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We describe the large time behavior of solutions of the convection-diffusion
equation

u,—Adu=a-V{lul? "'u) in (0. ) xR®

with aeR¥and g 1 + /N, N> L

When g =1+ I/N, we prove that the large time behavior of solutions with initial
data in L'(R") is given by a uniparametric family of self-similar solutions. The
relevant parameter is the mass of the solution that is conserved for all 1. Our
result extends to dimensions N > 1 well known results on the large time behavior
of solutions for viscous Burgers equations in one space dimension. The proof is
based on La Salle’s Invariance Principle applied to the equation written in its
self-similarity variables.

When ¢ > 1 + /N the convection term is too weak and the large time behavior
is given by the heat kernel. In this case, the result is easily proved applying standard
estimates of the heat kernel on the integral equation related to the problem.
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1. INTRODUCTION

This paper is devoted to the study of the large time behavior of solutions
of the following convection-diffusion equation

u,—Au=a-V(|ul? ' u) in (0, o) xR¥Y (1.1)
w(0) = uye L'(R™). (12)

Integrating Eq. (1.1) over all of R" we obtain (at least formally; this will
be made precise below) that the total mass of solutions is conserved for all
time, i.e.,

j u(z,x)dx=f uo(x)dx,  Vi>0. (13)
RY

RY

Therefore, the total mass of solutions should play a crucial role when
describing their large time behavior.

On the other hand, multiplying (1.1) by any positive power of u and
integrating by parts we obtain the following decay estimate (see Proposi-
tion 1 below):

Vre[l, 0),3C,>0: D=1 1y < C,,  Vt=0.  (14)

(In (1.4) and in all that follows |||, denotes the norm in L'(R")). At this
level the very particular form of the nonlinearity in (1.1) is crucial. Indeed,
the integral of the right hand side of (1.1) multiplied by any power of u is
zero by Green’s formula. Therefore, for (1.1) we obtain the same decay
estimates (1.4) as for the linear heat equation. Let us mention that
estimates (1.4) were proved by M. E. Schonbek [26, 27] for more smooth
initial data by using Fourier transform and a suitable decomposition of the
frequency domain.

The estimate (1.4) suggests that the natural question to study is the large
time behavior of

MLy ) (1.5)
in L"(RY).
The answer to this problem is by now well known in several cases.
Let us consider first the linear heat equation with a=0, ie.,
u,—Au=0 in (0, o) xR". (1.6)
The solution of (1.6), (1.2) is given by
u(t, -)=G(t, ) * ug, (1.7)
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where G = G(t, x) is the heat kernel
Gt, x)=(4nt) " exp( — | x|*/41). (1.8)

Let M be the mass of the initial data

M= j gl x) dx. (1.9)
RY

When u,e L'(RY) it is easy to see that
(VBN () —up (D], >0 as 1o +x (1.10)

for every re [ 1, oo ], where u,, (¢, x)= MG, x).
On the other hand, if wu,e L' (RY; 1+ |x]) (ie, [gvluglx)l
(1+|x|)dx < oc) we have a faster decay rate

Vr21,3C, >0 ¢V 2y —uy ()], < C,. Ye>0. (L1

The estimate (1.10) answers the question in the linear case. Indeed,
(1.10) means that the difference between V"' ') and
MV 20 =10G() decays to zero in L'(R™) as ¢ goes to infinity. Therefore,
we can assert that the general solution of (1.6), for ¢ large, behaves like the
heat kernel. On the other hand, (1.11) ensures a decay of order r ~!? when
uge L'(RY; 1 + |x]).

The second case where the large time behavior of solutions of convec-
tion-diffusion equations is well known is the viscous Burgers equation in
one space dimension, i.e., (1.1) with N=1 and ¢ = 2. In this case, by using
the Hopf-Cole transformation, the convection-diffusion equation may be
transformed into the linear heat equation and one obtains (1.10) (resp.
(L11)) if uge LY(R™) (resp. if uge L'(R™; 1+ |x|)) with

. 2 o7 _§? -1
“.w(f-«\’)=t"exp<Tt—>{C‘w+aj exp<—4—\) ds} \ {1.12)

-

where C,,eR is a constant so that

j uylt, Xydx=M,  ¥i>0. (1.13)
R

This result has been extended to systems of viscous conservation laws in
one space variable by T. P. Liu [21] and L. L. Chern and T. P. Liu [6].
The stability of viscous scalar shock fronts has also been studied (cf. A. M.
'in and O. A. Oleinik [15] for the one-dimensional case and J. Goodman
[13] for the case of several space dimensions). Let us also mention the
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work by T. P. Liu and M. Pierre [22] on the large time behavior of solu-
tions for hyperbolic conservation laws in one space dimension.

In both cases, we may assert that the large time behavior of solutions of
(1.1) is given by the uniparametric family of particular solutions {u,,}.
These solutions are of self-similar form, i.c.,

wy(t, x) =t -V, (%) (1.14)

with a profile f,, = f,,(x) such that
j Sarlx) dx=M. (1.15)

It is easy to check that every function of the form (1.14) satisfies:

(1) Takes MJ, where & denotes the Dirac mass at the origin, as
initial value, i.e.,

u(t, x) —» Mo as t—-07" (1.16)

in the sense of measures, namely,

lim J ult, x) (x) dx = y(0) (1.17)

t—-0%

for every continuous and bounded function : RY - R.
(ii) It is invariant under the rescaling transformation

u,(t, x)=ANu(A%t, ix), (1.18)
ie.,
u; =u, vi>0. (1.19)

In fact, u is of the form (1.14) with f(x)=u(1, x} if and only if (1.18)
holds.

In the two particular cases above, Eq. (1.1) is also invariant under trans-
formation (1.18). Therefore, the large time behavior of the general solution
is described in terms of self-similar solutions of the problem that are also
source solutions since they verify (1.17).

The third case where the large time behavior for (1.1) is well known, is
when g is large enough. When gq is large, since ||u(f)|| p=gnv,— 0 as 1 > +00
(with a decay rate that does not depend on ¢), one should expect a weakly
nonlinear behavior, i.e., solutions of (1.1) should behave as the solutions of
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the linear heat equation. This indeed happens when N=1 and g>2 (cf.
[6,21]) and when N> 1 and ¢ =2 (cf. [20]).

Therefore, once again, the large time behavior is given by self-similar
functions but now they are not solutions of the full Eq. (1.1).

This type of result is also well known for Navier-Stokes equations (cf.
[16,25]) and for two-dimensional vorticity equations (cf. [L1]).

In order to understand when being of self-similar form is compatible
with being a solution of (1.1), let us observe that, if u solves (1.1) then u;
solves

u;, ,— Au; =" g . V(ju |4 uy) in (0, x)xRY (1.20)
Observe that when

q=1+1% (121)

(or a=0) Eq.(1.1) is invariant under the scaling transformation (1.18).
Note that when N=1, then ¢4=2 and we obtain the one-dimensional
viscous Burgers equation.

For g# 1+ 1/N, Eq. (1.1) is not invariant under the scaling transforma-
tion and we must distinguish the cases ¢g> 1+ 1/Nand l <g<1+1/N. We
shall answer the question for ¢> 1+ 1/N. The problem remains open for
l<g<1+1/N.

In the examples above, since the functions u,, describing the large
time behavior are of self-similar form, (1.10) and (1.11) are respectively
equivalent to

u, ()= f,, in L'(RMast- x (1.22)
and

A2 w1, x) = fa (), <C,. VAL (1.23)

Therefore, the large time behavior of ¥ may be understood in terms of
the behavior of u; as 4 — oc.

When ¢> 1+ 1/N, the power N(1 —q)—1 of 4 on the right hand side of
(1.20) is negative. Therefore, formally (this will be made precise below), the
convection term should vanish as 1 —» +oc.

As a consequence of these remarks we should expect the two following
results:

(a) Ifg=1+1/N, N> 1, the large time behavior of the general solu-
tion of (1.1) with initial data in L'(R") should be given by a uniparametric
family of self-similar solutions of the full equation. (This would extend to

580/100:1-9
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dimensions N> 1 the well known results on viscous Burgers equation
mentioned above.)

(b) If g>1+1/N, N=1, the large time behavior of solutions should
be given by the heat kernel.

The main aim of this paper is to state more precisely and to prove these
two results that were announced in [9].

In order to state the main result for the case ¢=1+ /N we must recall
the results by J. Aguirre, M. Escobedo, and E.Zuazua [2, 3, 4] on the
existence and uniqueness of self-similar solutions for (1.1): “If g=1+1/N,
for every M eR there exists a unique self-similar solution of (1.1) with a
smooth profile f,, = f,,(y) verifying

1 N .
—AfM—5y-VfM=5fM+a-V(|fMl"“fM) in R

such that {gw fa,(y) dy = M, f,, is of constant sign and decays exponentially
to zero as |y| = c0.”
Concerning the large time behavior we have the following result.

