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Abstract

We evaluate two determinants. The first is a ¢, h-extension of the classical confluent exten-
sion of the Vandermonde determinant. The second is a similar extension of Cauchy’s double

alternant.
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1. Introduction

We will generalize two celebrated determinants of Cauchy, the Vandermonde
determinant [4]
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and the double alternant [5]

r=—yD™b =yt =yt g =)
=y =y -yt =)
Ca—yD b Ga—y)l G-yt (=)t

(xn — )’1)_1 (xp — )’2)_1 (xn — y3)_1 (xn — Yn)_l
_ H1<,~<j<n(x]~ —Xi)(yi - YJ) _ (_1)(g)n1<i<j§n(xj —xz)(y] - yl)
nlgi,jgn(xi =) nlgi,jgn(xi -y

One can also insert derivatives of some rows into the Vandermonde determinant. For
example,

1 xp x% xf x? xf

0 1 2x 3x12 4x13 S)C;1

0 0 2 6x; 12x} 20x} . s )
5 3 . s | =202 —x1)7 (3 —x1)7(x3 — x2)"

I x2 x; X5 X5 X5

0 1 2x 3x3 4x3 5x5

2 3 4 5
L x3  x3 X3 X3 X3

Perhaps better, we can let the ith entry in the jth row corresponding to the variable
xi be (}:ll)x,i_j ; then the above example becomes

2 3 4 5
I x1 x X X X3

0 1 2x 3x} 4x) S5x}
0

0 1 3x; 6x} 10x]

= (x2 — x1)%(x3 — x1)%(x3 — x2)%.

2 3 4 5
I x2 x3 X5 X, X5
0 1 2x 3x22 4x§ Sx;'

2 3 4 5
I x3 x5 X3 X3 X3

Determinants of this type are often called confluent Vandermonde determinants. The
most general one was evaluated by Schendel in 1891 [9], but a result nearly as good
was given by Weihrauch in 1889 [10], and there is earlier work in this direction
by Meray [7], among others. Of course, [8] is our source for all this historical
information.
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One may similarly extend Cauchy’s double alternant. When each entry occurs to
the first and second powers the result is due to Brioschi [3]; for example,

Cr—yD" =y =yt =)
=y -y -y -y
—yD™' -y -y G-y
ca—yD™" a—yD? ey (- )72
= x) (3 — xp) (g — 1) (v3 — x2) (g — x2) (g — x3) (y2 — y1)*
[Ti2) (i — yD2 (i — y2)?
The analogous special case of the confluent Vandermonde determinant was a prob-
lem in the American Mathematical Monthly several years ago [1]. It dates back to
Besso in 1882 [2].
In this paper we obtain g, h-analogues of these confluent extensions of Cauchy’s
determinants. The /4 is in the sense of the calculus of finite differences (this may

become clearer further on), and we now describe the g aspect. The g-analogue of the
number k is

1= ipg 21
k]:={T-¢ "9 #1,
k ifg=1.

If k is a positive integer then

=1+q+q¢*+---+4"",

but in what follows k will sometimes be a negative integer. Next, build g-factorials
and g-binomial coefficients out of these in the obvious way: for nonnegative integers
n define the g-factorial by

nly :=[11[2]---[n], where 0!, :=1,
and the g-binomial coefficient as

n! . . .
(n) . m if n and k are integers with 0 < k < n
k) 4 otherwise.

The recurrences
(1), = G0), () b
k/ 4 k—1/, k)4
_ (” ; 1) gk (Z - 1) (12)
q q

are well-known and easy to verify. We collect here some other simple facts which
we will require:

(23 u-a- (00 ) u-i-n=g(073) (13)
J=14 J=14 j-2 q’ .
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i—1 . . i—1 .
(. > [l—J]=( ) ) [J1, (1.4)
J=1, J Jq

[j — g —lilg’ ' =4q'[j —i — 11. (1.5)

2. A confluent ¢, h-Vandermonde determinant

For nonnegative integers n define the polynomial (x), , by (x)o,, = 1 and, for
n >0,

i = x(qx + 1) (g°x +[2]h) -+ (¢""'x + [n — 1]h).

