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ed that this set is sufficiently separated from the rest of the spectrum and that a 
sufficiently good initial approximation to the target subspace is available. 

The background for our studies are continuation techniques, see, e.g., [1,9]. 
These methods are used for solving parameter dependent nonlinear equations 

H(u. t) = 0 with H: R” x R ---f W. (1) 

In general, the solution set 2’ = {(u.t): H(u, t) = 0} of (1) consists of one-di- 
mensional paths. The invariant subspace corresponding to the zero eigenvalues 
ofA := &H(u, t) is needed to obtain information about the occurrence of singu- 
lar points as, e.g., turning points, or simple bifurcation points. In order to detect, 
classify, and compute such singular points this invariant subspace has to be 
tracked along the solution path. Moreover, for some practically relevant classes 
of problems (l), the matrix A has only a few negative eigenvalues. So it makes 
sense to split A into a large positive definite part and a small part which corre- 
sponds to the negative, zero and small positive eigenvalues, see [lo]. The related 
eigenvalue problem can be described as follows: For an one-parametric family of 
symmetric matrices {A(s) = &H(u(s). t(s))} with A(.) : R + LT.” sufficiently 
smooth, find approximations to the invariant subspace .Y(.,) corresponding to 
all nonpositive and a few small positive eigenvalues of A(s). Starting at 
(41, to) = (U(Q). t(so)) E 95 an approximation to the subspace .Y(sO) can be 
computed by subspace iteration. inverse subspace iteration, or Lanczos meth- 
ods. Along the solution path the invariant subspace should be tracked by a local, 
fast convergent method. This directly leads to Newton-type methods which have 
superior local convergence properties over standard approaches like subspace 
iteration or Lanczos methods; for a discussion of the latter methods, see, e.g., 
[7]. Moreover, in the context of path following we can almost always provide suf- 
ficiently good initial approximations to ensure convergence. 

Let A be a symmetric matrix and let the spectral decomposition of A be given by 

AU = UA with a splitting U = [U,i&]. A = : [ 1 i 
2 

where U is orthogonal, U, E FP’, Uz E Wy.p + q = n. This implies 

/I, = U:AU, = diag (2,) . . . . &) E R”‘,p3 
‘42 = lJ;A U, = diag (;l,+,,...%&) E Ry.y. 

We assume that the number q of columns in U2 is small compared with the 
dimension n of the matrix A. Our aim is to find a set of vectors Z = {z, , . , z,}, 
such that imZ % im U2 =: Y. 

Let 2 be an eigenvector of A with 1 jz/ 1 = 1 and let ,Y be the corresponding ei- 
genvalue. If not otherwise specified, the norm is always the Euclidean vector 
norm or the spectral norm of a matrix. Then the eigenpair (z, /J) satisfies 
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This is a quadratic system of equations. In [6] it is shown, that (z. ~1) is a reg- 
ular solution of (3) in the sense that the Jacobian dF(z, ~1) is nonsingular if and 
only if 11 is a simple eigenvalue of A. Hence, if p is simple, Eq. (3) can be solved 
by applying Newton’s method as has been done by Unger, see [12]. The z-part 
of Newton’s method is essentially equivalent to applying one step of inverse it- 
eration with the shift ~4 where pk is the kth approximation to 11, see again [6]. 
By the way, the relation between both approaches has already been discussed 
in the classic text book [14] published in 19.53. 

Hence, if /I2 only consists of simple eigenvalues, each of them can be ap- 
proximated individually by applying Newton’s method to (3). However, if /12 
contains multiple or clustered eigenvalues, Newton’s method will fail or have 
a very small region of convergence since the condition number of the Newton 
equations will be large. So we are looking for a block generalization which al- 
lows to handle multiple or clustered eigenvalues simultaneously as in standard 
subspace iteration techniques. 

A straightforward generalization of (3) is 

F(Z.W= [$;_y] = [o”] (4) 

where Z E RP, M E [WY-“, and q > 1. Suppose that Z with rank Z = q spans the 
invariant subspace im Uz belonging to A?. Then we have Z = U?S with a non- 
singular S E KY’.“, and Z solves the first block AZ - ZM = 0 of (4) with 
M = S-‘/1$. The orthonormality condition of the second block requires 
ST5 = I,, i.e., S has to be orthogonal, and any orthogonal S yields a solution 
(Z,M) of (4). Thus, the solution set of (4) is not uniquely determined, and 
the Jacobian 3F(Z,M) is necessarily singular. 