THEOREM 1. Assume g=1+1/N, N> 1. Let be uy= ug(x)e L'(R") with
M=f uo(x) dx. (1.24)
RN

Then the solution u=u(t, x) of (1.1)-(1.2) satisfies
(V= (1) — 1P (/O =0 as 1 4o (1.25)

Jor every 1 <r< 0.
Moreover, if uge LA(R"; exp(]x|?/4)) n L*(R") and M =0 then

(N IZ =2 ()], < Cppy V21 (1.26)

for every re[1, 0] and ¢>0.

The first statement (1.25) asserts that the general solution u=u(¢, x) of
(1.1) behaves like the corresponding self-similar one as t — +c0. We only
obtain the almost sharp decay rate (1.26) when the mass M = 0. Note that,
when N=1, (1.11) holds for every M eR.

Writing Eq. (1.1) in its similarity variables, the profile of a self-similar
solution becomes a stationary solution of the new equation. On the other
hand, (1.25) is equivalent to asserting that the transformed trajectories
converge to the equilibrium f,, as ¢ — cc. Therefore, when proving (1.25),
we shall work in the similarity variables and apply La Salle’s Invariance
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Principle. The precompactness of trajectories will be proved by working
on some weighted Sobolev spaces that are naturally related to the equation
in the similarity variables and that were introduced by M. Escobedo and
O. Kavian in [7, 8] (cf. also [1, 19]).

Concerning the large time behavior of solutions for ¢ > 1+ 1/N we have
the following result.

THEOREM 2. Assume q> 1+ /N and uge L'(RY) and let be
M=J uglx) dx.
RY
Then, the unique solution u=u(t, x) of (1.1)-(1.2) verifies

(VB (1) — MG, = 0 as t— +xC (1.27)

for every re[1, «wo].
Moreover, if uge L{(R¥; 1 + |x|)n LYRY) then

Vre[l, o], 3C, > 0: " |u(t) — MG(1)|, < C, (1.28)
with
(N2)(1—1/ry+ % when q>1+2/N
a(r,q)=< (N2)(L—1/r)+3—¢ when q=1+2/N for every e >0
1—(N/2)g—1/r) when 1+ 1/N<qg<1+2/N.
(1.29)

We prove Theorem 2 directly applying standard estimates for the heat
kernel and decay estimates (1.4) in the integral equation associated with
(1.1)=(1.2).

Observe that alr, q)>(N/2)(1 —1/r) for every re[l,oc] and ¢>
1 + 1/N. Therefore Theorem 2 makes more precise the large time behavior
of u than the first estimate (1.4) does. Therefore, roughly, Theorem 2
asserts that as t — oo, solutions of (1.1)(1.2) behave like the heat kernel.

Note that when ¢ > 1 4+ 2/N we obtain (1.10), namely, the same behavior
as for the linear heat equation. When 1 + I/N<¢<1+2/N we obtain a
lower decay rate a(r, g) < (N/2)(1 —r) + 1 and we do not know whether it
is sharp.

The assumption uye LY(R") is probably unnecessary but we need it for
technical reasons.

The nature of the behavior of solutions when 1 < g <1 + 1/N seems to be
completely different and none of the parabolic techniques we shall develop
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here seem to apply. The large time behavior of solutions for this range of
g remains open.

Let us also mention that combining the methods of [8, 12, 19] with the
techniques of this paper we may also study the large time behavior of
solutions of convection-diffusion equations with absorption terms like

u,—Au+ul? tu=a-V(ul‘ " u) in (0, c)xR¥Y

with p> 1 but this will be done in a future paper.

Let us also mention the works by S.Kamin and L. Peletier [17, 18],
where the large time behavior of degenerate parabolic equations with
absorption is studied. As far as we know, the large time behavior of
degenerate parabolic equations with convection terms is unknown.

The rest of the paper is organized as follows. In Section 2, for the sake
of completeness, we give an existence and uniqueness result for the Cauchy
problem (1.1)—(1.2) as well as the proof of estimates (1.4) and some other
estimates for Vu. In Section 3 we recall some facts about Eq. (1.1) written
in its similarity variables and about the weighted Sobolev spaces where it
is well posed. We also prove some a priori estimates, that will ensure, in
particular, the precompactness of trajectories. In Section 4 we give the
proof of Theorem | and in Section5 we prove Theorem 2. Finally, in
Section 6 we extend Theorems 1 and 2 to convection-diffusion equations
with more general nonlinearities of the form

u,— du=a-V(g(u))

and we also consider initial data that tend to a constant state as |x| — oo.

2. THE CaucHY PROBLEM: EXISTENCE, UNIQUENESS,
AND DECAY ESTIMATES

In this section we give a global existence result and some decay estimates
for solutions of (1.1)—(1.2) with initial data in L'(R"). Let us mention that
similar decay rates were proved by M. Schonbek [27] by different techni-
ques and for more smooth initial data.

PROPOSITION 1. For any aeR”, ¢> 1 and initial data uye L'(R") there
exists a unique classical solution ue C([0, 00); L'(R")) of (1.1)-(1.2) such
that

ue C((0, oo ); W*#(RY))n C'((0, o0); L”(R"))

Jfor every pe (1, ©).
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This solution satisfies the following decay estimates

(i) For every pe [, 2) there exists some constant C,= C(p. lugli\)
such that

(IO, < Cyr 2 v

(2.1)
Hiu(O < Hluoll 1 Vr>0.

(ii) If uge L"(RY)n LP(R™) with pe (1. x¢), then

()], (it Nutgl ;278507 = 1) VI 0 >0 (2.2)

for some C,=C(p, llul ).
If uge L'(RY) A L=(R") then

(s < llwoll .., Ve>0. (2.3)

(ili) If g=141/N, uge L'(R") and t,>0 there exist some constants
C, =Clluglly, te) >0 and C,=C(p, luol, to) such that

lu(D) < Ct7™, Viz, (2.4)
and
IVu(e)l, < Cr ~IN=1P =120y g (2.5)
Jor every pe[1, o]

Remark 1. The way in which the different constants in the estimates
(2.1}(2.5) depend on the various parameters will be made explicit on the
proof.

Remark 2. 1f g=141/N and uye L'(R") estimate (2.4) holds for every
t>0, i.e, there exists some constant C, = C _(|luyll,) such that

lu® . <Ct- ¥ ¥r>0. (2.4b)

Proof. We proceed in several steps. First we consider the case
upe L'(RY)n L=(R") and prove the estimates above. Then we consider
the general case u,e L'(R").

Step 1. Suppose uge L'(RY)n L=(R") and let us consider the integral
equation

u(t)=G(t) * u0+j[ a-VG(t—s) + (lu]? " u(s)) ds, (2.6)
0

where G = G(t, x) is the heat kernel and * denotes the convolution in the
space variables.
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Let us introduce the operator
[o(u)]1(r) = G(z) * u0+f[a-VG(t—s) * (u]? " u(s)) ds.
0

Applying Banach fixed point Theorem to ¢ in the following closed subset
of C([0, T1; L'(RY)n L=(RY))

B={ueC([0, TH L' (RM) n L(R)): sup (Ju(0), + Jul)) < R}
<t<T

with R>0 large enough and 7> 0 small enough we deduce that ¢ has a
unique fixed point in B. Therefore, the integral equation (2.6) has a unique
local (in time) solution u = u(¢, x) in B.

This is by now a rather standard procedure and for brevity we shall skip
the details.

