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TNF-a inhibits glucose-induced insulin secretion in a pancreatic fl-cell line 
(INS-l) 
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Abstract Recent studies suggest that TNF-a affects various 
biochemical and physiological processes which may be linked to 
the etiology of non-insulin-dependent diabetes meHitus 
(N IDDM). For example, TNF-ct interferes with the signaling of 
the insulin receptor and the metabolism of glucose transporters. 
The possibility that TNF-a might directly reduce glucose-stimu- 
lated insulin secretion in pancreatic i3-cells was examined by 
using an established pancreatic/S-cell line (INS-l).  TNF-~ did 
not affect glucose-induced acute insulin secretion (30 min). How- 
ever, over a longer time period (24 h), TNF-a decreased glucose- 
induced insulin secretion without affecting the total amount of 
insulin in the cell. In the presence of TNF-t~ levels of 0, 10, 100 
and 1000 Ulml, the respective 20 mM glucose-induced insulin 
secretion was 1.736 + 0.166, 1.750 + 0.302, 1.550 -+ 0.200, and 
1.400 + 0.112 mUIml per 3 × l0  s cells in 24 h. 

K, y words: TNF-~ ;  Insulin secretion; Cytokine; Acetyl-CoA 
ca ~-boxylase 

1. Introduction 

Recent studies suggest that the cytokines, interleukin-1 (IL- 
l) interferon-9' (IFN),  and tumor  necrosis factor ~ (TNF),  
al,me or  in combination,  play a role in the pathogenesis of  both 
t}:ge I and type II diabetes mellitus [1]. Al though the exact 
m,~chanisms and sequence of  events by which these cytokines 
tragger t -ce l l  destruction and type I diabetes are not  clear, there 
is strong collaborative evidence that the cytokines are involved 
in the onset of  insulin-dependent diabetes mellitus ( IDDM).  
TNF-induced  t -cel l  destruction has been well documented [1]. 
It, the case o f  non-insulin-dependent (type II) diabetes 
(NIDDM) ,  T N F  may act at different levels [2-4]. These multi- 
pl~ sites of  action might explain the phenomenon of insulin 
rcfistance in the peripheral tissues. If T N F  interferes with nor- 
real function at several levels, it might lead to both insulin 
rtsistance and N I D D M .  The clinical manifestations of  
N I D D M  might also be due to T N F  action at the level of  insulin 
stcretion. The diminished sensitivity o f t - ce l l s  towards insulin 
st cretagogues, such as glucose, could likewise lead to the clini- 
c , l  manifestations of  N I D D M .  Indeed, there has been much 
d,:bate over the years about  whether the cause of  N I D D M  is 
il~sulin resistance or insulin deficiency [5]. 

In the present studies, we have examined the effects of  T N F  
oa glucose-induced insulin secretion by using a well-established 
pancreatic fl-ceU line ( INS-l)  [6], so that the effect of  T N F  on 
iJ~sulin secretion could be directly assessed. Our studies indicate 
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that, over a long time period, T N F  diminished glucose-depend- 
ent insulin secretion, although it did not affect acute glucose- 
dependent insulin secretion. 

2. Materials and methods 

2. L Materia& 
Commercial products were obtained from the following sources: 

RPMI-1640 medium and cell culture plates from Sigma Chemical Com- 
pany; donor calf serum, trypsin-EDTA, penicillin and streptomycin 
from GIBCO BRL; Micromedic insulin RIA kit from ICN; sodium 
pyruvate from Flow Laboratories. All other chemicals were analytical 
reagent grade. 

