy.

(1) Formulas and objects used in a proof are divided into active and passive ones.

Each active item and no passive ones have their image in a program.

The program is the image of the active part of a proof. The proof corresponds

to the program together with its correctness proof.

In program verification, some people independently discovered that to prove a

program we often have to introduce new values and expressions (ghosts), but this

was perhaps first pointed out by Tseytin [161 in 1971. Our passive objects corresponds

to ghosts.

After this weakening of the proof and program connections, we can strengthen

them in another direction. Because during a complex problem solution we cannot

grant that our problem formalization will remain the same and because all formaliz-

ations of real domains can be viewed only as incomplete and partially correct, we

should grant maintenance of as large a part of our logic proof as possible when the

problem, program and formalization are changed. Moreover, the same demands are

useful in theoretical analysis. Here we may keep the corresponding logical and

program notions as close one to another as possible. It demands many mutual

co-ordinations of logic and programming notions which are tiresome and seem to

be small and unpromising. This is necessary for the success of the following informal

and formal investigations and analysis. But it is more prominent to prove strong

theorems without revision of the basic notions which proved their valuability in

theoretic logic investigations. We choose the more difficult way.

It was pointed out during the preparation of our very first work [12] in this area

that the level of corresponding program and proof construction is different. Program-

ming was a bit forward in the expressiveness and design of constructions, logic was

incomparable in the severe choice of only basic primitives. The first step (see [131)

was to develop a well co-ordinated programming language and logic calculus. None

of the achievements of either area can be sacrificed during this process. It becomes

possible to grant the following strong condition.

(2) Each construction of a program is the image of a single construction of the proof

Each active construction of a proof in turn generates only one construction of a program.

Sorts of (active) proof and program construction are in one-to-one correspondence.

This co-ordination level of proofs and programs is a good basis for deep theoretical

and practical invasions.

The second analogy gives a collection of more special realisations which are

nevertheless very important and enlightening (maybe even more valuable or prac-

tical). Now we list and illustrate them.

Constructive logic and computer programming 261

(3) (a) Proof rules correspond to program statements.

(b) Subproofs correspond to blocks and procedures.

(c) Terms correspond to basic type values.

(d) Formulas correspond to compound type values.

(c) Only elementary formulas which are parts of disjunctions can transfer into
a program (as conditions of loops and guards of guarded commands).

For example, the loop generation rule (2) corresponds to the loop statment

{%?I} while B do f od {Cr}. (7)

Here ?I and Q become comments to our program whilst ‘!I3 is used in the while

part of the statement and is explicitly used in our program.

Let us now consider another case. Functional formulas

Vx,...x, (t?l,&..*&‘u,*3y,...yk (L!3,&-&B3,)) (8)

correspond to procedures. xi can be interpreted as input values, y, can be understood

as output values. What is the role of %, and Bq? They cannot always be interpreted

simply as pre- and postconditions. This was the mistake made by Constable in his

first work [2]. For example, if ‘?I1 is in turn a functional formula, it is interpreted

as function parameter and realization of the whole formula becomes a functional

of second order. This consideration illustrates our analogies on variables and

formulas.

Now subproofs will be considered. First, a subproof is used while proving an

implication (constructive or not), say, to prove a functional formula. Here a subproof

becomes a procedure body, and the whole rule does a procedure declaration.

Assume % function f(a: a): b;
. . . begin
Prove B . . *

f:=b;

%*%I end;

When induction is used, the subproof of the induction step

(9)

Assume ‘?I(n)
. . .

Prove t?X(n+l)
(10)

becomes the loop body. AnaJogously for case analysis,

(w,v*.*v%Y~

Assume ‘%, . . . Assume %?I, (11)
. 4

Prove B Prove 8

the corresponding subproofs become part of the case of statement. If-then-else
conditional statement is generated by case analysis using ‘3 v +?l.

262 N. N. Nepejvoda

Summing up the previous considerations, we can claim:

(4) Natural deduction proofs are closer to programs than Gilbert or sequential ones.
Natural deduction proofs are characterized by the possibility of introducing

assumptions, to deduce consequences from these assumptions and to forbid further

use of assumptions and their consequences after our subgoal is reached. To reflect

this, the proof (like programs in most languages) has a block structure; its blocks

are subproofs; each subproof has its own assumptions which can be used only

inside it and maybe some other local objects; subproofs can be embedded and form

a subproof tree; the main proof is its root, and all blocks and procedures are

subordinated to the main program.

The last analogy is less common but very fruitful for logical analysis.

In this section we consider intuitionistic theories without functions. Thus, terms

are only variables and constants.