The solution u=u(t, x) of (2.6) solves (1.1) for re(0, T). Classical
regularity results allow us to prove that

ue C((0, T); W2*(R™)n C'((0, T); L°(R")) (2.7)

for every pe (1, o).
This solution may be extended to a maximal time interval [0, 7,,,) and
it will be global in time (i.e., T,,,, = o0) if the following estimate holds

sup  (Jlu()]y + lu(2)] . ) < co. (2.8)

te [0, Tmax)

Since Vu(t)e L?(R") for every pe[1, ©] and te(0, Tn,y), a simple
density argument shows that

f a-V(jul?" ult, x)) o(u(t, x)) dx =0,  Vte(0, Tny)  (29)
RN
for every continuous function ¢ € C(R). By an approximation argument

(2.9) may be extended to ¢(s)=sgn(s), (s)=s" and ¢(s)=s5".
On the other hand, since u(7) e W>?(R") for t> 0, we have

j du(t, x) o(u(t, x)) dx = —j o' (u(t, x)) |Vu(t, x)|* dx, Ye>0
RY RN
(2.10)

for every ¢ € C'(R). In particular, if ¢ is nondecreasing

f Au(t, x) p(u(t, x)) dx <O0. (2.11)
RY
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By density, inequality (2.11) may be extended to o(s)=sign(s) and

o(s)=s". .
Multiplying Eq. (1.1) by sgn(u(z, x)) and integrating in all of R" it
follows

d
4 2.12
= jRN u(t, x) dx <0, V1€ (0, Toas) (2.12)

and therefore

Hu(t)”lgnu()ul! Vte(os Tmax)' (213)

Now let m=|u,l .. Multiplying Eq.(l.1) by sgn(u—m)* and
sgn(u +m)~ we obtain

d

d
EJRN(u—m)Jr(t,x)dst and EL» (u+m)~ (1, x)dx <0

and therefore
lu()ll . <m=luoll .,  VI€(0, Tpue) (2.14)

Therefore, estimate (2.8) holds and the solution u=u(t, x) of (1.1)-(1.2)
is global in time, i.e., T, = 20 and

ue C([0, 0); L'"(RY)~ L™ (RM)). (2.15)

As it was mentioned above, by classical regularity arguments we deduce
that

ue C((0, 0 ); W2P(RY)n C'((0, 20); LP(R™)) (2.16)

for every pe (1, o).
On the other hand (2.13)-(2.14) provide the estimates (2.1b) and (2.3)
claimed in the proposition.

Step 2. Let us now prove the decay rates for the L”(R")-norm.

We need the following “interpolation inequality.”

LEMMA 1. For every pel2,o0) there exists some constant C=
C(p, N)>0 such that

ol P =D+ 2PN =D C ol M0 V(0 2 (2.07)

for every ve W>?(R")n LY(R"Y).
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Proof of Lemma 1. We distinguish the cases N=1, N=2, and N> 3.
When N=1 we have

ol <2 (ol ol (2.18)

Applying (2.18) with v = |u|”?, it follows that

ful 4 I |u|p/2”4 2y |12
x = < ul? NE 219
2 flulls 21 |2 [l Clael %) el (2.19)
On the other hand
a7 =D < Jul %l 3, (2.20)

Combining (2.19) and (2.20), inequality (2.17) follows.
When N =2 the following inequality holds (cf. [5, p. 1657).

o3 < ol 36 -5 1Voll3. (2.21)
Applying (2.21) with v = [u|?? it follows that
lult 25 < flaell 240~ 1) IVl #2113 (2.22)

and, in particular, for r=1+ 1/p we have

IIV(IuI""Z)H%;—p—”ﬂﬁI—i—. (2.23)
(p+1) llul,
On the other hand
laall 27 =D Yl 2 ] 102~ 0, (2.24)

Combining (2.23) and (2.24), inequality (2.17) follows.
When N 2 3, by Sobolev’s inequality we have

ol %N_.’(Nfz) < Cy IVoll3.
Applying this inequality with v = |u|?? we obtain that
lull 2psn— 2y < Cn IVl 72113 (2.25)
On the other hand, we have the following interpolation inequality

R L Sl P ) (226)

Combining (2.25) and (2.26), inequality (2.17) follows. The proof of
Lemma 1 is now completed.
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We multiply Eq. (1.1) by |u|”"?u with p>2. Integrating in R" and
using (2.9), (2.10) we obtain that

d - 4(p—1)
E/?JR.« lu(t, x)|7 dx +

j‘ IV(ju(t, X)|? %% dx =0.
R.\r
Applying (2.13) and (2.17) it follows that

Lo+ Ju(py gt 128 <

”uO” lZp,Nlpf 1y

and integrating this differential inequality we obtain that
()i, S (Cpt + gl 27 HP =) M2 =i v >0 (2.27)

with C, = C/l|ugl 27~

This is the estimate (2.2) in the statement of the proposition for p > 2.
When pe (1, 2), (2.2) follows by linear interpolation from (2.1b) and (2.27)
with p=2.

Let us now consider two distinct solutions u, ve C([0, ¢ ]; L'(R")n
L*(R™))} in the class (2.16) associated to initial data u,, voe L*(RY)N
L'(R"Y). We multiply the equation verified by u—rv by sgn(u—v) and
integrate on all of R, We obtain

d

_ . )
= jm lu(t, )= o(z, x)| dx <0,  Vi>0 (2.28)

and therefore we deduce the following L'(R")-contraction property
flu(e) — (D)l < lug—voliy, Vi 20. (2.29)

Step 3. Let us now consider a general initial state u,e L'(RY). We
approximate u, by a sequence {u,,} <= L*(R")n L'(R") such that

Uy, — U in L'(RY). (2.30)

Let u,=u,(t, x) be the solution of (l.1) with initial value u,,.
Combining (2.29} and (2.30) we deduce that {u,! is a Cauchy
sequence in C([0, «o); L'(R™)).

Let u=u(t, x)e C([0, oo ); L'(R™)) be the limit of {u,} in C({0, xc):
LY(R™)). Clearly, u(0, x) = uy(x).

On the other hand, from (2.27) we deduce that

||ll,,(t)||p$ (Cp‘,,[ + ”uo.n“;zpu’v(p*— ll)l - N2¥L - 1 p)y

<(C, 1) NPy (231)
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with C, ,=C/lluy [ #/¥'?~" and therefore, in particular, for any >0,
{u,(t)} is bounded in L?(R") for every pe[1, o).

Since {u,(r)} converges in L'(R") to u(t), we deduce that u,(t) - u(t) in
L?(R"™) for every pe[1, cc) and ¢>0.

This allows us to pass to the limit in Eq. (1.1) satisfied by u, and to
deduce that the limit «=u(r, x) also satisfies (1.1). On the other hand,
passing to the limit in (2.31) we obtain (2.1a).

Standard regularity arguments allow us to prove that u is a classical

solution verifying
ue C((0, o0 ); W>?(RY))n C'((0, 0); L7(R"))

for every pe (1, o). The L'(R")-contraction property (2.29) also extends
to this solutions. The uniqueness of solutions is a consequence of (2.29).

Step 4. Let us now prove the estimate (2.4) when ¢> 1+ 1/N.
By construction of ¥ we have

u(2t) = u(t + 1) = G(1) * u(t)+j a-VG(t—s)* (|u]*" " uls+1)) ds.
V]
Taking L=(R”)-norms and using (2.1) we obtain

420l o NGl Nu(2)]ly + lal fol IVG(t—s)I, llu(s + D)2, ds
S Ct™"2 Jlug|
+al CCY, fo (=) "N =D =12 (g 4 py(=N2Xa =1 g
SClugll, t=*+Clal t'2-W2a >0
if r>1 (r'=r/(r—1)) is such that (N/2)(1 — 1/r)+ 3 <1 since
IG()l. <Ce=M2,  ¥Yi>0; |[VG(2)]|, < CeMDU—1N=121 ¥ > (.

Therefore,

1(20)] ., < C(e=M2 + 0= N2y gy, (2.32)

Clearly, (2.32) implies (24) (resp. (24b)) if g>1+1/N (resp.
g=1+1/N).

Step 5. Finally, let us prove estimate (2.5) when ¢ = (N + 1)/N.

For this, define u; =u,(¢, x) as in (1.18). As it was said in the Introduc-
tion, u, satisfies (1.20) and therefore for 7 > 0 fixed,
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u(t+1)=G(1) * u(r) (233)
+aMt et J a-VG(t—s)* (Ju* " us+ 1)) ds
0
Vu (14 1) =VG(1) * u,(1) (234)

AN ] jla-VG(t—s) « V(a4 tu(s+1))ds
4]

for every t=>0 and 1> 0.
Taking LP(R")-norms in (2.34) we obtain

4

IVt + D)), S C ) 1t~ ¥ 200 =012
+C|a| AN|l*q)+qu.0 (t__s)rl.l ||u,-.(s+r)l|‘!;‘

x [Vu,(s + 1), ds

g C ”uO“l t(~NuZJ(I —1py—12

+Clalg [ (=5~ V(s + 1), ds (2.35)

“o
for every r>0 and 4> 1. To obtain (2.35) we have used the fact that
(D) = (A2 < ol
and
fu s+ .. <C,,  ¥s20,Vix1

which is an easy consequence of (2.4).
Applying Gronwall’s Lemma in (2.35) with p=1 we deduce for =1,

IVu,(20), <C,, Vixl

which is easily seen to be equivalent to (2.5) with p=1.
Now, taking L7(R¥)-norms in (2.34) we obtain

IVu,(t + 1)l , < C llull NN ey = L2 (2.36)

+Clalg| (1=s) ™3P T4 0)f, ds
0
Combining (2.5) with p=1 and (2.36) we deduce that
Vu,(21)) ,<C..  Viz1l
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for every pe[l, N(N—1)), which is equivalent to (2.5). Iterating this
argument (2.5) can be proved for every pe[1, «c].

