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Abstract

In this paper we prove Chaitin’s “heuristic principle,”the theorems of a finitely-specified theo
cannot be significantly more complex than the theory itself, for an appropriate measure of complexi
We show that the measure is invariant under the change of the Gödel numbering. For this m
the theorems of a finitely-specified, sound, consistent theory strong enough to formalize arit
which is arithmetically sound (like Zermelo–Fraenkel set theory with choice or Peano Arithm
have bounded complexity, hence every sentence of the theory which is significantly more co
than the theory is unprovable. Previous results showing that incompleteness is not acciden
ubiquitous are here reinforced in probabilistic terms: the probability that a true sentence of len

is provable in the theory tends to zero whenn tends to infinity, while the probability that a senten
of lengthn is true is strictly positive.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Gödel’s Incompleteness Theorem states that every finitely-specified, sound,
which is strong enough to include arithmetic cannot be both consistent and com
Gödel’s original proof as well as most subsequent proofs are based on the following
a theory which is finitely-specified, sound, consistent and strong enough can expre
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tences about provability within the theory, which, themselves, are not provable b
theory, but can be shown to be true using a proof by contradiction. A true and un
able sentence is called independent. This type of proof of incompleteness does not
the questions of whether independence is a widespread phenomenon nor which k
sentences can be expected to be independent.

Chaitin [14] presented a complexity-theoretic proof of Gödel’s Incompleteness T
rem which shows that high complexity is a reason of the unprovability of infinitely m
(true) sentences. This result suggested to him the following “heuristic principle,” a
of information-preservation principle:the theorems of a finitely specified theory canno
significantly more complex than the theory itself. This approach would address the s
ond of the questions above, that is, highly complex sentences are independent, a
consequence, would indicate that independence is pervasive. A formal confirmation
pervasiveness of independence has been obtained in [9] via a topological analysis;
titative result is still missing.

In this paper we prove that a formal version of the “heuristic principle” is indeed
rect for an appropriate measure of complexity; the measure is invariant under the c
of the Gödel numbering. For this measure,δ, the theorems of a finitely-specified, soun
consistent theory which is strong enough to include arithmetic have bounded comp
hence every sentence of the theory which is significantly more complex than the the
unprovable. Previous results showing that incompleteness is not accidental, but ubiq
are here reinforced in probabilistic terms: the probability that a true sentence of lenn

is provable in the theory tends to zero whenn tends to infinity, while the probability that
sentence of lengthn is true is strictly positive.

The paper is organized as follows. In Sections 2 and 3 we present the backgrou
notation and main results needed for our proofs. In Section 4 we discuss some g
complexity-theoretic results which will be used to prove the main result (Theorem 4.
Section 5 we prove that incompleteness is widespread in probabilistic terms. In Se
we use the new complexity measure to prove Chaitin’s information-theoretic incom
ness result for the Omega Number. We finish with a few general comments in Sec
The bibliography includes a selection of relevant papers and books, but is by no
complete.

2. Background

Gödel’s Incompleteness Theorem, announced on 7 October 1930 in Königsberg
First International Conference on the Philosophy of Mathematics1 is a landmark of the
twentieth century mathematics see ([31,32,34] for the original paper, [10,35,43,4
other proofs and more related mathematical facts, [5,7,13,27,28,35,36,38,46,47,
more mathematical, historical and philosophical details). It says thatin a finitely-specified
sound, consistent theory strong enough to formalize arithmetic, there are true, but u
able sentences;so such a theory isincomplete. A true and unprovable sentence is cal

1 Hilbert, von Neumann, Carnap, Heyting presented reports; the conference was a part of the German

matical Congress.
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independent. The first condition states that axioms can be algorithmically listed; co
tency means free of contradictions; soundness means that any proved sentence is t

According to Hintikka [35, p. 4], with the exception of von Neumann, who immedia
grasped Gödel’s line of thought and its importance, incompleteness passed un-no
Königsberg: even the speaker who summarized the discussion omitted Gödel’s re
spite of being praised, discussed, used or abused by many authors, the Incomp
Theorem seems, even after so many years since its discovery, stranger than mos
matical theorems.2 For example, according to Solovay [37, p. 399]: “The feeling was
Gödel’s theorem was of interest only to logicians;” in Smoryński’s words [37, p. 399], “It
is fashionable to deride Gödel’s theorem as artificial, as dependent on a linguistic tr

In 1974 Chaitin [14] presented a complexity-theoretic proof of Gödel’s Incomplete
Theorem which shows that high complexity is a reason of the unprovability of infin
many (true) sentences. This complexity-theoretic approach was discussed by Chait
18,20,21,23] and various authors including Davis [24], Tymoczko [50], Boolos and Je
[3, pp. 288–291], Svozil [49], Li and Vitányi [40], Barrow [1,2], Calude [4,6], Calude
Salomaa [11], Casti [12], Delahaye [25]; it was criticized by van Lambalgen [39], F
[30], Raatikainen [45], Hintikka [35].