2.2. Experimental procedure 
An insulin secreting cell line (INS-l) was grown as described earlier 

[7] in 100-ram Petri dishes in RPMI-1640 medium containing 10 mM 
glucose, 10 mM HEPES, 10% heat-inactivated donor calf serum, 1 mM 
sodium pyruvate, 50/.tM fl-mercaptoethanol, 100 IU/ml penicillin and 
100/,tg/ml streptomycin at 37°C in a humidified atmosphere of 5% CO2 
and 95% air. For trypsinization, INS-I cells at approximately 80% 
confluence were washed twice with PBS (137 mM NaC1, 2.7 mM KC1, 
4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.4, 37°C), and incubated in 
1 ml of 0,5% trypsin-EDTA solution at 37°C for 2 min. The detached 
cells were diluted with medium and dispersed by passing through a 
10-ml pipette. The cell suspension was spun at 500 rpm for 5 min, and 
the cell pellet was resuspended into about 105 cell/ml and seeded on 
12-well culture plates. Cells were grown for 7 days, and then preincu- 
bated for 24 h in medium without glucose. In the short-term experi- 
ment, cells were further incubated in glucose-free KRB buffer (pH 7.4) 
containing 118 mM NaC1, 4.8 mM KCI, 1.3 mM CaCI2, 1.2 mM 
KH2PO 4, 1.3 mM MgSO4, 5 mM NaHCO3, 25 mM HEPES and 0.07% 
BSA. Then freshly prepared KRB buffer containing different concen- 
trations of glucose and TNF was added to the plates and further 
incubation was continued for 30 min. Supernatant was removed for 
insulin determination using insulin RIA kit. The cells were washed with 
cold PBS and extracted overnight at 4°C with 1 ml of acid-ethanol 
solution (l M HC1/H20 / ethanol = 200: 10: 790, v/v). Cell extract was 
centrifuged at 14,000 x g for 5 min, and the supernatant was diluted 100 
times with KRB buffer before insulin was determined. Total protein in 
the cell extract was determined by using the Bradford reagent. Statisti- 
cal analysis were performed with Student's t-test for unpaired data. 

3. Results 

3. I. Short- and long-term response of  INS-1 cells to glucose 
The mean value of  the insulin level of  this cell line is 15 

mU/105 cells. The acute response of  INS-1 cells to increasing 
concentrations of  glucose is insulin secretion (Fig. 1). The glu- 
cose dependency can best be shown when the cells are preincu- 
bated in the absence of  glucose. After prolonged exposure to 
high glucose concentrations, the cells become unresponsive to 
low glucose concentrations (data not  shown). Persistent hyper- 
glycemia causes pancreas to lose its ability to respond to glu- 
cose [5], As shown by the results in column 1 of  Fig. 1, pretreat- 
ment of  the cells with glucose-free medium makes the cells 
particularly glucose sensitive, even at low glucose concentra- 
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Fig. 1. Glucose and insulin secretion. Following one week of growth 
in RPMI-1640 medium containing 10 mM glucose, INS-1 cells were 
incubated for 24 h in the absence of glucose, and then for 2 h in KRB 
buffer. In the experiment for short-term exposure to glucose (column 
1) cells were then incubated in KRB buffer in the absence or presence 
of 1, 5 or 20 mM glucose, as indicated, for 30 min. For experiments 
where the cells were exposed for a long term, cells were incubated at 
the same series of glucose concentration for 24 h (column 2). Insulin 
secretion was determined as described under section 2. Data shown are 
mean value + S.E. of twelve determinations. 

tions (0 vs. 1 m M  glucose in column 1, Fig. 1). Al though a small 
increase in insulin secretion occurred in the presence of  higher 
concentrations o f  glucose, almost maximum insulin secretion 
occurred at 5 m M  glucose, and the effect of  20 m M  glucose on 
further insulin secretion was minimal. This suggests that the 
insulin level that is affected by glucose in the short term is 
limited to about  0.6 mU/ml  and that this secretion can be 
affected by glucose concentrations as low as 1 mM. The level 
of  insulin that was secreted over a 24-h period in the absence 
of  glucose was as high as 0.8 mU/ml/24 h. However,  further 
insulin secretion is still glucose concentration dependent, and 
insulin secretion at 20 m M  was as high as at 1.8 mU/ml/24 h 
(Fig. 1, column 2). 