The proof of Proposition 1 is now completed.

3. THE CONVECTION-DIFFUSION EQUATION
IN THE SIMILARITY VARIABLES

Suppose that g= (N + 1)/N. Let uge L'(RY) n L*(R") and u=u(1, x) be
the solution of (1.1)-(1.2) we obtained in Section 2. Let us define the
function

SN2

u(s, y)=e"u(e’ — 1, e*?y), Vs=0, VyeR" (3.1

By a simple calculation one sees that v satisfies

{US—AU—%}"VU=(N/2)0+0-V(|U|1’N v) in (0, o) x RY 52)

v(0) = ug.

Since wue C((0, ©); W*P(RM))n CY(0, ©); LP(RY)) for every
pe(l, o), it is easy to see that v belongs to the same class.

On the other hand, from (2.2), (2.4b), and (2.5) it follows, for every
50> 0,

{IIU(S)HL,&C(P, So)  Vs2Zso,Vpe[l, ] (33)

o). <Cor Y520

(In (3.3) by ||-|l,., we denote the norm in W' #(R").)
Let us now define the following weighted L? and Sobolev spaces,

LK) ={ £ 1 Vo= [ 1007 Ky | <o,

where K(x)=exp(|x|%/4).

(a) For p=2, L*K) is a Hilbert space and the norm |-z« is
induced by the inner product

(fs g)=f J(x) g(x) K(x) dx.
R.N
(b) Fork=12, ..,

Hk(K)={f€ L*(K): “.f”H"(K)=[ Z ”Daf”%ﬁ(l():l J-< oo}.

la] <k
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By interpolation we may define H°(K) for every s >0. An important result
for all the following is that the embedding from H*(K) into L*(K) is com-
pact for every s> 0. Using this compactness one can prove the following
inequality (cf. [7])

Ve>0,3C.>0: [ fll ;i e NS N+ Coll f1as Vfe H'(K). (3.4)

It is clear that the operator

Lf= —Af-%y-Vf= —%div(KVf)

is self-adjoint on L%(K). Now, if we consider L as an unbounded self-
adjoint operator defined on L*(K) then, D(L)= H*(K) (cf. [19]).

By the compactness of the embedding H'(K)— L*(K) the inverse of L,
L', is bounded and compact from L*(K) into itself. The sequence of
eigenvalues of L is

_ N+k-—1

A
k 2 ’

k=1,2,3,... (3.5)

The first eigenvalue, N/2, is simple and the corresponding eigenspace is
spanned by K ~!(x). We shall call

eitsr=carp - )

with ¢ >0 such that [gv@,(x)dx=1.
The operator L is an isomorphism from H'(K) into its dual (H'(K))*
and [[Vo|| .2, defines a norm in H'(K), equivalent to that given above.
Let us call S, the analytic semigroup generated by L — (N/2)I on L*(K).
This semigroup is given in the following way (cf. [19])

Vge L¥(K), ¥s>0,VyeRY;  (S,(s)g)(1) = eV AGle* ~ 1) x g)(e* ).

Observe that, formally, the operator S, acts in the same way in L*(R")
as in L*(K). Now, since u satisfies Eq. (2.6) then v satisfies

v(s)=S,(s) uo+f Sy(s—0a)a-V(|e|"" v(e)) do. (3.6)
0
Let us now prove the following:

PROPOSITION 2. Let be g=(N+1)/N, aeR" and uye LY K)n L*(R").
Then if u is the solution of (1.1)-(1.2) and v is given by (3.1) we have

ve C([0, +:); LAK))n C((0, oc ); H(K)) n C'((0, oc); L*(K)).
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Proof. As it was said above, v satisfies the integral equation (3.6).
Taking H'(K)-norms in (3.6) we obtain

0@ sy < (1 +5712) Jlug LZ(K)+f0 [Sy(s—0)a V(o] o(0) g1k, ds
(3.7)

since S,(-) is a semigroup generated by a sclf-adjoint operator and
therefore

”S*(S)U”LZ(K) < ||U“L2(K);
1
“S*(S)UH HZ(K) < <1 + ;) “U“ LZ(K)’ VS > O, Vv € LZ(K)
and by interpolation
IS ()0l 1ky < (1 +572) |[vl] 2405 Vs >0, Yoe LX(K).
Using (3.3) the last term in (3.7) may be estimated as follows

[ 1545 = a)a- V(1 (o))l e do
<glal [ (1+(5=0)"") 10]""(0) Vo(0)l ey do
<qlal [ (1+(5=0)"") (o) 4" V(o) 2 do
<CY%lal [ (1+(5=0) ") 1o(6)l sy do (38)

Combining (3.7) and (3.8) and applying Gronwall’s Lemma we obtain

oS iy S Cr(L+5~ 112) Nuoll L2k Vse(0,T) (3.9)

for every T>0.
The fact that ve C((0, o0 ); H'(K)) follows in a standard way.
We now estimate the L?(K)-norm of w = v, that satisfies, for every >0,

w,—Aw—1y . Vw=(N/2)w +ga-V(jv]|"V w) in (1, 0)x RY

w(t)=w,=dv(t) + 3y -Vo(r) + (N/2) v(t)
+a-V(jo(t)| "V v(t)) € (H'(K))*
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and therefore

wis+1)=S,(s)w.+q J S, (s—0o)a-V(||"" w(a + 1)) do.
0

Taking L*(K)-norms in this identity we deduce

Iwis+ ) < (1 +571l2) Wl ervemny

+ |al q f (L+(s—0) ") ol (6 + 1) wlo + 1)l 2x) ds
Y0

since

HS*(S)U“ i € (1 +5_m) ”U”(H‘(K))‘ﬂ Vs>0,Vve (HI(K))*
and applying Gronwall’s Lemma we obtain
w(s + Ol L2k < Cr(L+57"2) Iw ke Vse (0, T) (3.10)

for every 7> 0.

Therefore, v,(s)e L*(K) for every s>0. The continuity of the map
se(0, 00) - v(s)e L*(K) follows in a standard way.

We finally observe that

1 N " ”
Lv= ~—Av—§_v-Vv:iv—vs—i—a~V(lv|‘“’” v)e C((0, w); L*(K))

and therefore ve C((0, oo ); H*(K)).

On the other hand, ve C([0, o0); L*(K)). Indeed, since u,e LK),
S.(5) uge C([0, o0); L}(K)) and from (3.3) and (3.9) it is seen that the
integral term on the right hand side of (3.6) belongs to C([0, o0 ); L*(K)).

The proof of Proposition 2 is now completed.

As it was said in the introduction, any self-similar solution u of (1.1) with
g=1+1/Nis of the form

u(t, xy=1t""?%f (;), {3.11)

Vi
where the profile f = f(v) solves the elliptic problem

1 N o
~Af =5 y-Vf =5 f=a-V(f1""[)  inR% (3.12)

The structure of the set of solutions of (3.12) in H'Y(K)n L™(R") was
studied in [4]. The following result was proved.
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THEOREM 3 [4]. Let be MR, acR”™. Then there exists a unique
solution f,, € H*(K) n L=(R") of (3.12) verifying

f JSuly)dy=M.
RA

Moreover, fi,€ CZ(RY), fi(y) decays exponentially to zero as |y| =
and f,, is positive if M > 0.

On the other hand by definition (3.1) of v it is easy to see that

lo(s) = farll, = N2 (e — 1) — upge’ — 1),

lo(s) = farll o« = € Jule* = 1) = upgle’ = 1)l

where u,, is the self-similar solution associated to the profile f,,, ie.,

it =075, ()

Therefore,

lim (N0 (1) —up(1)l], =0 (3.13)

if and only if
lim Jjo(s)— full,=0. (3.14)

5 — O

Let us observe also that f,, solves (3.12) if and only if it is a stationary
solution of (3.2).

Therefore, proving (3.13) for u is equivalent to prove that its corre-
sponding trajectory v converges to the equilibrium f,,. In the proof of
Theorem 1 we shall adopt this second approach and apply La Salle’s
Invariance Principle. For this, we shall first prove the precompactness
of the trajectory {v(s)},5o in L?(K) and then we shall construct a suitable
Lyapunov functional.