A more proper notation would be (x), 5,4, but g will not vary, so we will suppress
it. We will need one simple property of these polynomials:

4" & = ot = (= g ifn > 1. @.1)

Letay, as, ..., a, be nonnegative integers. We propose to evaluate a determinant
of aj +a> + - - - + a;, rows, a; of which correspond to the variable x; for each i.
(If a; = 0 then x; does not appear; we henceforth assume that the a; are positive
integers.) The ith entry in the jth x; row is

i—1 o
(] _ l)q(xk)l—],h

forl < j<arandl <i <aj+---+ ay, where this means zero if j > i. We will
denote this determinant by V,, . 4. (X1, ..., Xn; h); again we suppress the depend-
ence on g. For example, V2 2(x1, x2; 1) is the determinant

1 x1 xi(gri+h) xi(gxr +h)(g*x + [2]h)
0 1 [21x1 [31x1(gx1 + h)

1 x2 x(gra+h)  xa(gxa+h)(g>x +[21h)|
0 1 [2]x2 [3]x2(gx2 + h)

Krattenthaler [6] has written an excellent survey of recent work on determinants,
which in particular contains two g-confluent Vandermonde determinants, Theorems
23 and 24. His Theorem 23 is a generalization, in a different direction, of the case
h = 0 of our result. As the referee points out, the parameter / can be removed from
our determinant by making the change of variables

(I +ydh
L= U
l—gq
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for each i; the determinant that results would be more or less the same as the case
h = 1 of ours. But this reduction does not simplify the proof much, so we will not
make it.

Theorem 1. With the above notation,

Val,az,...,am (X1, X2, .oy X3 h)
----- m i—1 i—1 i—1r .
=g T (@' — ¢/ ' — ¢ = ilh). 22)
I<k<t<m
I<i<ay
I<j<ay
Here e3(ay, . .., ap) is the elementary symmetric function of degree 3 inay, ..., ay;

ie.,

esai, ..., ay) = Z a;ajay,
1<i<j<k<m
which means zero if m < 3.

We will establish Theorem 1 by a lengthy series of column and row operations.
Begin by subtracting (¢°~2xy + [i — 2]k) times the i — Ist column from the ith
column, from i = a; + - - - + a,, backwards to i = 2. This makes the first x; row
1 followed by all zeros. If i > 1, the ith entry in the jth x; row becomes

! = (%) ol + 1 - 20m)
j—l q(xk)z—/,h j—l q(xk)z—/—l,h q X1 l

(on), (@ e+ 1= = 10

—(j21), (@ P+ 1 = 2m)

= (Xk)i—j—1,h

Using (1.3) this simplifies to
o i—1 i—2 . i—2
q'™’ l(xk)ijl,h{<. 1) Xk—<. 1) ¢/ xy - ( 2) h}

In particular, if £k = 1 then this simplifies further by (1.1) to

i—j—1 i—2
q (XDi—j—1.n\ . (x1 —h),
i—2/,
and still further by (2.1) to

i—2
(j _ 2>q(161 —h)i—jng- (2.4)

Since the first row is now 1 followed by all zeros, we can cut off the first row and
column without changing the determinant. What was the second column is now the

2.3)



286 W.P. Johnson / Linear Algebra and its Applications 411 (2005) 281-294

first, and so forth, so we should increase i by 1 in (2.3): the ith entry in the jth xj
row, for k > 1, is now

qi_j(xk)i—j,h{(.i ) Xk — (i._l) g’ xi — <i._1> h}- (2.5)
]_1 q -]_1 q ]_2 q

If k£ = 1 the first x; row is also gone, so we should increase i and j by 1 in (2.4): the
ith entry in the jth x| row is now

i—1
(j _ 1>q(X1 —N)i—jhg- (2.6)

If we take j = 1 in (2.5) we get q"’l (Xk)i—1,n(xk — x1), so that the first x; row has
the factor x; — x1, for each k > 1. If we pull all those factors out, what remains of
the ith entry in the first x; row is

" im1n = (@XK)i—1.ng-

If we subtract this from the second x; row (for all k¥ > 1 such that there is a second
Xj TOW), we get

. i i—1 .
42— {(1) Xi — ( 1 ) gxi — h} — ¢ xicn
q q

i2 i i—1 P2 )
=q' " (xK)i-2.h R gx1 —h —q(qg' “xx +[i —2]h)
q q

=[i — 11q" 2 (xx)i—2.n(xk — qx1 — h).