In order to avoid this difficulty, we replace the orthonormality condition by 
the biorthogonality condition WTZ -I(, = 0 with a fixed matrix W E KY’, 
rank W = q. This leads to the system 

with j?,,, : [wt7.(/ x WY.‘/ - - )  [w”-Y.Y, In this case, again, (Z. A4) = (1/2S, Sm’A2S) with 
nonsingular S solves the first block of (5) and the biorthogonality condition of 
the second block leads to WTUzS = I(,. Under the additional assumption 

W, := WTU2 nonsingular, (6) 

S is uniquely determined as S = W,-’ so that (5) is solved by 

zg. = u, w,-1~ M;. = W,A, W,-' 

When applying Newton’s method to Eq. (5) one obtains the iteration 

Z’“-‘1 = Z’“’ _ AZ’“). &,‘“I” _ ,$$‘A’ _ A@’ 

(7) 

(8) 



384 R. L&he et al. I Lineur Algebra and its Applications 275-276 (1998) 381-400 

with (AZ, m) := (AZ@), m@)) E lWy x lWy from the linearized equation 

cW,(Z’~‘,~~(~))(AZ,~) = Fw(Z(k’,M(k)), 

i.e., in each step one has to solve the linear system 

A AZ _ AZ&$k) _ Z(k) AJ,j = AZ’6 _ Z(k)@, 

WT AZ = wrZ(k) _ 1 (9) 
4 

Note that the first block is a Sylvester equation with respect to AZ. 
In general, Eq. (9) are coupled by the off-diagonal elements of A?@) so that 

the efficient solution of the whole linear system causes difficulties. In order to 
avoid these problems we propose a Modljied Block Newton Method (MBNM) 
which guarantees the matrices M@) to be diagonal so that (9) separates into q 

decoupled linear systems for the columns AZ; E LQ” of AZ and Ami E [w9 of ti. 
Moreover, under appropriate assumptions, all these systems have uniformly 
bounded inverses. 

This paper is organized as follows: In Section 2 the MBNM is described. A 
convergence analysis of the algorithm is given in Section 3. In Section 4 we 
provide some numerical examples illustrating the performance of the method 
and confirming the theoretical results from Section 3. Some conclusions are 
made in Section 5. 

2. A modified block Newton method 

As already mentioned in Section 1 one of the basic ideas of our approach is 
to work with iterates (Z @) M@)) where the matrices M@) are diagonal. This can , 
be achieved by applying the modified Gram-Schmidt orthogonalization proce- 
dure followed by the Rayleigh-Ritz procedure to an arbitrary full rank approx- 
imation Z. Recall that these two basic algorithms are defined as follows (for 
details see, e.g., [3] or [4]): 

Modified Gram-Schmidt orthogonalization: (2, i) = orth(Z) 

Input: Z E [w”.q with rankZ = q 

output: Z E W9 with ZTZ = Z9, i? E li?P upper triangular, Z = .?I? 

Rayleigh-Ritz procedure: (Z, M) = rr(Z) 

Input: Z E [w”~‘? with ZTZ = I 
output: Z E FP9, M = diag(p, y. , pq) with 

imZ = imZ, ZTZ = Z9, M = ZTAZ, i.e., 
M is the diagonal matrix of Ritz values, and 
Z is the matrix of the corresponding Ritz vectors 
with respect to the subspace imZ 

Note that imZ = imZ = imZ. 
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We solve (9) starting with (Z@), MC”‘), where Z’“’ is orthonormal and IV(“) is 
diagonal. However, we use only the Z-correction AZ to obtain 
,?nL’) = Z(‘) - AZ but forget the M-correction AU. Instead, we apply the mod- 
ified Gram-Schmidt orthogonalization procedure followed by the Rayleigh- 
Ritz procedure to get the new iterate (Z@+‘),M(‘+‘)) with, again, orthonormal 
Z’k+‘) and diagonal M @+‘I This is motivated by the fact that, for a given ortho- 
normal basis, the Rayleigh-Ritz pairs are optimal in a certain sense, see [3,4]. 

Further, we choose the normalizing matrix W as W = WC”’ := Zck’ in itera- 
tion step k. Then the second block of (9) yields the simple orthogonality con- 
dition 

Zik” AZ = 0. 

Thus, we consider the sequence of problems 

(10) 

F,,,,i,(Z.M) := [ ;;<yj = [J (Pk) 

with normalizing matrices W = W @) := Z(‘) which change with k. Note that the 
problems (Pk) have, in general, different solutions (Z;‘,,ii, M;.,,,) which depend 
on WC”), but all Z;V,li span the same subspace .Y = im U,, and all Mf,,, are sim- 
ilar to A2 and so have the same eigenvalues ~(iil). 

With these settings the Newton equations (9) reduce to the q decoupled sys- 
tems 

i = 1%. , q, where e’ denotes the ith coordinate vector in [w”. 
Now we can formulate the algorithm. 

Algorithm: Modzjied Block Nebcston Method (MBNM) 
Initialization: 

SO: Given an initial approximation Z(O) with rankZ(” = q, 
imZ(O) E im &, compute (,?O), iCoJ) = orth(Z(‘)) 
and (Z(O). M(O)) = I-I($~)) 
Set k := 0 

Iteration: 
while {Z(” does not satisfy a termination criterion} 

Sl: Determine the correction AZ@) = [Azy’, , AZ?‘] by solving the q 
decoupled linear systems ( 11) 

S’7: Set 2(x+‘) := Z(k) _ AZ(k) 

S3: Compute (iCki’), RCk+‘)) = orth(_?‘(“+‘)) 
S4: Compute (Zck+‘), M(“+‘)) = rr(g(“+‘)) 
S5: Set k := k + 1 

end 
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Note that for the special case q = 1 this algorithm reduces to the Rayleigh 
quotient iteration. 