The most important classes of intuitionistic formulas according to their role in

program extraction are the following:

(1) Constructions:

VX, . . .x, (%*3y,. . .y,B(x, 9)).

(2) Higher order constructions:

Vx,. . .x, (% & %*3y,. . .y,%(x, F)).

(3) Classifications:

Vx,. . .X” (2ba,(n) v . * . v a,(a)).

(4) Criteria I:

vx,. . .xny,. . .yl (2x(x, y)*.%(Z)).

(5) Criteria II:

Vx,. . .x, WY,. . .Y/ %(x, v)*Qw).

(6) Criteria III:

Vx,. . .X” ((~,(X)~~~(X))~~,(k)).

(7) Rejections:

vx, . ..x. (~(x)Gd!3(~)).

(8) Connections:

vx,. . .x, (%(x)*%(Z)).

(9) Facts:

P(tr,. . ., t,) or iP(t,, . . . , t,).

Here 3, 5-8, Bi are conjunctions of atomic formulas, ‘8 is a conjunction of

constructions (maybe, of higher order also), Bi(Z) means that all variables of x

occur in all atoms of !B3,, ‘Bi(y”) means that at least one variable of y occurs in each

atom.

Formulas of the nine listed classes are called standard.

Constructive logic and computer programming 263

Example 1. l(O= 1) is a fact, Vxy (x =yJxc,v) is a connection, Vxy Vz (x <

z & z < y~x < y) is a criterion 1, Vxy (Vz (x E z+y E Z)JX c y) is a combination

of criterion II and criterion III, Vxyz (z > O+y > x - z v y < x + z) is a classification,

Vxy (y > 0*3z (y. z =x)) is a construction.

Each intuitionistic theory can be reduced to a standard one, preserving extracted

programs.

(5) Duringprogram extraction, constructions give usfunctions, higher order construc-

tions give functionals, classijications give conditional statements. Other classes of

formulas cannot generate any construction in the resulting program.

Moreover, criteria and rejections allow us to omit some constructions which are

necessary to prove the correctness of the resulting program but are useless during

its execution. So, they can turn some values or even pieces of proof into passive

ones, which have no images in the resulting program. Often the necessity to remember

these constructions leads programmers to the decision to write down something like

used criteria and rejections as comments to the program. They may write:

“Case when x > 0 cannot appear and is omitted”.

Connections cannot generate any program constructions and, in turn, cannot

make some potentially active constructions passive. They usually disappear com-

pletely from the program, and from its comments. But they form that “knowledge

base” which is necessary to understand the program and comments.

To end this section, we mention one comparatively simple result from 1978 (one

year after the beginning of our work) which at first proved the power of constructive

logical analysis. It had been proven that having a proof of a program we can

reconstruct a constructive proof which cannot be more than twice as long and which

allows us to extract a program for the same goal. So, if our specifications are strong

enough, the unique way to prove a program is to remember its construction.

4. Incomplete proof structures and programming

Practical constructive reasoning is almost always incomplete; and the whole proof

rarely can be transformed into a program. Thus, it is very interesting to develop

such proof fragments that are sufficient to reach our principal goal (e.g. to extract

programs from). These fragments help us (say) to avoid the problem of a full

automatic proof search. It is known that this last is theoretically undecidable and

very difficult in practice. We try to replace it by more realistic ones, for example

by enlargement of fragments created during man-machine dialogue up to proof.

Our considerations are based on the notion of a proof as a graph [141. Nevertheless,

no prior knowledge is presumed because our explanation is rather informal.

Graph structures can represent not only the result of a proof search but also its

various stages. This was stated in [14]. We start by considering a simple example.

264 N. N. Nepejvoda

Example 1. Let we consider a very simple calculus a:,,. Its formulas are classical

propositional formulas and constructive implications ‘~?l+% (read: “Each state 2l

can be transformed into state %“). The rules for constructive implications are the

following:

Let us add a slightly unusual rule: a gap rule:

. %=9-E

AGap

f 63%

(13)

?I=323 and cS+s\ are not connected here syntactically. We can conclude every

constructive formula from every other. It is obvious that each theory is Curry

inconsistent if a&= &,+Gap (i.e. each formula is derivable). a&, will be called

a calculus of incomplete proofs for OOO.

Nevertheless Oi,, is restrictive when it is considered as description of some stages

of proof search. We can conclude only constructive implications from constructive

ones. This means that all classical formulas used by incomplete proofs are completely

proved. Each application of the gap rule can be considered as a subproblem: derive

cS+B from ‘%+?I?. ai, can be interpreted as a calculus representing one of the

most general strategies of proof search: divide the problem into simple subproblems.