Chaitin’s proof in [14] is based on program-size complexity (Chaitin complexity)H : the
complexityH(s) of a binary strings is the size, in bits, of the shortest program for a u
versal self-delimiting Turing machine to calculates. The complexityH(s) is unbounded
The proof shows thatfor every finitely-specified, sound, consistent theory strong enou
formalize arithmetic, there exists a positive constantM such that no sentence of the for
“ H(x) > m” is provable in the theory unlessm is less thanM . There are infinitely many
true sentences of the form “H(x) > m” with m > M , and each of them is unprovable
the theory.

The highH -complexity of the sentences “H(x) > m” with m > M is a source of thei
unprovability.3 Is every true sentences with H(s) > M unprovable by the theory? Unfo
tunately, the answer isnegativebecause only finitely many sentencess have complexity
H(s) < M in contrast with the fact that the set of all theorems of the theory is infi
For example, ZFC (Zermelo–Fraenkel set theory with choice) or Peano Arithmetic
ially prove all sentences of the form “n + 1 = 1+ n.” The H -complexity of the sentence
“n + 1 = 1 + n” grows unbounded withn. This fact, noticed and discussed by Chaitin
[22, Section 6] (reprinted in [21, pp. 55–81] ) as well as by Svozil [49, pp. 123–125],
sential for the critique in [30,45] (cited in [35]); the works [21,22,49] seem to be unkn
to the authors of [30,35,45].

Chaitin’s proof based onH cannot be directly extended to all unprovable senten
hence the problem of whether complexity is a source of incompleteness remained o
this note we prove that the “heuristic principle” proposed by Chaitin [21, p. 69], na
that the theorems of a finitely-specified theory cannot be significantly more comple

2 This is quite impressive, as mathematics abounds with baffling results.
3 Fallis [30, p. 264], argued that Gödel’s true but unprovable sentenceG is likely to have excessiveH -

complexity. Similarly, if the theory is capable of expressing its own consistency, then the corresponding s
is likely to have excessiveH -complexity. It would be interesting to have a mathematical confirmation of t

facts.



4 C.S. Calude, H. Jürgensen / Advances in Applied Mathematics 35 (2005) 1–15

nce

-

enon is
analy-
s

ve

n

In

, com-
m set

chine

if
e (ab-

is
o

et of
],
the theory itself4 is correct if we measure the complexity of a string by the differe
between the program-size complexity and the length of the string, ourδ-complexity (The-
orem 4.6). TheH -complexity of the sentences “n + 1 = 1+ n” grows unbounded withn,
but the “intuitive complexity” of the sentences “n + 1 = 1+ n” remains bounded; this in
tuition is confirmed byδ-complexity. Note that a sentence with a largeδ-complexity has
also a largeH -complexity, but the converse is not true. There are onlyfinitelymany strings
with boundedH -complexity, butinfinitelymany strings with boundedδ-complexity.

As a consequence of Theorem 4.6, we prove that the incompleteness phenom
more widespread than previously shown in [14,20,21,31,32] and by the topological
sis of [9]: the probability that a true sentence of lengthn is provable in the theory tend
to zero whenn tends to infinity, while the probability that a sentence of lengthn is true is
strictly positive.