In the next section it will be shown that, under appropriate assumptions, all 
systems (11) have uniformly bounded inverses. This allows using iterative solv- 
ers in step Sl in the case that A is large and sparse. For a discussion of such 
methods which, in general, are of Krylov type, see, e.g., [2]. The subsequent 
steps S3 and S4 require wzq’ and -nq’+-q’ flops and, hence, have costs 
O(n), since q < II. So the overall complexity of the algorithm is determined 
by the costs for solving the linear systems in step Sl. 

3. Convergence analysis 

In this section the convergence behavior of the algorithm is investigated. We 
begin with the convergence analysis of the standard Newton iteration without 
the Rayleigh-Ritz procedure, applied to FIV(Z. M) = 0 with fixed W. We show 
that, for matrices W from a certain class B,:,,, there exists a uniformly regular 
solution of (5), and 8FiV has a uniform Lipschitz constant. Then we apply a 
standard convergence result, see, e.g., [8]. Finally, we show that this result 
can be extended to the MBNM. 

Throughout this section we assume that 
(Al) the matrix A E FL@,” be symmetric with spectral decomposition (2), 
(A2) the spectra o(Al) and CJ(~,) be separated, i.e., c-J(AI) n g(n,) = 8. 

Assumption (A21 implies 

-1 ‘- min{ 13.i - A,]: i .- i”, E cJ(A,),i”, E o(A2)) > 0 (12) 

for the gLIp ;I between u(A,) and a(ilz). 
The convergence analysis of the MBNM strongly depends on the notion of 

the angle between subspaces. For two subspaces .6, ‘?/ c iw”, the angle, more 
precisely the muximal ungle C./I between X and 9 is defined as 

where M = k(x>y) is the usual angle between two vectors x and y, i.e., a = 7c/2 if 
.~‘y = 0, and x E [0, rr] such that cosx = xTy//]x/~ ]]y]], otherwise. In this paper 
we only consider subspaces .‘x’. !V of equal dimension q, and for such subspaces 
one has k(:F, !‘/) = d(!V:.y) = d(.$“, !Vi). 

For characterizing and computing 4, let X,X’, Y. Y’ be orthonormal bases 
for $, Xl. 9, tl/‘, respectively, such that the matrices [XIX’] and [Yl Y’] are or- 
thogonal. Then ]]X” Y]] < I. ]/XTY]] < 1, and 

sin@ = /]X’TY]] = ]]XTY’//. 
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if XTY is singular. 
if XTY is nonsingular, (14) 

where the norm is the spectral norm of a matrix. For a detailed discussion of 
the angle concept see, e.g., [3,11]. 

Throughout this section we identify (X, Y) E R’f.y x Ry.y with x 
[ 1 Y E R”f”.y, 

and the spectral norm is denoted by 11(X, Y)]] or 

First we show that the Jacobian 3FIV(Z;., M;.) has a uniformly bounded in- 
verse if d(imW, imuz) is bounded from 7c/2, cf. [.5]. 
We define I,/I := d(imW, imU,) and 

B,.(U?) := {W E EPy: WTW = I,, sin$ < c}. 

Lemma 3.1. Let (Z*:M*) := (Z&,Mlj) br thr solution of’(5) given by 17). Let 
W E B,,,, (U?) with EO < 1. Then the Jucobian 3F* := 8Fbv(ZFV, M&) is nonsingu- 
Iar, and there holds 

11(8F*)p’/l <C VW E Bl,,(Ud. (15) 

Proof. We will show that all solutions of 

AAZ- AZM’-ZAM=X, 

WTAZ = Y. ( 

with right-hand sides (X, Y) such that 11(X, Y)]] < 1 are bounded by a constant 
C which does not depend on W. Note that the condition II(X. Y)li < 1 implies 

II4 G 1: IIYII 6 1. 
Premultiplying UT on the first equation of (16) rewriting the second equa- 

tion of (16) and using (2) we obtain 

.4(/r AZ - UT AZM* - UTZ* AM = UTX, (17) 
WTUUT AZ = Y. (18) 

Using AZ, := UT AZ,X, := UTX, W, := WTIJ,, I = 1.2, and (7) we then rewrite 
the above two Eqs. (17) and (18) in block form as: 

il, AZ, - AZ,M” =X,, (19) 
A?AZ,-AZ?M*- W;‘AM=X?, (20) 
W, AZ, + W, AZ? = Y. (21) 