3.2. Effects of  TNF on insulin secretion 
Having established the existence of  glucose-induced insulin 

secretion in our system, we examined the effect of  T N F  on this 
phenomenon.  First, we tested the effect of  T N F  on the short- 
term effect of  glucose (30 min). As shown in Table 1, TNF,  at 
a concentration as high as 2000 U/ml,  did not  affect insulin 
secretion, at any glucose concentration, in a 30-min time pe- 
riod. 

Table 1 
Short-term effect of TNF on insulin secretion in INS-1 cells 
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Fig. 2. TNF inhibition of glucose-induced insulin secretion. INS-1 cells 
were grown and preincubated as described in Fig. 1. During 24 h 
incubation, TNF and glucose were added to the RPMI-1640 medium. 
Insulin secretion during the 24 h period was determined as described 
in section 2. Each well contained 3 x 105 cells in 1 ml of medium. Data 
shown for each point represent mean value + S.E. of twelve repeats. 

Although T N F  had no apparent effect on glucose-induced 
acute insulin secretion, over longer time periods, it did affect 
insulin secretion induced by glucose. As shown in Fig. 2, at all 
concentrations of  glucose, increasing amounts  of  T N F  signifi- 
cantly affected the level of  insulin secretion. At T N F  concentra- 
tions of  0, 10, 100 and 1000 U/ml,  the glucose-stimulated insulin 
secretion, when the concentration of  glucose was under 20 raM, 
was: 1.736 + 0.166, 1.751 + 0.302, 1.550 + 0.200, and 
1.400 + 0.112 mU/ml,  respectively. These results show that 
T N F  interferes with glucose-induced insulin secretion by fl- 
cells. Several reports suggest that a combination of  different 
cytokines synergistically exert cytotoxic effects that destroy fl- 
cells [8-10]. Therefore, we also examined whether or not  the 
insulin content in the cell was affected by T N F  treatment. As 
shown in Table 2, T N F  treatment of  the cells at doses as high 
as 2000 U/ml, for 24 h, did not  affect the total insulin content 
in the cell. This suggests that the observed effect of  T N F  might 
be the result of  action at the insulin secretion step. Under  these 
experimental conditions, no morphological  changes were ob- 
served during the incubation of  the cells. 

4. Discussion 

TNF,  alone or in combinat ion with other cytokines, is asso- 

Glucose (mM) TNF-0t 

0 U/ml 100 U/ml 200 U/ml 1000 U/ml 2000 U/ml 

0.1 0.20 + 0.130 0.18 + 0.035 0.20 + 0.076 0.20 + 0.035 0.22 + 0.032 
0.5 0.35 + 0.019 0.35 _+ 0.027 0.38 + 0.052 0.35 + 0.061 0.36 + 0.040 

20 0.71 + 0.012 0.69 + 0.011 0.69 + 0.021 0.68 + 0.050 0.67 + 0.100 

After 7 days growth in RPMI-1640 medium containing 10% bovine serum and 10 mM glucose, INS-1 cells were grown in the same medium without 
glucose for 24 h and then in Krebs-Ringer bicarbonate buffer for 2 h. Glucose and TNF were added at concentrations indicated for 30 min and insulin 
secretion (mU/ml) was estimated as described in section 2. The average value of cell insulin content was 15 _+ 1.1 mU per 105 cells in this 
experiment. 
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Table 2 
Insulin content in glucose and TNF-treated INS-1 cells 
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TN F-ct (U/ml) Glucose 

0 mM 0.1 mM 1.0 mM 5.0 mM 20 mM 30 mM 

- -  0 92.6 + 8.3 93.8 + 8.6 97.1 + 20.8 99.4 + 5.4 98.3 + 6.8 95.0 + 14.2 
2~0 92.8 + 5.6 93.9 + 21.3 94.2 +_ 11.1 98.6 + 4.3 97.5 + 17.7 95.2 _+ 4.8 