3. Prerequisites

We follow the notation in [6]. ByN = {0,1,2, . . .} we denote the set of non-negati
integers. Further on, logQ denotes the baseQ � 2 logarithm and logn = �log2(n + 1)�;
�α� is the “floor” of the realα and�α� is the “ceiling” of α. The cardinality of the setA
is denoted by card(A). An alphabet withQ elements will be denoted byXQ; by X∗

Q we
denote the set of finite strings (words) onXQ, including theemptystringλ. The length of
the stringw ∈ X∗

Q is denoted by|w|Q.
For Q = 2, we use the special setB = {0,1} instead ofX2. We consider the following

bijection between non-negative integers and strings onB: 0 �→ λ, 1 �→ 0, 2 �→ 1, 3 �→ 00,
4 �→ 01, 5 �→ 10, 6 �→ 11, . . . The image ofn, denotedbin(n), is the binary representatio
of the numbern + 1 without the leading 1. Its length is|bin(n)|2 = logn. In general, we
denote bystringQ(n) thenth string onXQ according to the quasi-lexicographical order.
particular,bin(n) = string2(n). In this way we get a bijective functionstringQ :N → X∗

Q;
|stringQ(n)|Q = �logQ(n(Q − 1) + 1)�.

We assume that the reader is familiar with Turing machines processing strings
putability and program-size complexity (see, for example, [3,4,6,26]). The progra
(domain) of the Turing machineT is the setPROGT = {x ∈ X∗

Q: T halts onx}; when
T halts onx, T (x) is the result of the computation ofT on x. A partial functionϕ from
strings to strings is called partial computable (abbreviated p.c.) if there is a Turing ma
T such that: (a)PROGT = dom(ϕ), and (b)T (x) = ϕ(x), for eachx ∈ PROGT . A com-
putable function is a p.c. functionϕ with dom(ϕ) = X∗

Q. A set of strings is computable
its characteristic function is computable. A set of strings is computably enumerabl
breviated c.e.) if it is the program set of a Turing machine.

A self-delimiting Turing machineis a Turing machineT such that its program set
a prefix-free set of strings. Recall that aprefix-free setof stringsS is a set such that n

4 An “approximation” of this principle supported by Chaitin’s proof is that “one cannot prove, from a s
axioms, a theorem that is of greaterH -complexity than the axiomsand knowthat one has done it;” see [21, p. 69

also Theorem 4.7 in Section 4.
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string in S is a proper extension of any other string inS. In what follows the termma-
chinewill refer to either a p.c. function with prefix-free domain or a self-delimiting Tur
machine.

Each prefix-free setS ⊂ X∗
Q satisfies Kraft’s inequality:

∑∞
i=1 ri · Q−i � 1, whereri =

card{x ∈ S: |x|Q = i}. A stronger result, the Kraft–Chaitin Theorem (see [6, p. 53]
essential in algorithmic information theory: Letn1, n2, . . . be a computable sequence
non-negative integers such that

∞∑

i=1

Q−ni � 1. (1)

Then, we can effectively construct a prefix-free sequence of stringsw1,w2, . . . such that
for eachi � 1, |wi |Q = ni .

The program-size complexityof the string x ∈ X∗
Q (relative to T ) is HQ,T (x) =

min{|y|Q: y ∈ X∗
Q, T (y) = x}, where min∅ = ∞. The Invariance Theorem states th

we can effectively construct a machineU = UQ (calleduniversal) such that for every ma
chineT there exists a constantε > 0 such that for allx ∈ X∗

Q, HQ,U(x) � HQ,T (x)+ ε. In
what follows we will fixU and putHQ = HQ,U ; in particular,H2 denotes the program-siz
complexity induced by a universal (binary) machine. Ifx is in X∗

Q, thenx∗ = min{u ∈ X∗
Q:

UQ(u) = x}, where the minimum is taken according to the quasi-lexicographical ord
is seen thatHQ(x) = |x∗|Q.

4. Complexity and incompleteness

In this section we introduce theδ-measure and then prove for it Chaitin’s “heuris
principle”: the theorems of a finitely-specified theory cannot be significantly more com
than the theory itself.

First we introduce theδ-measure. Recall thatUQ is a fixed universal machine onXQ

andHQ = HQ,UQ
. In what follows we will work with the functionδQ(x) = HQ(x) − |x|Q

(note that−δQ is a “deficiency of randomness” function in the sense of [6, Definition 5
p. 113]). Theδ-complexity is “close,” but not equal, to the conditionalHQ-complexity, of
a string given its length.