Applying the results in [l l] (p. 245, Exercises 14) on Eq. (19) yields 
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where sep(A,B) := min{ 11.4X - XBII,: llXllF = l} < min la(A) - o(B)I. 
Using (20) we obtain AZ2 = W,-‘(Y - W, AZ,), and 

ll~~2ll G Ilw,-‘Il(ll~ll + Ilw,ll IIAZIII) G &(1+&J 

By (20) and (21) we have AM=M’(Y-WAZ,)-(Y-flAZ,)M*-WzX2. 
Hence. 

llml] < 2jjM*ll( 1 + (/AZ, 11) + 1 6 21’nz” 
G&+&)+1 

Finally, 

tl(A-C Wll < IlAG II + llA-%ll + IlUll < 1 + -$$ 

since W E B,,,( Ul), i.e. sin $ < co < 1 or $ < ‘19 < n/2 with sirtrY = ccl. 0 

Next we show that 8Fw is Lipschitz continuous. Since FM, contains the only 
quadratic term -ZM, the second derivative is given by 

a’F,(Z,M)[(X,, Y,), (Xl. YJ] = -(X,Yz +&Y,.O) 

which implies 

Il@&(Z?M)II G2 \J(Z!M) VW. 

and L := 2 is a Lipschitz constant for dFIV. 
Thus, both the Lipschitz constant L of ifIF,+. and the bound C for the inverse 

of dFw(Zw, ML) do not depend on the special choice of W E B,:,, (I/?). There- 
fore, we can exploit well-known local convergence results for the Newton 
method, see, e.g., [8], applied to (5) unifbrmly with respect to W E B,,,(U?). 

We define e’ := (Z Ck) - z;,, M(“) - M;,). 

Proposition 3.2. Let (Al), (AZ) be sutisjied. Then, jtir any ~0 < 1 there exist 
constants Q > 0 und 6 > 0 with K := Q(s < 1 such thut, jtir arbitrary jixed 
W E B,:,, ( UI), there holds 

i) the matrix W, = WTUz is nonsingulur, 
ii) Eq. (5) is solved by (Z& ~ n/i;.) = (Uz W2-‘, Wz.4, W2-’ ), und this solution is 
unique in the bull around (ZE,, M$) ,tlith radius ii, 
iii) Newton’s method upplied to (5) is well de$ned und generates u sequence 
(c@~, A?(“)) such thut 

Ilek+‘II < Qllekl12 6 KlleXII, C-22) 
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k = 0, 1: . . . provided that the initial pair (z(O), A?(‘)) satisfies 

Ileo/ < 6. 

Especially, all Jacobians 8FV (ZCk), tick’) are nonsingular. 

389 

(23) 

For the remainder of this section we fix a0 < 1, and Q, 6, K = Q6 < 1 are sup- 
posed to be the constants from Proposition 3.2 which belong to this ~0. For 
simplicity of notation we, further, define 6 E [0,7-c/2) by sin19 = so. 

In the MBNM, at iteration step k we perform only one standard Newton 
step for (5) using the normalizing matrix W = WC”’ = ZCkJ and starting from 
the Ritz pair (Z , -(‘) A?(‘)) := (Z(k),M(k)). For this case Proposition 3.2 states 
that, if ZCk) E B,:,(&) and 

then 8Fzli, (Z(“), Mck)) is nonsingular, and the first Newton iterate 

Z(k+i) = Z’k’ _ AZ&‘- #k+i) = M(k) _ &@I 

is well defined and satisfies 

(24) 

(25) 

We want to prove an analogous result for the sines of the angles 

qk := L(imZCk’, imUz). qk+, := d(imZ’“+“, im G). 

First we show that condition (24) can be satisfied for sufficiently small sinq,. 

Lemma 3.3. Let cp := d(imZ, im U2) and A4 := ZTAZ. Then 

(26) 

(27) 

Proof. Let ZI E [Wn+q be an orthonormal basis of (imZ)’ such that the matrix 
[Z]Z-L] is orthogonal. By W, := ZTU,, W,’ := ZLTCJI, I = 1.2, and (7) with 
W = Z we have 

z-z;= -(I-ZZT)CT2W;’ = -zlw;w;‘. 

Using (14) this implies 
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Analogously we obtain 

M-IV; = w;n,n;T+ w~A~(w,‘w~-I)w~~’ 

= w,n,n;‘- w2Azwz”‘w~~w,-‘. 

and, hence, by (13) and (14) 

If we define 

cl := min sin ~8. 

and choose ZCkJ E B;:, (Uz), then from Lemma 3.3 we obtain 

(29) 

Hence, Proposition 3.2 guarantees Z (‘-‘) to be well defined and to satisfy 

v+‘) - Z;,&, )I < QT’ sin’cp, < KT sin cpl,. (30) 

Next we show that sincp,+, is bounded by a certain multiple of sin’q+. 
Define 

1 
t‘, := min cl,% . 

i I w :== T(1 + K) 

Lemma 3.4. For Zck) E B,:, (UI) therr Izolds 

sin qk+, < 
2d3 
3 Qz’ sin’cp, 

(31) 

/IAZ’“‘II < llz”! * ‘) - Z;,, 

and, hence, 

IIF’k’l/ < IIAZ’x’l~’ < A. 
4 

(32) 

Proof. First we show that k(‘+‘) from Gram-Schmidt orthogonalization in step 
S3 of MBNM is nonsingular. 