So this row has the factor x; — gx1 — h, and if we pull it out what remains of the ith
entry in the second xj row is

i—1\ ., i—1
q' T (xXk)i—2n = (gxK)i—2,hg-
/g /g

Continue in this fashion through all of the a; x; rows, for each k > 1. Assume
inductively that the ith entry in the jth x; row becomes

I — 1 .o .
(l. ) g ()i jn (ke — ¢y = [j - 11h), 2.7
=1/,

and pull out the factor x; — qj e =1 Jj — 1]h, so that what remains of the ith entry
in the jth x; row is

) d o= ("] i~ 2.8
(j _ 1>q6] (XKk)i—j,n = (j B l)q(qu)’_/’hq' (2.8)

Subtract this from (2.5) for all k > 1 such that there is a j 4 1st x; row. This gives
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L i i—1 . i—1
¢ I iz (> Xk—( . ) qjm—(. ) h
1/ q J Jq i—1,
i1\
- . q' ! (xXK)i—j.n
=1/,

(), 5~ (7,05~ ()

— (1), 4@ e+ 1= = 1)

(), =72, ) xe = (1) g/

—(j21) h0 +qli = j = 1])

—_
=g ()i—j-1.n

i
=g ()i—j-1h

Using (1.2), (1.4), and (1.5), this simplifies to
i—1 o ) .
( i ) q" 7 )i (= g/ x1 — [1h),
q

which is (2.7) with j 4 1 in place of j. Thus (2.7) holds by induction.
For each k > 1, the factors that come out in this reduction are

ag
[]Gx —q/'x =1 — 1.
j=1

From this, (2.6) and (2.8) we have the functional equation

n ag
Var agoian 1, %2, o xmi ) = [ [ [k — ¢/ o1 = 1 = 11h)
k=2 j=1
XVal—l,az,.,.,am (-xl - hs qu, ) Clxm§ qh)

(2.9)
It is easy to show by induction, with the aid of (1.5), that (2.9) implies

Val,az,...,am (X1, X2, ..., xXm; h) = Val—i,az,...,am (x1 — [ilh, qlx27 ceey qlxm; 6]’/1)

X 1_[ {(xf —q/ " = [j = 1) (gxe — ¢/ "1 = qlj = 21h) x }
AL x@ e =g =g - it
1<j<ay

for 1 <i < aj, and hence

Val,az,...,am (X1, X2, ..., Xy h) = Vaz ..... am (qalea cees qalxm; qalh)
< [T @ 'xe—q’ 1 =" '1j —ilh).

2<t<m

I<i<ag
I<j<ay
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Using this on itself,

Vasam @' X2, oo o g™ x5 ¢ h)

= Vagnan @ T2x3, ., g1 T2 ¢ 2h)
< [ @ 'q“xe—q'"'q"x2— ¢~ 1j = ilg“ ).
3<l<m
I<i<ap

I<j<ap
Since there is a factor of ¢! inside the product, we may rewrite this as

a a . a
Vag,ooam @ X2, ... @ X ")

m ap ap
=[Ta = [TI TG e —a’ "2 =q"""j = il)
(=3 i=1j=1
XV, am (@ T2x3, o g 205 g T2 R).
Using (2.10) again,
Vag u (qal+a2)C3, L qa1+u2xm; qa1+c12h)

m asz ay
=[TTTT1@ 'a“t2xe — g7~ g 2xs — g'~'1j — ilg“ 2 h)

t=4i=1j=1

aj+ax+a ai+ar+a . ay+ar+ta
XVa4 sssss am(q e 3x4s--~,61 1 3xm,q 17142 3]1)’

and again we can pull out a power of g:

Vi, an @203, 0 g 2005 T2 D)
m asz
=[Ta“ T T@ " xe = q’ a3 =4 'Lj =il
(=4 i=1j=1

aj+az+a ai+ar+a . aj+ar+a
X Vg oam (@2 By, o, g T T By, g RTBR).