The complexity measuresHQ andδQ have similarities asδQ is defined fromHQ by
means of some simple computable functions; for example, they are both uncomputab
HQ andδQ differ in anessentialway: given a positiveN , the set{x ∈ X∗

Q: HQ(x) � N}
is finite while, by Corollary 4.3, the set{x ∈ X∗

Q: δQ(x) � N} is infinite. Note that the
conditional HQ-complexity does not have this property. A sentence with a largeδQ-
complexity has also a largeHQ-complexity, but the converse is not true. For exam
theHQ-complexity of a (true) sentence of the form “1+n = n+ 1” is about�logQ n� plus
a constant, a function which tends to infinity asn → ∞; however, theirδQ-complexity is
bounded.

In view of in [6, Theorem 5.4, p. 102], there exists a constantc > 0 such that

( )

max|x|Q=N

δQ(x) � HQ stringQ(N) − c, (2)
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so there are strings of arbitrarily largeδQ-complexity.
The following result is taken from [6, Theorem 5.31, p. 117].

Theorem 4.1. For everyt � 0, the setCQ,t = {x ∈ X∗
Q: δQ(x) > −t} is immune, that is

the set is infinite and contains no infinite c.e. subset.

Corollary 4.2. For everyt � 0, the setComplexQ,t = {x ∈ X∗
Q: δQ(x) > t} is immune.

Proof. As ComplexQ,t ⊂ CQ,t and every infinite subset of an immune set is immune its
we only need to show that ComplexQ,t is infinite. To this aim we use formula (2) and t
fact that the functionHQ(stringQ(N)) is unbounded. �
Corollary 4.3. For everyt � 0, the set{x ∈ X∗

Q: δQ(x) � t} is infinite.

Proof. The set in the statement is not even c.e. because, by Corollary 4.2, its comp
is immune. �

The above result suggests that any “reasonable” theory cannot include more than
many theorems with highδ-complexity. And, indeed, a simple analysis confirms this f
A formal language used by a theory capable of speaking about natural numbers in
variables (a fixed variablex and the sign′ may be used to generate all variables,x, x′, x′′,
etc.), the constant 0, function symbols for successor, addition and multiplication,s,+, ·,
the sign for equality,=, logical connectives,¬,∧,∨,⇒, quantifiers,∀,∃, and parenthese
(, ). They form an alphabetX15.5 The formal language consists of well-formed formu
which respect strict syntactical rules; for example, each left parenthesis has to be m
with exactly one right parenthesis. Theorems are then defined by specifying the a
and the inference rules. For instance, the systemQ introduced by R.M. Robinson (se
for example, [29]) contains the logical axioms (propositional, substitution,∀-distribution,
equality axioms) and the following seven axioms:

Q1 (s(x) = s(x′)) ⇒ (x = x′),
Q2 ¬(0 = s(x)),
Q3 (¬(x = 0)) ⇒ ∃x′(x = s(x′)),
Q4 x + 0= x,
Q5 x + s(x′) = s(x + x′),
Q6 x · 0 = 0,
Q7 x · s(x′) = (x · x′) + x,

and the inference rules of modus ponens and generalization. A proof in the sysQ
is a sequence of well-formed formulae such that each formula is either an axiom
derived from two earlier formulae in the sequence by an inference rule.Theoremsare well-
formed formulae which have proofs inQ. As theorems are special well-formed formula
5 Of course, we can work with smaller or larger alphabets, depending on specific needs.
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it is clear that each theoremx in the systemQ has rather smallH15-complexity, more
precisely,H15(x) is not larger than its length plus a fixed constant. Such a remark sug
that Chaitin’s “heuristic principle” may be true forδ15. However, this property could be
consequence of some particular way of writing/coding the theorems! To be able to m
somehow the “intrinsic” complexity of a theorem we need to prove that the prope
invariant with respect to a system of acceptable names, in our case,Gödel numberings.

To make the discussion precise, let us fix a formal languageL ⊂ X∗
Q. A Gödel number-

ing for L is a computable, one-to-one functiong :L → B∗, i.e. a system of unique binar
names for the well-formed formulae ofL. For example, a Gödel numbering for the we
formed formulae of the systemQ can be obtained by coding the elements of the alph
X15 with the first 15 binary strings of length four, and then extend this coding accordi
the syntax of the language. Various other possibilities can be imagined; see, for ex
[3,29].

As the set of theorems is a c.e. subset of the set of well-formed formulae, we will
only with computable, one-to-one functionsg :T → B∗ defined on the set of theorems.