Recall that Z(“+‘) = Z(“-‘JR(“+‘) with Z(k+tjTZ(k+ll = lq, From step S2 of 
MBNM and the orthogonality condition (10) we obtain 

jjjk+l)T$k+l) = pl)Tp+Il = Iq +p’ (33) 

with FCk) := AZcLjT AZCki. Using (29), (30) and (31) we get 

(34) 
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Thus, by the perturbation lemma Iy + Fckl = I?kA’lTI?‘L’J is nonsingular, and 

Finally, *sing j(‘+‘) = Z(k+‘)R(“+‘)m’ and (7) for W = .Z(‘) we rewrite 
UTZ’“+ll ~ UT 

I - I( 
Z(k+l) 

- z;,JR -ck+‘if By (13) and (30) we end up with 

Now we set 

(35) 

and choose Z”) E B,,(Uz). Then from (32) it follows that 

sincp,+, < ---Qez2E3sin~,, < xsincp,, 
3 

where K = Q2j < 1. Hence, if Zck) E B,:, (Lb) is satisfied for k = 0 which means 
that (pO = L(imZiO), imU?) satisfies sin ‘pO < ~3, then, by induction, the whole 
sequence {Zc’)} is well-defined, and sincp, goes to zero at least Q-linearly with 
factor K < 1 and, moreover, Q-quadratically. 

Summarizing the results proved above and setting 

with fixed ~0, constants Q, 6, K = Q6 < 1 from Proposition 3.2, 7 from (28). CC) 
from (31) we obtain the following convergence theorem. 

Theorem 3.5. Suppose (Al ), (A2) to he satisjied. Then there exist constunts 
E E (0, 1) und e > 0 such that 

i) MBNM is tvell de$nedfor all initial upproximations 2”’ E B,:( Uz), i.e., ,jbr 
all Z(O) Lvith 

sin cpo = sind(imZCo’,imU~) <E. 

undfbr all k lve huve Z”) E B,:( U?), 
ii) there holds limA_, sincp, = 0, 
iii) the convergence is Q-quadratic in the sense qf 

sincp,,, < Qsin’cp, ‘dk. 
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4. Numerical results 

The algorithm MBNM has been tested on several examples of different sizes 
and spectra. As test matrices we used the 21 x 21 Wilkinson matrix, see [13], 
and the 21 x 21 Dingdong matrix from a MATLAB test matrix suite. The ei- 
genvalues of these matrices are listed in Tables 1 and 2. The spectrum of the 
Wilkinson matrix contains no multiple eigenvalues, but clusters. The Dingdong 
matrix has multiple eigenvalues and clusters near 7r/2 and -7r/2. 

Further, we used a 961 x 961 Poisson matrix which corresponds to a discret- 
ization of the 2D-Laplacian on [O! l] x [0, l] with an equidistant grid of stepsize 
h,r = h,. = h = l/N, N= 32. The eigenvalues i,,i and the corresponding eigen- 
vectors z;,;’ of the Poisson matrix are given by 

3.i.j = 4 sin’ ($$) + 4 sin’(&) 

Z 
k.l 
1.1 

= ~4 sin ($$) sin ($ i,j,k,l=l,..., N-l. 

From the theory developed in the previous Section 3 we expect that the con- 
vergence behavior of the MBNM is mainly influenced by the gap y of the spec- 
trum and the quality of the initial basis Z(O) measured by the angle q. between 
irnZ(‘) and imU2. Therefore, we tested the method for its sensitivity with re- 
spect to these parameters. 

A second aim of our test computations was the following: For updating an 
approximation to an invariant subspace by Newton-type methods there are ba- 
sically two possibilities, namely the simultaneous updating of all directions 
using MBNM, or the individual updating of each eigenpair approximation 
by the standard Newton method applied to (3). We compared the convergence 
behavior of these methods. We also monitored the condition number of the 
matrices of the linear systems to be solved in both approaches. 