4. THE SELF-SIMILAR LARGE TIME BEHAVIOR

This section is devoted to the proof of Theorem 1.
We proceed in three steps. In the first one we prove (1.25) for initial data
upe LA K)n L*=(R"™). In the second one we extend it to uge L'(R¥). In the
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last one we prove the optimal decay rate (1.26) for uge LX(K)n L™ (R")
and M=0.

Step 1. Let uge L*(K)n L*(R"). In the following proposition we
establish the precompactness of the trajectory {v(s)}, o in L*(K).

PROPOSITION 3. Let g=(N+1)/N, uge L*(K)n L*(R"), u=u(t, x) be
the solution of (1.1}~(1.2) and v=1uv(s, y) be the solution of (3.2) given by
(3.1).

Then, v(s)e L™([1, oo); H'(K)) and therefore {v(s)}.., is relatively
compact in L*(K).

Proof. We first observe that

M=J v(s, .V)dy=f ug(y)dy., V520 (4.1)
RY RN

Let ¢, =cK ™! be the first eigenfunction of L introduced in Section 3.
Observe that

(h, )= '[RN h(x) @,(x)K(x)dx=c Jﬁm h(x) dx.

Therefore, every function he L*(K) may be written as A=mq, +h with
he E{ (the orthogonal of E, in L*(K)) and m = [ v h(x) dx.
From (4.1) we deduce that

v(s)=Mep, + i(s), Vs=0 (4.2
with d(s)e E{, Vs = 0.
On the other hand, since Lo, =(N/2) ¢,, the function ¥ satisfies

5S+(L—g]—)5=a-V(|vlq'lu) in (0, c)x R", {4.3)

Decomposition (4.2) shows that it suffices to establish the boundedness
of #(s) in H'(K). For that, we shall use the fact that the second eigenvalue
of L is (N+ 1)/2 and therefore

N 1
((L——z‘ I) w, W) ?m 1wl 310k Vwe HY(K)nE:, (44)

where (-, -) denotes the duality pairing between (H'(K))* and H l(K_).
We multiply Eq. (4.3) by vK and integrate in all of RY. Using (4.4) we
obtain

580,100-1-10
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| &

1) 22k, 1) 2141

1
s +N+1

N o=
[

<LN‘1-V([U|1/N (s, y)) v(s, y) K(y)dy

<lal g llo(s)] 4" [ 1Vots, »)l Io(s, y)I K(») dy

<lal g v(s)ll :éN IVo(s)|l LUK) llo(s)] LAK)"

Using (3.3) and applying (3.4) with ¢ >0 small enough we obtain

. | S
151 22 k) + == N3() 3110

2ds N+1
l 2 2
<4(N+ 1) ”U(S)||1-11(K)+C vl 1.2
1
S——_ ] 2 A V 2 .
2(N+1)I|U(S)”H1(K)+C s=0

Since

N+1 R
VWl 725 = — Wi, Vwe HYK)nE}

we obtain that

d  _ [
- 180 22k t3 156N 2y < C, Vs =0,

Integrating this inequality we obtain ve L™(0, co; L*(K)). In order to
obtain the estimate in H '(K) we observe that v satisfies, for 7 > 0 fixed, the
following integral equation

o(s+1)=S,(s)v(r)+ -[Os S (s—a)a-V(|v|'"" v(a + 1)) do.
Taking H'(K)-norms we obtain
lo(s + T a1y S (L + 572 No(0) L2k
+lal [ (14 5= )" IV ™ o6 + )l s do
<572 (0 2k

+1al g€ [ (14 (5= 0) ™) Voo + )l ey o
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Applying Gronwall's Lemma, using the fact that ve L™ (0, oo L*(K)), and
then taking s =1 we obtain that

”U(1+T)“H1|K;<C, vr=0.

Therefore, ve L*([1, o ); H'(K)).

The compactness of the embedding H (K)yc L*(K) ensures that
the trajectory {v(s)},., is relatively compact in L*(K). The proof of
Proposition 3 is now completed.

Let us introduce the w-limit set of u, in L*(K),

w(uy) ={ge L*(K): 35, — oo such that v(s,)— g in LK)}

Assume for a moment that w(u,) is contained in the set of stationary
solutions of (3.2), i.e., in the set of solutions fe H'(K)n L*(R") of the
elliptic problem (3.12).

Then, necessarily, w(ug)= {3y} with M = [gx uo(y) dv and therefore

v(s) = fa in L}(K)as s — o, {(4.5)

Indeed, since

J o(s, yydv=M, Vs>0
RY

and the embedding L?*(K)< L'(R"™) is continuous, for every ge w(u,) we
have

J gy)ydy=M (4.6)
R.’\

and we know from Theorem 3 that there exists a unique solution of (3.12)
verifying (4.6), namely g = f,,.

From (4.5) and the fact that {v(s)},., is uniformly bounded in
W' »(R") for every pe[1, oo ] we deduce that

v(s) = fu in L"(R™)

for every re [1, o] and this is equivalent to (1.25) as we pointed out in
the end of Section 3.

Let us now prove that w(u,) is indeed contained in the set of solutions
of (3.12). For this we use La Salle’s Invariance Principle, defining first of all
a suitable Lyapunov functional.
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Suppose that M >0 (when M <0 it suffices to replace » by —v). For any
5§>0, let be

Q(s)={yeR"v(s, y)> fuly)}.

By the regularity of v(s) and f,, (both are continuous in R¥ for s> 0),
the set Q(s) is open.

One can also suppose that 2(s) # & for every s> 0. Indeed, if 2(s)) = &
for some s, >0, since

[ v ydy=] fuly)dr=M, Vs>0 (4.7)
RN RN
we deduce that v(sy) = f,, and therefore v(s) = f,, for every s> s,.
Define then
O(s)=| (s ¥) = ful¥)) . (48)
Q(s)

As was proved in [4], the mapping M — f,, is continuous from R to
L*(K), therefore @ depends continuously on v.

We want to prove that @ is a strictly decreasing function on R*. For
this, observe first that w(s)=uv(s)— f,, verifies

1
w,—dw — 70 Vw

=gw+a'v(lv|q7‘U—lfM|"'1fM) in (0, o) xR". (4.9)
Since w*(s)e H'(K) and a-V(|v|? ' v(s)—|fal’ ' fr)e L} (K) for
every s >0 we have

dd(s
d( ) _o(s I={  At(s, 1)~ fuly)) dy. (4.10)
A) 2(s)
Note that the right hand side of (4.10) is well defined since wv(s),
fu€ H*(K), and therefore A(v(s)— f,) € L'(RY).

If the boundary of Q(s) was smooth the nonincreasing character of &
would be proved by a simple integration by parts in (4.10), ie.,

0
[ a0 )= futm)dy=] = (o(s, 3)=fuly)) do(y) <O0.
Q(s) Q(s) OV

However, since in general €(s) is not smooth, by using Sard’s Lemma we
approximate Q(s) by smooth sets of the form

Q,.(s)={yeR" v(s, p)> frs+ .}
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with ¢,> 0 such that ¢, —» 0. The formal argument above may be applied
rigorously to €,(s) and we deduce

J‘ A(v(s, ¥)— far( 1)) dv <O. (4.11)
Qus5)

Passing to the limit in (4.11) we conclude that @ is nonincreasing (see
[4] for the details of this argument).

In order to see that @ is strictly decreasing, let us suppose that there
exist 5, > s, >0 such that @(s,) = ®(s,). Then integrating (4.10) in [s,, s,]
we obtain

| L A5, ¥)— Fal3)) dv ds=0. (4.12)
S1 (s)

Now, let be h(s, y)=(v(s, ¥)— fal¥)) Zols, »), where Q={(s, y)e
(51, 5) x R v(s, ¥)> fi{(»)} and where 2, denotes the characteristic
function of Q. We want to show that h(s)=0 for every se(s,, s,) (which
would imply that Q is empty, giving a contradiction) by means of a unique
continuation principle. We shall use the same argument as in [4] and
therefore we shall only sketch the proof.

First, by using Sard’s Lemma and Green's formula. from (4.12) we
deduce that A(s)e H*(R") for every se(s,, 5,) and

Ah=A(v ~ fry) o (4.13)

Then, from (4.9) we obtain

N ,
ho+Lh==h+Vh+Wa-Vh in (s, 52) xR (4.14)

with 7= Vo, W= WZ,, and

el (s, ) — 1 fadd 1 ()
o(s, ¥)— far(3)

0 if v(s, ¥)=fal )

a-Vo(s, ¥y if v(s, ¥) # fuls, )
Vis, y)=

Wis, »)=q | fu(y)¢ L

Clearly We L=(R") and on the other hand, since f,, is strictly positive
in RY, v>f,, in Q and the function ¥(s)=|s|?"'e W (R—{0}), we
deduce that

Ve LT (RY).