Theδ-complexity of a theoremu ∈ T induced by the Gödel numberingg is defined by

δg(u) = H2
(
g(u)

) − �log2 Q� · |u|Q. (3)

The formula forδf is essentially the formula definingδQ relativized to the Gödel num
beringg: the factor�log2 Q� has the role of “adjusting” the sizes of the alphabetsXQ

andB.
The first result confirms the intuition: we prove thatδg is, up to an additive constan

equal to�log2 Q� · δQ.

Theorem 4.4. Let T ⊂ X∗
Q be c.e. andg :T → B∗ be a Gödel numbering. Then, the

effectively exists a constantc (depending uponUQ,U2, andg) such that for allu ∈ T we
have

∣∣δg(u) − �log2 Q� · δQ(u)
∣∣ � c. (4)

Proof. First we prove the existence of a constantc1 such that

δg(u) � �log2 Q� · δQ(u) + c1. (5)

For each stringw ∈ PROGUQ
we definenw = �log2 Q� · |w|Q, and we note that

∑

w∈PROGUQ

2−nw =
∑

w∈PROGUQ

2−�log2 Q�·|w|Q �
∑

w∈PROGUQ

Q−|w|Q � 1,

becausePROGUQ
is prefix-free. Using now the Kraft–Chaitin Theorem, we can effectiv

construct, for everyw ∈ PROGUQ
a binary stringsw such that|sw|2 = nw and the se

{sw: w ∈ PROGUQ
} is c.e. and prefix-free. This allows us to construct the machinC

defined by

( )

C(sw) = g UQ(w) , for w ∈ PROGUQ

.
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As C(sw∗) = g
(
UQ(w∗)

) = g(w) we have

HC

(
g(w)

)
� |sw∗ |2 = �log2 Q� · |w∗|Q = �log2 Q� · HQ(w).

Applying the Invariance Theorem, we get a constantc1 > 0 such that

δg(w) = H2
(
g(w)

) − �log2 Q� · |w|Q � �log2 Q� · (HQ(w) − |w|Q
) + c1

= �log2 Q� · δQ(w) + c1,

which proves (5).
Secondly, we prove the existence of a constantc2 such that

�log2 Q� · δQ(u) � δg(u) + c2. (6)

For eachw ∈ PROGU2 such that|w|2 � log2 Q, we putmw = ⌈|w|2 · logQ 2
⌉

� 1 and
note that

∑

w∈PROGU2 ,

|w|2�log2 Q

Q−mw �
∑

w∈PROGU2 ,

|w|2�log2 Q

2−|w|2 � 1,

hence, in view of the Kraft–Chaitin Theorem, we can effectively construct, for everyw ∈
PROGU2 with |w|2 � log2 Q, a stringtw ∈ X∗

Q of length |tw|Q = mw such that the se
{tw: w ∈ PROGU2} is c.e. and prefix-free. In this way we construct the machineD defined
by D(tw) = u if U2(w) = g(u). This construction is well-defined becauseg is a Gödel
numbering. It is seen that ifU2(w) = u and|w|2 � log2 Q, thenHD(u) � �|w|2 · logQ 2�,
so applying the Invariance Theorem we get a constantd such that

�log2 Q� · HQ(u) � �log2 Q� · HD(u) + d � H2
(
g(u)

) + d,

hence there is a constantc2 such that (6) becomes true. We have used the fact that�log2 Q�·
�m · logQ 2� � m, for all integersm > 0.

Finally, (4) follows from (5) and (6). �
As a consequence, asymptotically, theδ-measure is independent of the Gödel numb

ing.

Corollary 4.5. Let T ⊂ X∗
Q be c.e. andg,g′ :T → B∗ be two Gödel numberings. The

there effectively exists a constantc (depending uponU2, g andg′) such that for allu ∈ T
we have

∣∣ ∣∣
δg(u) − δg′(u) � c. (7)
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Proof. The relation (7) follows from Theorem 4.4. However, it is instructive to give a sh
direct proof. To this aim consider the machineC defined forw ∈ B∗ by C(w) = g(u) if
U2(w) = g′(u). The definition is correct becausePROGC ⊂ PROGU2 andg is computable
and one-to-one. IfU2(s) = g′(u), thenC(s) = g(u), so by the Invariance Theorem the
exists a constantc1 such that for allu ∈ L, δg(u) � δg′(u) + c1. Finally, (7) follows by
symmetry. �
Theorem 4.6. Consider a finitely-specified, arithmetically sound(i.e. each arithmetica
proven sentence is true), consistent theory strong enough to formalize arithmetic, and
note byT its set of theorems written in the alphabetXQ. Let g be a Gödel numbering
for T . Then, there exists a constantN , which depends uponUQ, U2 andT , such thatT
contains nox with δg(x) > N .