Finally, we wanted to compare the MBNM with linearly convergent meth- 
ods like direct or inverse subspace iteration. However, by using the latter meth- 
ods only special sets of eigenvalues and subspaces can be computed. When 
using subspace iteration, the target eigenvalues have to be the dominant ones. 
Then, no linear systems have to be solved, and the convergence is linear with 
rate I&+i ]/]&I, if the eigenvalues are numbered according to 
Ii,, < t < lib,+,) < /&, 6 < IiLl I. In the path following example mentioned 
in Section 1 the target set 0(/1~) consists of all negative, zero and a few small 
positive eigenvalues. These eigenvalues can be made to (negative) dominant 
ones by a shift A - cd with appropriate c( > 0; in the simplest but not optimal 
case choose u 3 p(A). On the other hand, if the eigenvalues close to a given ref- 
erence point p E R are needed, inverse subspace iteration with A - ,!3Z may be 
performed, which requires solving q linear systems with this matrix per step. 
For large scale problems (which we have in mind) iterative solvers are a must, 
and then the fixed shift p brings no gain over our MBNM with varying shifts 



R. Los& ct ~1. I Linuur Algehru and its Applicutions 27.G276 i 195%) 381-400 393 

Table 1 
Wilkinson matrix 

i i., 

I -1.1254415221199 
2 0.2538058170966 
3 0.9475343675292 
4 1.7893213526950 
5 2.1302092193625 
6 2.9610588841857 
7 3.0430992925788 
x 3.9960482013836 
9 4.0043540234408 
IO 4.9997824777429 
II 5.0002444250019 
12 6.0002175222571 
13 6.0002340315841 
I4 7.0039517986163 
15 7.0039522095286 
I6 8.0389411158142 
17 8.0389411228290 
IX 9.2106786473049 
19 9.2106786473613 
20 10.7461941829033 
21 10.7461941829033 

since every system has to be solved separately. However, the coefficient matri- 
ces of MBNM have bounded condition numbers whereas the matrix A - flZ of 
inverse iteration will have large condition if p is close to an eigenvalue. The lat- 
ter property will cause difficulty for the iterative solver, in general. Of course, if 
the dimension n is moderate and LU factorization can be computed, MBNM 
requires q such factorizations per step whereas in inverse iteration with fixed 
shift /j only one factorization is needed in the beginning. However, the conver- 
gence will be slow, in general, since, unlike in the case q = 1, one shift p cannot 
approximate q > 1 eigenvalues of A simultaneously. Therefore, the observed 
fast convergence of inverse iteration in the case of q = 1 and good eigenvalue 
approximation fi will be lost, in general. 

In our test examples we used randomly perturbed exact eigenvectors of the 
matrix A as initial approximations. The computations demonstrate that suffi- 
ciently good initial approximations are needed to ensure convergence. How 
good these initial approximations have to be depends on the problem. As al- 
ways for Newton type methods, there are, in general, no easily computable cri- 
teria for checking the quality of the initial approximation Z(“), so one has to use 
some heuristic strategies. For instance, if after a fixed number of Newton steps 
a reasonable convergence criterion is not satisfied, the initial approximations 
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Table 2 
Dingdong matrix 

I -I .570796326795 
2 - 1.570796326795 
3 -I .570796326795 
4 -I .570796326795 
5 - 1.570796326794 
6 -1.570796326351 
7 -1.570796142764 
8 -I .570754532538 
9 -1.565796135236 

IO -1.318181891827 
II 0.581130731802 
I2 I .529806267375 
I3 I .57029824729Y 
I4 I .570793333979 
I5 1.570796317052 
I6 I .570796326777 
I7 I .570796326795 
18 I .570796326795 
I9 1.570796326795 
20 1.570796326795 
21 I .570796326795 

should be improved by alternative methods which possess better global conver- 
gence properties like linearly convergent methods such as subspace iteration or 
inverse subspace iteration with appropriate shifts, see the discussion above. 
MBNM can also be used to refine eigenpair approximations obtained by Lan- 
czos type methods. 

All computations were done using MATLAB. 

Problem 1 (Wilkinson mutrix). In a first setup we split the spectrum between 
j.17 = 8.038 and jtirs = 9.210 such that q = 4 and 

0(/l,) = {n,, 1 21,). 

o(A,) = (i18.. . ., &,}. 

1’ = 1.172. 

The results of MBNM are shown in Table 3. We carried out three tests with 
different qtr. The table shows the sine of cpO, the spectral norm ll&ll of the initial 
residual RO := AZ(” - Z(“)M(oi, the number K of Newton steps performed, the 
maximum of the condition numbers over all linear systems solved, the sine of 
cp* = qK when the iteration terminated, and the spectral norm /JR* 1) of the cor- 
responding residual. 
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Table 3 
Setup I MBNM 

395 

Test sin q. IIRIIII K cond(ilF) sin cp’ IIR’II 

I 0.63 I 3.65 9 1.83 x IO” 1 .oo 9.61 x IO-” 
2 0.568 2.93 5 4.44 x 10’ 2.11 x lo-” 8.62 x IO ” 
3 0.35 I I so 4 2.41 x 10’ 2.98 x IO-” 1.45 x IO IJ 

In Test 1 MBNM actually found an invariant subspace which can be seen 
from the almost vanishing IIR*jI. However, this subspace contains a direction 
orthogonal to the target subspace since sin cp* = 1 .O. 

In Tests 2 and 3 the method converged. As expected, better initial approx- 
imations required less iterations for the algorithm to terminate. 

Then we rerun the computations with the standard Newton method for (3) 
individually applied to each of the four eigenpair approximations. Hereby we 
used the same initial approximations as for MBNM. 