Similarly, we can construct incomplete proof calculi for a& and fl& by adding

the Gap rule. But here we must give new global conditions: there cannot be more

than one Gap in an incomplete proof; for ano + its conclusion must be the theorem;

for O,‘& its premise must be an axiom.

Example 2. Let we have the theory

A=+B, B-C, C=+D, DJE; HJE, JJH, IJJ;

AJK, K*L. (14)

The following are incomplete proofs of AJE in different calculi:

O$:

ZJJ J=+H

A”,‘: Gap Lzi Gap

Constructive logic and computer programming 265

f2;*:

AJB B*C

R,‘,:

A=+B

A*D
Gap

D+E

A*E (15)

It is intuitively clear that although CJE and AJE are derivable, the first

incomplete proof is “bad”; it contains a gap between IJH and C* E which

cannot be repaired. Second and third proofs can, of course, be enlarged up to a

complete proof of our goal.

So, we can define piece of a proof II in a calculus 4 as its full subgraph 0 such

that it contains a rule iff all its premises and conclusions belong to 0, and it contains

a structure vertex (subproof and so on) iff all its subordinated formulas belong to

0. If formula vertex 91 is a conclusion of the rule not belonging to 0, 2l is called

an entry of 0. If 8 is a premise of the rule not belonging to 0, ?I is called a result

of 0.

Now we can define the notion “2 is a calculus of incomplete proofs for 9”. Its

main properties can be outlined as follows.

Formulas of 2 can be considered as metaexpressions for ones of 4. Rules of&r

are divided into two classes: rules of .9 and gaps. Each correct application of 4-rule

n in the calculus 9 is transformed into its correct application in 4 by substitution

for all metaexpressions.

A relation “proof II of 9” is an enlargement of an $-proof 2. @(II, 2) is defined

such that there is an injective map + of $-rule applications of 2 into the same rule

applications of 27 and there is a piece O(6) of E for each gap rule 6 of I7 such

that its entries can be mapped one-to-one onto premises of 6. This results in

conclusions of 6, and there is a substitution for all metaexpressions occurring into

premises and conclusions of 6, resulting in corresponding information into entry

and result vertices of O(6).

Usually proofs of&t, viewed as an incomplete proof calculus for 9, are divided

into two classes: complete and incomplete w.r.t. 9. In most cases, the proof is complete

iff it does not contain gap rules. An incomplete proof is enlargable if it has an

enlargement.

Example 3. Our calculi L?&, 0,$, a& are incomplete proof calculi for &. The

first proof of Example 3 is not enlargable for our theory Th. The second and third

can be enlarged obviously.

A calculus of incomplete proofs 9 is adequate to a proof search strategy 9. If

each stage of the proof search according to Y corresponds to an incomplete proof

266 N. N. Nepejvoda

of 9 and if II is an incomplete proof of &t, corresponding to some stage of the

proof search resulting accordingly to Y in a proof E, and there occurs no backtrack-

ings on the way from I;T to E according to Y, then @(17,2). 2 is filly adequate to

9, if each incomplete proof of ,$ corresponds to some proof search stage of 3’.

For example, Sz,‘, and Sz,‘, are fully adequate for inverse and direct proof search

strategies, respectively.

For the first time incomplete proofs have been introduced for the natural deduction

intuitionistic logic to perform logic analysis of so called “structured gotos”, exit

operators or “continuations”. Here we outline this construction.

An & statement serves as an escape from some innermost procedures during

structured program execution if they become obsolete. For example, if we search

for data in deeply hierarchical structures and the desired data are found, all

introduced search trees, all search and access procedures are of no use; we may

return to the point where these data were requested.

Intuitionistic logic provides a good basis for structured functional programming.

It has helped us to discover many fine peculiarities of high order programming

(programming by using and introducing functionals of higher types; do not confuse

it with typeless functional programming). There are interesting logical analogies for

functionals, data flow, loops, recursion. . . Why not for structured gotos?

Let IPCo be the intuitionistic predicate calculus without v and 1. We introduce

an incomplete proof calculus EY’~ by adding the gap rule of the form

Ld
0 gap

d1

i3,. ..i,
where %?li are IPCO formulas and !Bj can contain metavariables. Though premises

and conclusions of this rule are completely independent as formulas, global condi-

tions imply that they belong to the same subproof. A subproof containing a gap

rule is called non-completed. Global conditions are extended by the demand that

each subproof can contain no more than one gap.