Proof. Because of syntactical constraints, there exists a positive constantd such that for
everyx ∈ T , HQ(x) � |x|Q + d , i.e. δQ(x) � d (see also the discussion of the systemQ
following Corollary 4.3). Hence in view of Theorem 4.4, there is a constantN � d such
that for everyx ∈ T , δg(x) � N . �

Every sentencex in the language ofT with δg(x) > N is unprovable in the theory
every such “true” sentence is thus independent of the theory.

Do we have examples of such sentences? First, Chaitin’s sentences of the
“H2(x) > n,” for largen are such examples.

Here is another way to construct true sentences of highδ-complexity. A formulaϕ(x)

in the language of arithmetic is calledΣ1 if it is of the form (∃y)θ(x, y), whereθ contains
only two free variablesx andy. We writeN |= ϕ(n) to mean thatϕ(n) is true whenn is
interpreted as a non-negative integer. The Representation Theorem (see [48]) state
setR ⊂ N is c.e. iff there (effectively) exists aΣ1 formulaϕ(x) such that for alln ∈ N we
have:n ∈ R ⇔ N |= ϕ(n).

For everya ∈ N, the set{n ∈ N: δQ(stringQ(n)) � a} is c.e., so in view of the Repre
sentation Theorem there exists aΣ1 formulaϕ (depending onUQ,a) such that for every
n ∈ N we have:δQ(stringQ(n)) � a ⇔ N |= ϕ(n). Consequently, the formulaψ = ¬ϕ

represents the predicate “δQ(stringQ(n)) > a.” Because of consistency and soundness
enumerating the theorems inT of the formψ(m) (corresponding to true formulaeψ(m))
we get an enumeration of the set{x ∈ T : ψ(string−1

Q (x)) ∈ T } ⊂ {x ∈ T : δQ(x) > a}.
Now leta be a non-negative integer. As{x ∈ T : ψ(string−1

Q (x)) ∈ T } is a c.e. subset o
the immune set{x ∈ X∗

Q: δQ(x) > a}, it has to be finite, that is, there exists anM ∈ N such

that for everyx ∈ T with ψ(string−1
Q (x)) ∈ T we have:|x|Q � M . We have got Chaitin’s

statement [21, p. 69]:

Theorem 4.7. Every finitely-specified, arithmetically sound, consistent theory st
enough to formalize arithmetic can prove only, for finitely many of its theorems, tha

have highδ-complexity.
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The theory can formalize all sentences of the formψ(m) in a very economical way, i.e
with small δ-complexity, but is incapable of proving more than finitely many instan
almost all true formulae of the formψ(m) are unprovable.

Comments. (a) Theorem 4.6 establishes a limit on theδg-complexity of provable sentence
in T ; the bound depends upon the chosen Gödel numberingg. In this approach, it make
no sense to measure the power of the theory by its complexity, i.e. through the miniN

such that the theory proves no sentencex with δg(x) > N (see also the discussion in [39
(b) Theorem 4.6 does not hold true for an arbitrary finitely-specified theory as the

c.e. sets containing strings of arbitrary largeδ-complexity.
(c) It is possible to have incomplete theories without highδ-complexity sentences; fo

example, an incomplete theory for propositional tautologies.

5. Is incompleteness widespread?

The first application complements the result of [9] stating that the set of unpro
sentences is topologically large. We probabilistically show that only a few true sent
can be proven in a given theory, but the set of true sentences is “large.”

We begin with the following result.

Proposition 5.1. LetN > 0 be a fixed integer,T ⊂ X∗
Q be c.e. andg :T → B∗ be a Gödel

numbering. Then,

lim
n→∞Q−n · card

{
x ∈ X∗

Q: |x|Q = n, δg(x) � N
} = 0. (8)

Proof. We present here a direct proof.6 In view of Theorem 4.4, there exists a const
c > 0 such that

{
x ∈ X∗

Q: |x|Q = n, δg(x) � N
} ⊆ {

x ∈ X∗
Q: |x|Q = n, �log2 Q� · δQ(x) � N + c

}
.