101 0 93.3 + 2.7 93.9 +_ 6.5 93.8 + 6.5 96.7 + 16.9 95.2 + 22.2 93.8 +_ 18.6 

After 7 days growth in RPMI-1640 medium containing 10% bovine serum and 10 mM glucose, INS-1 cells were pretreated with the same medium 
fol 24 h at 0 mM glucose which was followed by the treatment with glucose and TNF at concentrations indicated for 24 h. Cells were collected and 
ins din was extracted and determined (mU per well) as described in section 2. Data shown are mean value + S.E. from four determinations. 

cfi~ted with type I and type II diabetes mellitus [1,8-12]. While 
destruction offl-cells by cytokines may be responsible for type 
I ~iabetes, cytokines appear to play a multifaceted role in type 
II diabetes. The suppression of insulin-induced tyrosine phos- 
pborylation of insulin receptors and its substrates in insulin 
ta~ get cells has been well established [14].  T N F  also affects the 
ex!~ression of the glucose transporters gene [4]. These T N F  
eflects alone would be sufficient to make peripheral tissues 
in,ulin-resistant and would then lead to NIDDM.  

I'he present studies dealt with another aspect of T N F  action 
in the etiology of type II diabetes. Our observations indicate 
that T N F  inhibits glucose-induced insulin secretion. A recent 
rei~ort [11] suggested that cytokines inhibit insulin secretion by 
human islets of Langerhans through the elevation of nitric 
or ide. In that study, T N F  alone showed little or no effect on 
ni 'r ic oxide formation. However, Picarella et al. [13] reported 
th t t  tissue-specific T N F  production in transgenic mice led to 
in~,ulitis. T N F  was also reported to alter HLA (human leuko- 
c 3re antigen) class II antigen expression and to have toxic 
ef'. ects on human fl-cells [14]. During our incubation period, no 
cbanges in the morphology or insulin content of the INS-1 cells 
w,'re detected. The mechanism by which T N F  inhibits glucose- 
in,luced insulin secretion is not  known. Although T N F  causes 
C.L 2+ redistribution between the bound and free forms, it is 
ml ike ly  that T N F  action on insulin secretion is mediated 
th rough Ca 2+ redistribution, as was reported for 30A5 cells [15], 
btcause T N F  increases the free form of Ca 2÷ transiently and 
C F + is a positive effector in the insulin secretion process [16]. 
T ' q F  destruction offl-cells is a chronic process [8] and such an 
ef'ect of T N F  on the fl-cells would not  explain the present 
ol,servations of T N F  action on the secretion of insulin. In our 
er perimental system, T N F  has no apparent effect on cell mor- 
pl o logy or insulin content. T N F  action involves many different 
re,clear factors which control the transcription of different 
gtnes. For  example, T N F  action involves transcription factors, 
st~ch as NF-kB, the AP-1 family of transcription factors (c-fos 
aJ d c-jun), interferon factors IRF-I  and IRF-2 [17], and the 
C EBP family [18]. 

Recently, we have shown that T N F  inhibited the expression 
o~ acetyl-CoA carboxylase (ACC) promoter II, which is the 
o~ Jy active promoter for the ACC gene in the fl-cell [7]. ACC 
is the key enzyme for the production of malonyl-CoA, which 
is thought to be the coupler for glucose-stimulated insulin secre- 
t i  ~n [19,20]. Further  experimental evidence is required as to the 
rc echanism of T N F  inhibition of glucose-induced insulin secre- 
t im.  However, it is attractive to suggest that T N F  may affect 
A CC gene expression, and that the subsequent decrease in 
malonyl-CoA diminished the effect of glucose in insulin secre- 

tion. In the case of glucose-induced acute insulin secretion (30 
min), we have recently shown that glucose promoted 
dephosphorylation of phosphorylated ACC, and that activa- 
tion of the enzyme was associated with glucose-induced insulin 
secretion [7]. This process was acute, and thus not likely to be 
inhibited by TNF. Regardless of the mechanism by which T N F  
inhibits glucose-induced insulin secretion, it is clear that T N F  
inhibition of insulin secretion is a contributing factor in 
NIDDM.  
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