(When M =0 we define ¥=0and W=gq o] ")
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On the other hand
h=0 in the open set {(s,,s,)x R¥}\ Q. (4.15)
We claim that
{(s1, 52) x RVI\Q # (. (4.16)

Indeed, if {(s,, 5,) x RY}\Q = &, we would have v(s, y) > f,,(y) for every
(s, y)e (s, s,) x RY and this would contradict (4.7).

Applying the unique continuation result by L. Hormander [ 14, Th. 8.9.1,
p- 224] we deduce that #=0 and this leads to a contradiction. Therefore,
@ is strictly decreasing.

We may therefore apply La Salle’s Invariance Principle and we conclude
that w(u,) contained in the set of solutions of (3.12).

The proof of (1.25) for initial data u,e L*(K)~ L=(R") is completed.

Step 2. Let us now consider a general initial data uy,e L'(R"). Let
{uo..} = L*(K)n L”(R") be a sequence such that

Up,— 4y  in LY(RY). (4.17)

Therefore,
M,,=j o n(x) dx—»M:f u(x) dx. (4.18)
RN RN

If u, = u,(t, x) is the unique solution of (1.1)}~(1.2) with initial data u, , €
L*(K)n L™(R"), by Step 1 above we know that

(=1, (;%)

lim (M2)1- 40 =0 (4.19)

r

= oC

for every re[1, 0] and neN.
On the other hand

u(t)— =N, (%)

< llu(t) —u, (DN +

1

o),

+ 1 a0, (6) = fae(X (4.20)
and by the L'(R")-contraction property (2.29) we know that

lu(t) —u (Ol < lluo — o, Wlly, V120, (4.21)
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From [4] we know that

fM,,_"fM in L'(R"Y).

Combining (4.19)-(4.22) we deduce that

—
/

lim |ju(t)—t" szf.u(—‘f/\/ O =0.

= x

This is the desired conclusion (1.25) for r=1.
Let us observe that (4.23) is equivalent to

u ()= fuy in L'(R")as Ai—

with u, =u,(t, x) as in (1.18).
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(4.22)

(4.24)

On the other hand, estimates (2.1)}-(2.5) ensure that {u,(1)},., is

uniformly bounded in W' ?(R¥) for every pe[1, « ].

By interpolation we deduce that

u;(1)—f,,  in L(RV)as A —

for every re [1, oo ], which is equivalent to (1.25).

Step 3. Let us now prove (1.26) for uye LX(K)n L™ (R™) with M =0.
Consider the solution v = v(s, y) of (3.2) associated to u = u(t, x) as in (3.1).

From Step 1 we know that

flo(s)il . —0 as s > o

since f,=0. Consequently, for any ¢> 0 there exists some constant s, >0

such that
la 'V(IU| LN o(s))ll LK SE ”VU(S)“ LYK)»

On the other hand,
'[ v(s, y)dy=0, Vs=0
RM

and therefore
v(s)e ET, Vs=0.

Thus, applying (4.4) we deduce

1 2
((L— 12\’) v(s), v(s)) ZNT7 oz k)

Vs>

e

Vs> 0.

(4.25)

(4.26)
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Muitiplying Eq. (3.2) by vK, integrating in R", and using (4.25)-(4.26) we
obtain

&.|Q‘

”U(S)” oty

M| —

1
N+1 flu(s )“%—11(1()

<e [Vols)l paky 100 2k

1/2
<8<N+1> ”U(S)”ZI(K), VSZSE
since
N+1
”VM “ LK) = "——2 ”w” 2Lz(l(), VYue Hl(K) A EiL (427)

Consequently, for every ¢ >0 there exists some s; >0 such that

d
7 1ol v+ (L=8) o(s) 2oxy <O, Vs 2. (4.28)

Therefore,
l|u(s)||Lz(K,<C£e‘“*"5/2, Vs>0. (4.29)

Multiplying in Eq.(3.2) by vK and following the arguments above we
obtain

o(S)]| sy < Coe = 7972, Vs=20. (4.30)

We multiply Eq. (3.2) again by vK obtaining

& o)+ Dol s <28(5), V530 (431)
with
)= [ a- (41" o(5, 1) (5, ) K(3) . (432)
Clearly
18)| < C (s oy 10 S5t - (433)

From (4.30) and the continuity of the embedding H'(K)— L*™*V/¥(K)
(cf. [7]) we deduce

‘g(snSCﬁe—((l—e)/Z)(2+l/N)s’ Vs20. (4.34)
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From (4.34), choosing ¢ >0 small enough we deduce that
f e'g(s)ds<
0
and then, integrating inequality (4.31) we obtain that
(o(s) L2x) < Ce ™7, ¥s>0. (4.35)
From (4.35) we deduce
o), <Ce % V¥s>0
for every re [1, 2], which implies
I(N,"Z)(lfl_‘vr}+1,2 ||u(l)||,<C,. Vf>0 (436)

for every re [1, 2].
In order to prove (1.26) for r > 2 we need the following technical lemma.

T I EMMA 2 For every re[ ] rhoro existse some constant (’ ~ Q0 such

vET ¥ CAredes SUMMLC LUMSLr o, 2V Sulis

1G() * @ll, < C, @l gy 07112 VI>0 (437)

for every e L'(RY; 1 +)x|) with
j @(x) dx =0, (4.38)

R

Proof. Using (4.38) we obtain

(G(1)» @)(x) = (4mr) ™2 [ e~br=sFidrg(y) dy
RN

— (47") N2 J e —lx— v|iar . e*lX\Z;‘“) (P(}‘) d)’

4 t - N2 . —_ 0 2

_(4n j VX)) gy do
o ‘RY 2 \/t

41zt N e - (x—6 - 01

( J~ J‘ y-(x )) —ix - 9_y1-;4z(p(y) dy db. (4.39)
0 2 \/t

Therefore,

1G(t) * @Il < Cot 72 1y @(1)1y (4.40)
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and
”G(t) * (p“ b S Clt/N';z; 1/2 ” I.}'I (p(y)”l (441)
with
Co=(an) ™2 [ |xle M dy, € = (4m)~"? sup {|z] e},
RY zeR¥

The estimates in the L'(R")-norm for re (1, o) are obtained by linear
interpolation from (4.40) and (4.41). The proof of Lemma?2 is now
completed.

Observe that uge L'(R™; 1 +|x|) since uye L*(K). On the other hand,
since uge L*(R"), combining (2.3) and (2.4b) we deduce that for every
&> 0 there exists some C,> 0 such that

()l . < C 0~ M2=2) V> 0. (4.42)

Taking L"(R")-norms in the integral equation (2.6) verified by « and
using Lemma 2 we obtain

()], < €0 ¥ 1012 4 gl [ VG (e~ 5) % (|l ™ u(s)), ds.
[}

(4.43)

We estimate the integral term as follows

[ IvG(—s) * (1ud " u(s))l, ds

/2
<[ VG =)z 11 w5 s
SC [ (1ms) VBRI ) 5V (s
12
Using (2.4b) and (4.36) with r =2 we deduce
t

J|19G=5) % 1 uls)), ds

!
SCf (f—5)~ (V22— Un =12 g~ Nid—1 g
12

1
<Ct—Ma-1 J' (1—s)~(N2W2= 1N 112 g
/2
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f (N/2)(1—1/r)+ 1< 1, that is, (N—2)r <2N, we deduce

jﬁl IVGEr —s)* (Ju] "™ u(s))ll, ds < Ct~ (N2 L2 vi>0.

(4.44)
On the other hand, using (4.36) with r =1 and (4.42) we obtain
[ IV G = 5) % (Y s, ds
0
<[ IVGU=)l, 1"~ (o)
< C j&,vz (t__s)~(N;2)(l —try-12 Sﬂ‘ + & dS
i 0
L C WAL=zt Vr>0. (4.45)

Combining (4.43)-(4.45) we obtain (1.26) for re [1, 2N/(N —2)). Iterat-
ing this argument we obtain (1.26) for every r e [1, oo ]. This concludes the
proof of Theorem 1.

5. WEAKLY NONLINEAR BEHAVIOR

This section is devoted to the proof of Theorem 2. First, we need the
following technical lemma.

LeMMa 3. For every re[1, oo ], there exists some constant C,>0 such
that

I1G(1)* ¢ ~ MG()], < C. @l g 17120 V>0 (5.1)

for every @ € L'(R™; 1 +|x|) with M = | g 0(x) dx.