A 93’~ proof is complete if in each gap n = k, and there are substitution terms t

for metavariables such that after the substitution 21i = %i[xlt]. If such substitution

exists for a subproof and its subordinated subproofs then the subproof is completed.

Complete proofs can be easily transformed into 9V0 proofs.

9@, corresponds to a global top-down proof search strategy but allows for each

subgoal to combine forward and backward search strategies. To restrict ourselves

by forward search only, it suffices to demand that each conclusion of the gap is a

result of the subproof (99’~+ calculus).

99’~’ calculus allows us to find logic analogs of exit statements. Namely, a

subproof is to be developed until our current results (premises of the gap) can be

Constructive logic and computer programming 267

unified with the desired ones (subproof results which are determined by the FD

rule). But what happens if we deduce the desired results of a greater subproof?

This situation is very similar to a, a more global goal having been reached than

the current one. To finish the formalization of this feature, it is sufficient to introduce

the goal transfer rule (CT) (it was called in [151, slightly ironically, the good surprise

rule) which allows us to place the goals of the embedding proof into the embedded

one, and to define quasicomplete proofs, if each gap has as conclusions the whole

set of formulas subordinated to some goal of the current subproof or to a transferred

goal and its premises and conclusions are unified.

Proposition. ‘21 is derivable from 7h by a quasicompleteproof of IPL: zx% is a classical

theorem of Th.

So, exit and high order functionals are in some sense incompatible; exit can

destroy the structure of our arguments and lead us to inconstructivity when the

extracted solution cannot be executed correctly. It has been stated that transforma-

tion semantics cannot show this failure. The results of our analysis clarified some

roots of the errors in the ELBRUS system (its hardware supports high order

functional programming) and were taken into account by its designers.

There is one more important notion induced by graph proofs, proof fragments.

Vertices v of proofs are labelled by Inf(v). Let a partial ordering G be given for

information entities Inf(v). If we omit a formula preserving its free variables, it can

be considered as an example of s. Let 17 be a proof in a calculus 2. Graph 22 is

a fragment of 17 if there is an injective map rp of its vertex set V, into the vertex

set V,, and the type of v is the same that q(v) and Inf(rp(v)) 2 Inf(v) and there is

a path from cp(source(a)) into q (destination (cr)). If .$ is an algorithm totally defined

on pairs of graphs, then 2 is called a c-fragment of II, if 2 is a fragment of I7 and

&(z; n) = 0.

This formal definition is inspired by considering a fragment as a graph with some

vertices deleted and the information of the remainder weakened down according

to some rules (these last can be tested by 5). The resulting graph preserves in some

sense the structure of the whole proof (this is expressed by the demand on the

paths). It is natural to consider fragments as proofs in some generalized calculus

2” which can be constructed analogously to incomplete proof calculi. 5 itself is

described, as a rule, by outlining informally the decidable condition which is to be

tested.

Example 4. For each calculus %? there is a natural fragment calculus; its global

conditions are the same and all its information vertices are omitted. This calculus

will be called structure calculus for 72, and its proofs proof structures of %.

We can see here all the subproofs, rules and data flows.

Proposition. If the relation G is decidable, the problem whether 2 is a fragment of II

is decidable.

268 N. N. Nepejvoda

Definition 1. The problem of &correct enlargement up to proof in a generalized calculus

X is decidable for 2, if there is an algorithm A, which is total on derivations of 2

and a derivation 2 is processed into false; if it is not a &fragment of any proof 17

of .N, and into such proof n otherwise.

Definition 2. A is called a calculus of &skeletons for N, if the problem of &correct

enlargement up to proofs in X is decidable for .&-derivations, and each &fragment

of each proof of Jv is a &-derivation.

Let us consider the calculus obtained by weakening some rules of the intuitionistic

calculus 99 in the following manner. The functional formulas Vx (%(x)+Zly

%(x, y)) are to be given explicitly; all arguments %[x] t] can be omitted; all results

B[xlt] can be omitted also. The deduction rule FD (to prove functional formulas

by a subproof of 53 from ‘2I) can be weakened by omitting formulas %, %. Derivations

in this calculus are called typizable skeletons.

The enlargement problem is decidable for typizable skeletons.

This kind of skeleton can be considered as a way to make the problem of finding

data structures having the structure of function calls (the problem of typization for

a functional program) more precise. Each rule applying a functional formula defines

a call in an extracted program. All axioms are given; our goal is also given. So, the

omitted formulas define data types of values. Because these types can be easily

reconstructed, it is not reasonable to demand explicit data declarations in a functional

program. If actual and formal parameter types do not match, our program contains

a semantic error and this error can be detected automatically by our compiler. Thus

one of the main demands of structured programming - to specify types of all

variables - cannot be regarded as universal.