We obtained the following results: 
Test 1: 

No convergence was obtained for the second eigenpair. 
I(AZ’ - Z*M*(l = 0.59 
The maximal condition number 2.199 x lOI occurred while updating the 
second eigenpair. 
Test 2. 

No convergence was obtained for the third eigenpair. 
IIAZ’ - Z*M*/I = 0.54 
The maximal condition number 1.149 x 10” occurred while updating the 
first eigenpair. 
Test 3: 

Convergence was obtained for all eigenpairs. 
IIAZ* - Z*M*II = 2.396 x lo-l4 
The maximal condition number 3.282 x lOI occurred while updating the 
fourth eigenpair. 
The tests demonstrate the superior convergence properties of MBNM when 

the spectrum contains clusters. This is reflected in the larger convergence region 
compared with the standard Newton method applied to individual eigenpairs 
and the blowing up of the condition numbers. 

In order to show the limits of the method with respect to the separation of 
the spectra, in a second setup the spectrum was split between 
jklh = 8.03894111581427 and j_,, = 8.03894112282902, such that y = 5 and 

~(.4,) = {it.. ,jw16}3 

c7(A,) = {i17.....A~1 }, 

j' = 7.01475 X IO-‘. 
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Here we tested MBNM only. The standard Newton method gives qualita- 
tively analogous results as in the first setup except that one more eigenpair ap- 
proximation has to be updated. 

The results for MBNM are shown inTable 4. 
Again, in Test 1 of the second setup an invariant subspace was computed, 

but not the target one. In Tests 2 and 3 no convergence was obtained at all. 
Finally, in Tests 4 and 5 the initial approximations were sufficiently good for 
the method to converge. 

The results of the second setup show that, as expected from theory, smaller 
gaps require better initial approximations for the algorithm to converge. Note, 
that the condition numbers are of size l/l’ M 1 x 109. 

When applying subspace iteration (which is admissible since the target ei- 
genvalues are the dominant ones) with the same initial approximations as in 
the previous tests it always converged. For the first setup about 200 steps of 
subspace iteration were needed to obtain a residual of the same size as the final 
residual of MBNM. In the second setup after 1000 steps the residual was of or- 
der 1 x lOpro and did not change any more. This is due to the bad separation of 
the spectra and also due to roundoff errors. 

Problem 2 (Dingdong matrix). In this test problem we wanted to verify the Q- 
quadratic convergence of sin 40, to zero predicted by the theory. Therefore, we 
run MBNM and monitored sinqk and the spectral norm of the residual [IRkll 
after each iteration step. The computations were done with different gaps 
whereby the initial approximations were chosen such that the method 
converged. In accordance with Problem 1, the initial approximations had to 
be chosen the better the smaller the gap was. 

The results are shown in Table 5. Each setup corresponds to a certain split- 
ting with a gap I’, and k is the iteration index of MBNM. Indeed, sinqx qua- 
dratically converges to zero. Due to roundoff errors in the computation of 
sincp, its numerical value never got as small as ll&ll in the very last step of 
the algorithm. Note that IJRk I/ is of order sin (Pk. 

Table 4 
Setup 2 - MBNM 

Test sin 400 IlRoll K cond(%‘) sin cp* IIR’II 

1 0.292 2.010 7 1.66 x 10’ 1 .oo 6.49 x IO- ” 

2 0.190 0.322 2 steps, break down 
3 0.162 0.165 2 steps, break down 

4 0.165 0.153 4 1.38 x 10’ 3.65 x IO-’ 1.03 x 10-11 
5 0.083 0.058 3 1.31 x IO’ 1.33 x IO-’ 1.32 x lo-‘? 
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Table 5 
A = Dingdong (21). Results for different gaps 

Setup Splitting between ;’ !i sin cpI Ilk /I 

I -1.318181 0.581130 1.899311 0 

2 0.581131 1.529806 0.948675 0 

3 I .529806 I .570298 0.040492 0 

4 I .570298 I .570793 0.000495 0 

2 
3 
4 

5.37 x IO ’ 
2.72 x IO ’ 
1.07 x lo-’ 
7.52 x 10~~’ 
2.58 x IO ’ 
3.33 x IO x 

3.15 x lo-’ 
6.14 x IO ’ 
3.67 x IO ’ 
I.31 x IO ( 
3.94 x 10mS 
3.65 x IO ’ 

1.37 
6.73 x IO-’ 
3.10 x lo-’ 
1.72 x IO-’ 
3.16 x IO-” 
1.87 x IO-” 

8.88 x lo-’ 
3.84 x IO-’ 
7.38 x IO ’ 
7.60 x IO ’ 
6.77 x IO-’ 
I .99 x IO- ‘a 

2.32 x IO ’ 6.99 x IO ’ 
2.37 x IO z 1.34 x IO-’ 
1.27 x IO ’ 2.91 x IO-” 
3.33 x IO-” 1.77 x IO ( 
4.21 x IO-’ 7.47 x io-y 
2.11 x Io-x 2.65 x 10-‘L 

I.43 x lo-’ 4.48 x IO-’ 
5.10 x IO-’ 2.78 x IO-’ 
2.06 x IOmh I.43 x IO-” 
2.58 x IO-’ 6.17 x IO-’ 
1.49 x 10mX 1.21 x IO-” 

Since the MBNM can be considered as a generalization of the Rayleigh quo- 
tient iteration, which usually has cubic convergence, one may ask whether 
MBNM has the same property. However, all the numerical results obtained 
for q > 1 indicate only quadratic convergence. 