The proof of this lemma is analogous to that of Lemma 2. Therefore we
omit its details.
Let us consider first woe L'(RY; 1 + |x|)n LYR™). From (2.6) we have

u(ty— MG(ty=G(1) * uo——MG(t)+aleG(t—s) * (Jul4 ™ u(s)) ds.
0
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Taking L"(R")-norms and using Lemma 3 we obtain

lu(t) = MG(1)]l, < C, gl rqgoyng, 120~ 12

+ laj (5.2)

f,VG(t——s) * (1ul9= " u(s)) ds
0 r

We now estimate the last term on the right hand side of (5.2) as follows.
We have

f' VG(t —s) * (|ul*~ " u(s)) ds
12

r

<[ IVG(=s)l, Nul“(s)l, ds
< C j‘lz (t _ S)- 1/2 s—(N/Z](q— 1/r) dS s th(N/'Z)(qf 1/r)y+ l,’2. (53)

On the other hand, using the fact that u,e L(R") and (2.2) we obtain

r

HfQVGU—ﬂﬂ*UMq_udﬂ)ﬂ

02
<[ IVGU=s), I1ul? ()1, ds
0

2

< CJ (f _ S)*(N/Z)(l —lry—-1,2 (Cqs + HMOHJZ‘”NW‘ 1));(/\(;2)(4; 1) ds
0

(VDU =L =172 2
gC<§> j (Cqs_+_”u0||;2qu(q—1))*(N/2)(q*1)ds_
0

(54)

We now distinguish the cases 1+ 1/N<g<1+2/N, g=1+2/N, and
qg>1+2/N.

(a) Ifg>1+2/N,
Jlgo (CqS+ uuou;lq/N(qf ll)f(N.fZ)(q¥ U ds < oo
0
and therefore

12 '
|“ VG(t—s) * [ul? Lu(s)ds| <Cp=VDA—Ln=172 (5.5)
0

r
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On the other hand, (N/2)(g— 1/r)— 31> (N/2)(1 —1/r)+ 3. Therefore,
combining (5.2)-(5.3) and (5.5) we obtain (1.28) with

AT
ur@)=3 'r) 2
(b) If g=1+2/N, then

02 1 C 9t
[ (sl o= g (el )
Yo /

q <

and (N/2)(g—1/r)—3=(N/2)(1—1/r)+ 5. Therefore, combining this
identity with (5.2) and (5.3) we obtain (1.28) for any

. )<N 1 L +l
W<z {1=7)*3

(c) f1+1/N<g<1+2/N,
J-/ 2 (C s+ ||u0| Azq,qu——l))~(N.2Hq'— 1) dS< C[v(NZ)(qf—lH 1
q q =
0

and since (N/2)(q— 1/r) — 5 < (N/2)(1 —1/r)+ i we obtain (1.28) with

N 1 |
oc(r,q)=—2—<q—;>-—;. (5.6)

Finally, let us observe that the density argument we have used in Step 2
of the proof of Theorem 1 allows us to conclude (1.27) for every
uoe L'(R") from (1.28).

6. FURTHER COMMENTS

6.1. More General Nonlinearities

Let us consider the more general convection-diffusion equation

{u,—Au=a-V(g(u)) in (0, ¢)xR" .
{6.1)
u(0)=u,

with ae R" and ge W1, *(R) such that g(0)=0.

loc

Assume uoe L'(RY)n L*(R") and let us suppose the existence of the
following limit
g(s)

m — =
isl—o |s]¥ s

o (6.2)
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Under these conditions, Proposition 1 can be easily extended to system
(6.1). In particular, (6.1) has a unique solution ue C([0, x); LY{R™)n
L™(R")) that verifies the decay estimates (2.2). (2.4). Since we have not
done any assumption on the behavior of g'(s) as |s| =0, we cannot prove
(2.5) by the method of Proposition 2. However, it can be proved that
{uy(1)},50 is uniformly bounded in W' =7(R") for any ¢>0 and
pe[l, ).

When o #0 we should expect a self-similar behavior of solutions as it
was the case (Theorem 1) when g(s)=|s|""s. When «=0 we should
expect a weakly nonlinear behavior as in the case where g(s)=|s|? "' s with
g>14+1/N.

We have the following results.

THEOREM 4. Assume o # 0 and let us denote by {u,,} the family of self-
similar solutions of

u,— Adu=oa-V(|u|"" u) in (0, o) x RY.

Let be uge L'RY)n L*(R") such that M= [gnuo(x)dx. Then, the
solution u=u(t, x) of (6.1) verifies (1.25) for every re[1, «c].

THEOREM 5. Assume a=0 and let be uge L'(RY)n L*(R") such that
M = [gn ug(x) dx.
Then, the solution u=u(t, x) of (6.1) verifies (1.27) for every re[1, oo ].

Remark 3. We can also prove a faster dacay rate than (1.25) or (1.27),
in the spirit of (1.26) or (1.28), depending on the rate of convergence to
zero of the function (g(s)—a |s|'" s)/|s|"" s as |s| = 0.

Proof of Theorem 4. We just give an outline of the proof.

Step 1. Let us consider first uye L?(K) n L™=(R") and define v = v(s, y)
as in (3.1). In this case v satisfies

1 N .
vs—Av—zy -Vv=—2—u+e‘N+”"'2a -V(g(e ™?p))  in (0, 0)xRY

v(0) = uy. (6.3)

On the other hand, u = u(¢, x) verifies (2.2) and (2.4) and, as we pointed
out above, {u,(1)},. is uniformly bounded in W'~ *7(R"). Therefore, for
every so >0 we have

Il p S Co p(S0) V52505 [u(s)lesCr,  Vs20.
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wn
(9%

On the other hand, the method of proof of Proposition 2, allows us to
prove that ve C([0, + o ); L*(K)).

Let us see that in fact ve L™(0, o; L*(K)). We decompose v as in (4.2)
and we observe that &= i(s, y) satisfies

1 N .
»—AL~§1 Vv_}: F+eNt 12 . Vigle V) in (0, o) xR,

(6.4)
Multiplying in (6.4) by vK and using (4.4) we obtain

ld ,
zd—l (S)(IL(A)+ h ( )“;11([()

<lal e(’V+H32

J Vigle " ?u(s, v))) vls, v) K(y) dv

<lal e+ 02 | Jg(e™u(s, y))|

X (|Vu(s, )i K(») +¥ le(s, v K(}‘)> dy

<C[ (Iots, )1 [Vols. )1 K(3)+1o(s, 31 1] K(D) dy - (6.5)

since |g(s)| < C|s|"*'" for |s] <1 and ve L*((0, oc)x RM).
Combining (6.5) with (3.4) and the inequality (cf. [7, Lemma 1.5])

1 , ‘
= OGN 1P KOV <[ Vo) K(y)dv,  Voe HY(K)
16 RY R

we obtain, as in the proof of Theorem 1,

L.
—llt(s Wik + Ellv(s)ﬂiz(,(,sc Vs> 1.

Integrating this inequality we obtain ve L*(1, oo
ve C([0, « ); L% K)) we deduce ve L=(0, «v; L¥(K)).

Let us now see that ve L™(1, oo; H' ~¢(K)) for every ¢ > 0. Given 1> 0,
we introduce the integral equation verified by v,

K)) and since

vls+1)=3S,(s) U(TH.JJ S (s—0) N+ Do +1)2,
0

Vigle '+ ¥2p(g + 1)) do. (6.6)
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Taking H'~*(K)-norms in (6.6) and using the fact that

ISx ()0l sy S (L + 574 72) o]l gy, Vo€ L¥(K), V5> 0
we obtain

IIV(S+T)||Hi—E(K)

S(4s71792) Jo(o)) gy

+|d| K(l+(s—a)‘“‘€/2’)e“"*”‘““’/z lg(e DV 2(g + 1)) 3y, do
sz o()Il 2

+CJ (14+(5=0) 1) ol o 4+ gy do
(1457072 () )

+C[ (+(5=0) ") (g + )l cxy o (6.7)
0

Taking s=1 in (6.7) we obtain

flv(t +T)”H'—E(K)< C vl L%z, % LY K))» V=0
and therefore ve L*([1, o0); H' ~4(K)).
The compactness of the imbedding H'~™%K)c< L*(K) for ¢€(0,1)

ensures that the trajectory {v(s)},., is relatively compact in L*(K).
We now decompose v=u(s, y) as follows

U(S’ J’)=fM(}’)+W(Sa J’), (68)
where we C([0, 0); L*(K)) solves

I N , |
w,—Adw — 37 V= FW+ e N2 . V(gle M2 (w+ fiy)))

—0a V(S i) in (0, 0) xRV (69)

w(0)=ug— fu=woe E}.