Let us now weaken the rules in another manner: we can omit the main premises

(functional formulas) and arguments ?l are to be preserved. Let the FD rule be

weakened by omitting all formulas, preserving only the structure of the subderiva-

tions; let the axiom generation rule be weakened by omitting its conclusion, an

applied axiom. The resulting calculus is called the calculus of argument skeletons.

The enlargement problem is also decidable for argument skeletons. Argument

skeletons can be considered as problems of synthesis of a functional program having

their data structures and the structure of data flow. It can be seen that these problems

can also be solved automatically. So, it is sufficient to give explicitly only one side

of the coin, whether functions or their arguments. The other side can be reconstructed

automatically. But you may remember that our arguments are based on the assump-

tion that all our functions (data) are completely specified in logical language.

What is the weakest fragment which can be regarded as a skeleton? We, obviously,

cannot give a precise answer, but it suffices only to give the proof structure.

There are no known lower bounds for the complexity of the structure enlargement

problem, but all known algorithms are more than exponentially hard (formula

Constructive logic and computer programming 269

unification is a difficult problem, and there are numerous backtrackings). This kind

of skeleton can be considered as formalization of the program analysis problem.

Finally, we can see that the problem of enlargement of fragments including gaps

is, of course, undecidable. But the problem of l-correct enlargement can be deci-

dable. For example, let our 771 consist of standard axioms. Let fragments contain

gaps, and let 5 test whether the proof piece substituted for each gap consists only

of criteria, rejections and connections. This is called a constructive skeleton.

Proposition. The problem of &‘-correct enlargement is decidable for constructive

skeletons.

Constructive skeletons can be interpreted as the formulation of program verijcation

problems. All constructions and classifications, giving us functions and conditional

statements, are given explicitly. We may only test conditions on their input and

output values.

5. Conclusion

These are only some insights into a strange new world, Applied Constructive

Logic. It is interesting not only due its new possibilities but as a domain demanding

unusual formalization techniques, hard logical considerations, and new insights into

old ideas.

References

[l] E. Bishop, Foundations of Constructive Analysis (New York, 1967) 284 pp.

[2] R.L. Constable, Constructive mathematics and automatic program writers, in: Information Processing

71, vol. 1, Amsterdam (1972) 229-233.

[3] R.L. Constable et al., Implementing Mathematics with the Nurpl Proof Development System (Prentice

Hall, Englewood Cliffs, NJ, 1986).

[4] H.B. Curry, The logic of program composition, Collect Logique Math., Paris A5 (1954) 97-102.

[5] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102.

[6] S. Hayashi and H. Nakano, PX: A Computational Logic (Cambridge, MA, 1988) 200 pp.

[7] S.C. Kleene, On the interpretation of intuitionistic number theory, J. Symbolic Logic 10 (1945)
109-124.

[8] D.E. Knuth, Algorithms in Modern Mathematics and Computer Science, Lecture Notes in Computer

Science 122 (Springer, Berlin, 1981) 82-99.

[9] R. Kowalsky, Algorithm = logic+control, Comm. ACM 22(7) (1979) 424-436.

[lo] G. Kreisel, Some uses of proof theory to improve computer programs, in: Logic Colloquium,

Clermond-Ferrand (1975).

[ll] P. Martin-L6f, Constructive mathematics and computer programming, in: L.J. Cohen et al., eds.,
Logic, Methodology and Philosophy ofScience, VI (North-Holland, Amsterdam, 1982) 153-179.

[12] N.N. Nepejvoda, A relation between the natural deduction rules and operators of higher level
algorithmic languages, Soviet Math. Dokl. 19(2) (1978) 360-363.

[131 N.N. Nepejvoda, On correct program construction, Voprosy Kibernet (Moscow) 46 (1978).

270 N. N. Nepejvoda

[14] N.N. Nepejvoda, Proofs as graphs, Semiorikai Informatika (Semiotics and Informntics) 25 (1985)
52-82 (in Russian).

[15] N.N. Nepejvoda, The good surprise rule and structured gotos, Semiotika i informatika (Semiotics
and Informatics) 23 (1984) (in Russian).

[161 G.S. Tseytin, Some features of a language for a proof-checking programming system, Lecture Notes

in Computer Science 5 (Springer, Berlin, 1974) 394-407.

[17] E. Tyugu and G. Mix, Justification of the structural synthesis of programs.

[18] J. Venn, Symbolic Logic (London, 1894).