Problem 3 (Poisson matrix). Here we worked with a large sparse Poisson matrix 
A E [Wn.n, n = 961, coming from the discretization of the 2D-Laplacian on the 
unit square with an equidistant grid of stepsize h = l/32. We wanted to 
compare MBNM, the standard Newton method individually applied to each 
eigenpair approximation, and inverse subspace iteration. In all tests the same 
initial approximations were used. 

The 15 largest eigenvalues of A are given in Table 6. The target subspace was 
the subspace belonging to the 13 largest eigenvalues Agd9. &,, which leads to 
the gap 7 = 4.768989 x lo-*. 

We solved the arising symmetric but indefinite linear systems by MINRES 
and, only for comparison, additionally monitored the condition number of 
the matrices. 
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Table 6 
Eigenvdlues of the Poisson matrix 

i i., 

947 7.7616397364870 
948 7.7616397364870 
949 7.8093296258290 
950 7.8093296258290 
951 7.8277613429288 
952 7.8381285183670 
953 7.838 1285183670 
954 7.8754512322709 
955 7.8754512322709 
956 7.9042501248088 
957 7.9042501248088 
958 7.9231411216129 
959 7.9519400141509 
960 7.9519400141509 
961 7.9807389066888 

The results of MBNM are shown in Table 7. MBNM required 5 steps which 
correspond to solving 5 x 13 = 65 linear systems of dimension n + q = 974. 
The condition numbers of the systems were moderate. 

Applying standard Newton method with the same initial approximations, 
convergence was obtained for 2 eigenpairs only. For the other eigenpairs, either 
MINRES was not able to solve the linear systems due to large condition num- 
bers, or the Newton iteration itself did not converge. 

Finally, we applied inverse subspace iteration with the shift 
/? = (&, + &,49)/2, which is the value of the midpoint of the interval 

[&49 > 3L961] containing the target eigenvalues. Here, 50 iterations were needed 
to get a residual llRklj of the same order as the residual in the final step of 
MBNM. This corresponds to solving 50 x 13 = 650 linear systems of dimen- 
sion n = 961. 

Table 7 
MBNM for the Poisson matrix 

k sin vi Ilk 11 cond(i)F) MINRES 

0 2.698053 x IO-’ 2.1 11697 
I I .394442 x IO-’ 1.837613 x IO ’ I .279003 x IO’ 2221 
2 5.872637 x IO-’ 3.657906 x IO-’ I .747727 x IO’ I603 
3 4.856856 x IO-’ 1.448030 x 10-j 1.633486 x IO’ 1461 
4 8.940697 x 10. ’ 2.090324 x IO-” 1.633484 x IO’ 1180 
5 7.742870 x IO-’ 1.862886 x IO-” I .633484 x IO’ 595 



5. Conclusions 

We conclude this paper with some comments on the pros and cons of the 
proposed Mod@4 Block Newton Mtrthod. The main advantages of the MBN M 
are: 

1. The method is locally and Q-quadratically convergent while subspace or 
inverse subspace iteration possess only linear convergence. 

2. The matrices of all linear systems occurring in MBNM are nonsingular. 
and their condition numbers are uniformly bounded. This is of great impor- 
tance when iterative methods are used for solving these systems. On the other 
hand, in inverse subspace iteration methods with a single, constant shift the 
condition number of the matrix may be arbitrarily large when the shift is close 
to an eigenvalue. 

3. The eigenvalues corresponding to the target subspace can be arbitrarily 
distributed in the spectrum, in particular, they may be multiple or clustered. 
They need not lie in an interval or be extremal in modulus, but they only have 
to be sufficiently separated from the rest of the spectrum. Nevertheless, the con- 
vergence region of the algorithm depends on the size of the gap. The smaller 
the gap is, the better initial approximations are needed to ensure convergence. 

4. The method can easily be implemented using different hardware and soft- 
ware since only basic linear algebra tasks have to be performed. 

The method might have limited applicability because of its local conver- 
gence properties. However, it is well suited for classes of problems where suf- 
ficiently good initial approximation of the target subspace can easily be 
provided, like in path following problems. Moreover, it can be used as an ef- 
ficient refinement tool in a second phase of hybrid algorithms which use glob- 
ally convergent schemes as subspace iteration or inverse subspace iteration in 
their first phase. 
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