We introduce the -limit set of the orbit {w(s)},.,,

o(wg) = { fe L*(K): 3s,, — oo such that w(s,) — fin L*(K)}.
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The problem reduces to proving that w(wy)={0}. Indeed, this would
imply

w(s)»0 in L}(K)ass— x

or equivalently

v(s) = f in L*(K)as s — o. (6.10)

In order to prove that w(wy)= {0} we use the following result due to
V. A. Galaktionov and J. L. Vazquez [10] on the w-limit sets of perturbed
dynamical systems.

THEOREM 6 [10]). Consider a dynamical svstem in a Banach space X
given by the evolution equation

w, = A(w) (6.11)

and a perturbation

w,= B(t, w). (6.12)

Assume that the following three conditions hold:

(@) The orbits {w(t)},5¢ of (6.12) are relatively compact in X.
Moreover, if we let w'(t)=w(t+1), 1,7>0, the sets {w*}, ., are relatively
compact in L (0, oo; X).

(b) Given a solution we C([0, o0); X) of (6.12) and if 1;— o0 is such
that w'(t} converges to a function v(t) in L5 (0, oo X), then v is a solution
of (6.11).

(¢) The w-limit set of Eq. (6.11) in X,

Q={feX:3we C([0, 20); X) solution of (6.11) and a sequence
;= o0 such that w(t;) - f in X'}

is compact in X and uniformly stable in the following sense: for every >0
there exists 6=0(e)>0 such that if w is a solution of (6.11) with
d(w(0), 2) <5 (by d we denote the distance in X) then

d(w(t), Q)<e, Yir>0.

Under these circumstances, the w-limit sets of the solutions
we C([0, oo); X) of (6.12) are contained in Q.

580;100:1-11
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In our context, the Banach space X is X = L*(K) n E ;- endowed with the
norm of L*(K). Equation (6.9) plays the role of (6.12) and (6.11) is the
following one

1 N
wS—Aw—Ey -Vw=5w+o¢a-V(|w+ﬁ,|"N (w+ far))
—aa-V(ful"Y f1y)  in (0, co)x RY. (6.13)

We have proved above the precompactness of the orbits of (6.3) in L*(X)
which is equivalent to the precompactness of the orbits of (6.9) in L*(K).
On the other hand, since {w(s)}, . is relatively compact in L*(K) it is easy
to see that {w*(s)}, ., is relatively compact in L2.(0, oo; L*(K)). Therefore,
the hypothesis (a) of Theorem 6 is satisfied. Using (6.2) is easy to see that
(b) holds. Finally, from Step 1 of the proof of Theorem 1 we know that the
w-limit set of the system (6.13) reduces to the zero solution, ie., 2= {0}.
In order to prove its stability we first observe that by multiplying in (6.13)
by sgn(w) and integrating by parts we obtain

Iw()l < lIw(O)ll,,  ve=0. (6.14)

Then, multiplying in (6.13) by wK, using (6.4), and the interpolation
inequality

Ve>0,3C,.>0: ”f”LZ(K)sg||f||H1(K)+Ce A1, VfEHl(K) (6.15)
(what is a consequence of the compactness (resp. the continuity) of the

embedding H'(K) c L*(K) (resp. L*(K) = L'(R"))) with ¢ small enough we
obtain

d 1
- HW(S)IIiz(K,+§ ()l 225) S C WIS C WO 22x, (6.16)

from where the stability property easily follows.
The hypotheses of Theorem 6 being satisfied we may ensure that
w(wg) = {0} and therefore (6.10) holds. In particular

v(s) = fae in L'(RY) as 5 > c0. (6.17)

Since {v(s)}, is uniformly bounded in W'~ %?(R"), by interpolation we
deduce that

v(s) = foy in L'(RY) as s —» o0 (6.18)
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for every re [1, oo ]. This is equivalent to (1.25) and therefore, the proof is
concluded for u,e L*(K)n L*(R").

Step 2. The density argument of Step2 of the proof of Theorem I
allows us to extend (1.25) to every initial data uoe L'(RY) n L*(RY). The
proof of Theorem 4 is now completed.

Proof of Theorem 5. The proof is similar to that of Theorem 2 and
therefore we shall only give an outline.

Let us consider first initial data u,e L'(R™:; 1 4+ |x|)~ L*(R"). We have
the following integral equation

u(t)— MG(t) = G(1) * ug— MG(r)+j a-VG(t —s)* glu(s)) ds. (6.19)
Taking L"(R")-norms in (6.19) and using Lemma 3 we obtain

Hu(t)" MG(I)H,$ Cr ””0”1)(1{-\;\,\-“ l B

+|a|

jIVG(t——s)*g(u(sJ)ds‘ .
0 ,

(6.20)

We now estimate the integral term of (6.20) as follows. Since a =0 we
have

gls)=\s|"" sd(s) {6.21)
with d(s) >0 as |s]| - 0.

Combining (2.3) and (2.4) we deduce that u satisfies (2.4b). Using (2.1a)
and (2.4b) we obtain

[ 196~ s5) = gluts) asl,

t2

<[ VG =) Ul U (5) 8(s)1, s

vi2
SC”(S(M)”L"lmz.nxk-‘v)J (1—s)~ 2 g-VD-Ln 172 4o
:(p(t)t—(N,Z)ll—l'r)1 Vl>0 (622)

with

e()=C 16 v 2 nxrmy =0  as t—x.
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On the other hand

JHZ VG(t—s)* glu(s)) ds
1]

r

a2

<| VG =), 1 gu(s))l, ds

0
12 ) . ,
<C[ T (r—s) M-I g(u(s)) , ds
0

t

—(N2)(1 = Lir) = 1;2 42
<C <§) -[0 |l g(u(s), ds. (6.23)

Combining (6.20), (6.22), and (6.23) the problem reduces to proving that

e [ gl ds=0 a1 o, (624)

Given ¢ >0 we fix T> 0 large enough such that

[o(u( . <&, Vi2T

and therefore, from (2.4) we deduce that for t > T
[ gutspll ds<e | 1w+ s)1, ds
T T

<:C f s12ds<eCt?, Wi>T.  (625)

Ia

On the other hand
T
rmf lg(u(s)l, ds—0 as - o. (6.26)
4]

Combining (6.25) and (6.26) we deduce (6.24) and this concludes the
proof for uge L'(RY; 1 + |x|)n L= (R").

Finally, (1.27) can be extended to initial data uye L'(RY)n L*(R") by
the usual density argument.

6.2. Initial Data that Tend to a Constant State as |x| — o

In this section we show how the earlier results may be used to describe
the large time behavior of solutions of (1.1) whose initial value tend to a
constant state as [x| — co.
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Let uoe L*(R") such that the following limit exists

hm  uy(x) =1 (6.27)

|x] = x

and with vo(x)=uy(x)— /€ L' (R"), M = [ vylx) dx.
Then, u = u(¢, x) solves {1.1)—(1.2) if and only if

o(r, x)=ult, x)—1 (6.28)
solves
{u,—Av=a-V(g(v)) in (0, c)xR*" (6.29)
v(0) =1,
with
gl)=ls+*" s+ D111 (6.30)

The method of proof of Proposition | allows us to prove that (6.29) has
a unique classical solution v € C([0, ¢ ); L'(R")). Therefore, (1.1)-(1.2) has
a unique solution

u(t, x)=rv(r, x)+1. (6.31)

On the other hand, (6.31) shows that the large time behavior of ¥ may be
understood in terms of v.
Let us observe that, since /#0, then

g(s)=q 111" s+ y(s) (6.32)
with y smooth at the origin and such that
W(s) < C|s|? VseR:|s| < 1. {6.33)

When N =1 the large time behavior of (6.29) is well known (cf. for
instance [211]). Let us consider the case N > 1.
Since v solves (6.29), using (6.32) we deduce that the function

w(t, x)=v(t, x—q |l|?" " ar) (6.34)
verifies

L o . , . ) N
{u, dw=a-V((w))  in (0, 0)xR (6.35)

w(0) =v,.
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From (6.33) we deduce (since N> 1) that

Y(s)

li =0 )
o |s] N s (6:36)
and therefore, from Theorem 5,
M=V (e, x) - MG(1, X)), -0 as t—- o0 (6.37)

for every re [, o«c]. But (6.37) is equivalent to
VU2 gy, x) =1 — MG(t, x+q [I|* 'at)],»0 as t— 0. (6.38)

Let us note that, in the obtention of (6.38), we have not used the fact that
g>1.
We have proved the following result.

THEOREM 7. Let be N> 1, ¢>0, and uye L*(R") such that the limit
(6.27) exists with 130 and vo(x) = ug(x) —Ile L'(RY) with M = [gx vo(x) dx.

Then the solution u=u(t,x) of (1.1)-(1.2) satisfies (6.38) for every
refl, o]
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