(2.10)

We see the elementary symmetric function of degree 3 starting to show up in the
exponent of g, and by repeated use of (2.10) we eventually get Theorem 1. Let us

give two examples. Since e3(2,2) =0,

Vaoexih)y = [ (@ 'xe—q/ " — gl = ilh),

I<k<t<2
I<i<ay
I<j<ay

where a; = 2 and ap = 2, and after a little reduction this becomes

Voo (xi, x2; h) = q(xa — x1)*(qxa — x1 + h) (x2 — gx1 — h).
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A slightly more complex example is V3 2 1(x1, x2, x3; h). Here e3(3,2,1) =3 -2
1 = 6, and (2.2) becomes

Va,1(x1, 2, x33 1) = 8 (62 — x)(gx2 — x1 + )2 (qPx2 — x1 + [21h)
X (x3 —x1) X (x2 —gx1 — h)(x3 — x2)
x(gx3 — x1 + h)(gx3 — x2 + h)(g*x3 — x1 + [2]h)
after a little reduction.

One might hope for a common generalization of Theorem 1 and Krattenthaler’s
Theorem 23 [6], in which one would define

<C) _[ClC—1]---[C—k+1]
k), k!,

for a nonnegative integer k and an arbitrary parameter C. The definition of (x),.j
extends nicely to negative integer n by requiring (2.1) to hold for all integers, and
one could then consider the determinant which would have

C+i—1
( . ) (XK)i—j.h
=1/,

as the ith entry in the jth x; row. But I have not been able to evaluate it.

3. A confluent g-double alternant

For nonnegative integers n define the polynomial ¢, (x, y; h) by
en(x,yih) = (0 =) =gy = =gy = [2) -+~ (x = ¢" "y = [n — 11h).

where co(x, y; h) := 1. We will actually work with

n—1

»).

As the referee points out, there is no loss of generality in doing so since ¢, (u, v; h)
reduces to ¢, (x, y) after the substitutions

(X, y) = cn(x, y:0) = (x — V) (x — g (x —g2y) - (x — ¢

h h
u=x+—— and v=y+ ——. (3.1
1—¢ 1—g¢g
The simple property (x — y)c,(x, qy) = cn+1(x, y) will be used below.
Letay, az, ..., a, be nonnegative integers whose sum is s. We will evaluate a de-

terminant of s columns, a; of which correspond to the variable y; foreachi. (If a; =
0 then y; does not appear; we henceforth assume that the a; are positive integers.)
The ith entry in the nth y; column is the reciprocal of ¢, (x;, yj) for1 <n < aj,1 <
Jj<mand 1 <i<s. Wewill denote this determinant by Cg, .. 4, (X1, ..., X5 Y1,

.., Ym), suppressing the dependence on ¢. For example, C> 2(x1, X2, X3, X4; Y1, y2)
is the determinant
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Cr—yD™" =y —gyD) T =yt = ) — gy} !
2 =yD™h {G =y =gy} =y {(Go = y2) (2 — gy2)} !
(3—yD7" {Gz—yDG3—gyD} (3= {3 —y) (s — gy} !
G —yD™h {Ga =y —gyD}™ =y (s — ) — gy)} !

2= y002 —gyD(gy2 = y)(gy2 — gy) [i<icjca(xj — Xi)

[T i — yD @i — gy (i — y2) (i — qy2)

Theorem 2. With the above notation,

..... l/lm(-xl"'°7xs;ylv°"9ym)

(H]gkjgx(xj - xi)) H I<k<t<m (qj7]YK - qiil)’k)

lgigak
I<j<ap

[T cies i — )i —gqy) - (xi — g%~ y))

I<j<m

= (=D®
3.2)

Again our evaluation proceeds by a long series of row and column operations. We
first subtract the sth (last) row from all the others. The ith entry in the nth y; column
becomes

n

(s — ) (g —q" Ly — (i —yj) - (i — " y))
(i —yj) (i — gy (s — i) (g — g )

forl <n<aj,1 <j<mand1 <i<s— 1. Each column now has the common
factor

1 1

en(xs, yj) (g — ) (x5 —qy) - (g — gLy’

and we take all these factors out of the determinant, so the ih entry in the nth y;
column is now

n—1

(s —y) s —q" ' y) — i —yj) - i —q"'yp)
(xi = y)(xi —qyj) - (xi —q""1yj)
forl<n<a;, 1 <j<mand 1<i<s—1,and the last row now has all 1’s.
Next, we subtract the next-to-last y; column from the last one for each j, then
the third-to-last y; column from the next-to-last, and so forth; finally subtracting
the first y; column from the second. The ith entry in the nth y; column becomes
(cn(x;, yj))’1 times

n 1

(s — ¥ (s —qyj) - (s —q" "y ) — i =y (i —qy) - (i — ¢"ly))
—(xi = " s — ) = @Y = (i — ) (= g TRy ))
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for2<n<aj, 1<j<mand 1<i<s—1; the last row now has a 1 in the
first y; column for each j, and zeros otherwise. Two of the four terms here cancel.
Combining the other two we get

(s = ¥ = qy)) - (s = ¢"Pylas —¢" "y = (i = ¢yl
and therefore the ith entry in the nth y; column is now

_ n—=2

(xs —x)(xs — yj)(xs —qyj) -+ (x5 — q yji)

(i =y —qyj) - (i —q"1y))
for2<n<a;,1<j<mand1<i<s— 1. In fact the first y; column also has
this form, for n = 1. Therefore the ith row has the factor x; — x; for 1 <i <s —1,
and we take all these out. For each j and for each n > 2 we can also take out

(s — ) (g = qy) - (xs — q"72y)).
These factors cancel most of the ones we took out earlier, leaving only one copy of
each factor in the denominator. Thus we have pulled out

—1
(xs — x1) (s —x2) -+ (x5 — X5-1) B H,S'=1 (xs — xi)
P - m
[T s =) s —q 7y TGy cay (s, v))
so far. The determinant that remains is the same as the one we started with, except for
the last row, where we have 1’s in the first y; column for each j and 0’s otherwise.

To make the last row 1 followed by zeros we subtract the first y; column from the
first y; column for each j, 2 < j < m. The other entries in these columns become

1 1 Yi—Nn

(3.3)

Xi—y; xXi—yt (—yD&—yj)
for1 <i<s—1and2 < j < m. We can factor y; — y; out of the determinant for
each of these j. We would like also to factor out (x; — yl)_l, but this would only be
possible if every a; = 1. For any j for which a; > 2, we need to subtract the new
first y; column from the second y; column. The ith entry in the second y; column
becomes

1 1 qyj — V1

xi —yj))xi —qy;)) i —yD@&—y;) & —yD& —y)xi —qy;)
for1 <i<s—1andall j > 2such thata; > 2. We can pull out the factor gy; —
¥1, and then subtract the new second y; column from the third y; column whenever
there is one. The third y; column then becomes

1 1

(i =y i —qyp)(xi —q?yj) (i —yDxi —yj)xi —qy;j)

a*y; — v
(xi —yD)(xi — yj)(xi —qyj)(xi —q%yj)

for 1 <i<s—1andall j>2suchthat a; > 3, and again we can pull out a nu-
merator factor. Proceed in this way until the a;th column is reached for every j. By
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this time the ith row has (x; — yl)’1 as a factor for 1 <i < s — 1, so pull all those
factors out. The last row is 1 followed by all zeros, so we expand on this row, getting
a factor of (—1)*! from the only nonzero term. The new determinant is exactly
like the previous one, except that the first column and last row have been cut off.
If a; =1 then the new determinant would be Cg,,. 4, (X1, ..., Xs—15 Y2, .-, Ym),
butin general itis Cy;—1,ay,....a,, (X15 - - - s Xs—1; ¢Y1, Y2, - - ., ym). The factors that we
have pulled out so far are the ones in (3.3), and more recently

iy [Ty — yay; =y - (g y; — .

( (3.4)
(x1 —yDx2 —y1) -+ (xg—1 — ¥1)
Noting that
(vj = yD(@yj =y @ yj = y1) = (=D%cq; (v1. ¥)).
we see that the factors we have so far are
(Hf;f (s — xi)) ( 2cean (@77 ye =i+ 1 = l]h))
(=11 S (3.5)

(1 =y 2 = y1) .. (-1 — y0) [T72 ca; (x5, v))

In other words, if we temporarily set X equal to the quantity in (3.5), then we
have the functional equation

Caransosam (X1, ooy Xs— 1, X535 Y1, Y20 -+ o5 Ym)
=X Coi—lLay,am (X1 oo, Xs— 153GV, Y20 oo Ym)- (3.6)

As with (2.8), we can solve (3.6) by iteration. If we use (3.6) on itself a; times to
eliminate y; we find that

Cal,az ..... am(xla'--7xs§y1,y27---»ym)
al+l)

= (=

(Hs—alﬂg_jgs (xj — xi)) [1 125;52" (61171YZ - q171YI)
e 1<icay

X
(TTiz cay &xiu D) (Hs—glflgif Ca; (Xi, yj))
<j<m
X Cay,oovam (X1« ooy Xs—ay3 Y2, ooy Ym)- (3.7

Rather than inflicting any further iteration on the reader, we complete the proof of
Theorem 2 by showing that the right side of (3.2) satisfies (3.7), for then we could
use induction from Cp = 1. More precisely, we will show that if we divide the right
side of (3.2) by what it would be with a; and y; deleted and s replaced by s — aj,
then we get the factors in (3.7).
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We look at each of the four constituents of (3.7) in turn. The powers of —1 are
(-5,

and these work out since

K s —aj a; +1

- =say — .

2 2 2

The Vandermonde factor of the x;’s gives

j —x,').

[licicjos O — x0) M «

Hl<i<j<s—a1(xj _xi) s—ay+l<j<s

I<i<j

The denominator factors are

<]_[ 1<i<s—aj Ca; (i, yj)) (]_[ s—ay+isi<s Ca; (Xi, yj)> (]_[‘;:1 Ca (i, y1))

2<j<m 2<j<m

1_[ I<i<s—ay Caj ('xi’ yJ)

2<j<m

= 1_[ Ca; (Xi, ¥j) (l_[cal(xz',)u))-

s—ap+l<i<s i=1
2<j<m

Finally, the y; numerator factors become

1

[l Iskstam (@' 'y —q" )

L<j<ay _ < j—1 i—1 )
- - = | | q Ye—4q Yi)-
l_[2<k<t'<m (q]_lyZ _ql_lyk) 2

I<i<ay
I<j<ay

Thus we get precisely the factors we see in (3.7), and this proves Theorem 2.

If we denote by Cy, as,....a,, (X1, - - - X53 Y1, Y2, . ., Ym3 h) the corresponding de-
terminant with the ith entry in the n y j column being the reciprocal of ¢, (x;, y;; h)
for1 <n < aj, 1 < j < m,then by the referee’s remark (3.1) we have

Theorem 3. With the above notation,

Cay,oyam (X150 oo s X3 Y1 ooy Y h)
—(—nH®

(n1§i<j<s(xj —xz')) Miaseen @ ye =g e+ a1 = i)
<i<ay
I<j<ay

[T icies (5 =y — qyj —h) - (i — g%~ yj —[aj — 11h)

I<j<m
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