So, we only need to evaluate the limit

lim
n→∞Q−n · card

{
x ∈ X∗

Q: |x|Q = n, δQ(x) � M
} = 0, (9)

whereM = �(N + c)/�log2 Q��.
First, we note that for everyn we have:{x ∈ X∗

Q: |x|Q = n, δQ(x) � M} = {x ∈ X∗
Q:

|x|Q = n, ∃y ∈ X∗
Q(|y|Q � n + M, UQ(y) = x)}, so

card
{
x ∈ X∗

Q: |x|Q = n, δQ(x) � M
}

� card
{
y ∈ X∗

Q: |y|Q � n + M,
∣∣UQ(y)

∣∣
Q

= n
}

� card
{
y ∈ X∗

Q: |y|Q � n + M, UQ(y) halts
}
.

6 Alternatively, one can evaluate the size of the set of strings of a given length having almost maximuδQ-

complexity.
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Consequently,

lim
n→∞Q−n · card

{
x ∈ X∗

Q: |x|Q = n, δQ(x) � M
} = lim

n→∞

n+M∑

i=1

Q−n · ri , (10)

whereri = card{y ∈ X∗
Q: |y|Q = i, ] UQ(y) halts}. Using the Stolz–Cesaro Theorem, w

get

lim
n→∞

n+M∑

i=1

Q−n · ri = QM · lim
m→∞

m∑

i=1

Q−i · ri = QM/(Q − 1) · lim
m→∞Q−m · rm = 0,

(11)

due to Kraft’s inequality
∑∞

i=1 ri · Q−i � 1. So, in view of (9)–(11), we get (8).

Theorem 5.2. Consider a consistent, sound, finitely-specified theory strong enough t
malize arithmetic. The probability that a true sentence of lengthn is provable in the theory
tends to zero whenn tends to infinity, while the probability that a sentence of lengthn is
true is strictly positive.

Proof. We fix a consistent, sound, finitely-specified theory, letT be its set of theorems an
let g be a Gödel numbering ofT . For every integern � 1, let T n = {x ∈ T : |x|Q = n}.
By Theorem 4.6, there exists a positive integerN such thatT ⊆ {x ∈ X∗

Q: δg(x) � N}.
Consequently, for everyn: T n ⊆ {x ∈ X∗

Q: |x|Q = n, δg(x) � N}, so in view of Proposi-
tion 5.1, the probability that a sentence of lengthn is provable in the theory tends to ze
whenn tends to infinity.

Next consider the sentenceshx,m = “HQ(x) > m,” wherex is a string over the alphabe
XQ. For everym � 1 there exists a positive integerNm such that for every stringx ∈ X∗

Q

of length|x|Q > Nm, hx,m is true.
For each fixedm, |hx,m|Q = |x|Q + c, so for everym � 1 andn � Nm + c we have:

card
{
w ∈ X∗

Q: |w|Q = n, w is true
} · Q−n � card

{
x ∈ X∗

Q: |x|Q = n − c
} · Q−n � Q−c,

showing that the probability that a sentence of lengthn is true is strictly positive. �

6. Incompleteness and ΩU

The second application is to useδ to prove Chaitin’s Incompleteness Theorem forΩU

[16] (see also the analysis in [6,8,25]). This shows thatδ is a “natural” complexity. We star
with the following preliminary result.

Lemma 6.1. Let x1x2 · · · be an infinite binary sequence and letF be a strictly increasing

function mapping positive integers to positive integers. If the set{(F (i), xF(i)): i � 1}



12 C.S. Calude, H. Jürgensen / Advances in Applied Mathematics 35 (2005) 1–15

s

te all
orm

n

ys
is the
nt

uence

o for-
is c.e., then there exists a constantε > 0 (which depends uponU and the characteristic
function of the set) such that for allk � 1 we have:

δ2(x1x2 · · ·xF(k)) � ε − k. (12)

Proof. To prove (12), fork � 1 we consider the strings:

w1xF(1)w2xF(2) · · ·wkxF(k), (13)

where eachwj is a string of lengthF(j) − F(j − 1) − 1,F (0) = 0. In this way, we effec-
tively generate all binary strings of lengthF(k) in which the bits on the “marked”position
F(1), . . . ,F (k) are fixed.

It is clear that
∑k

i=1 |wi | = F(k)−k and the mapping(w1,w2, . . . ,wk) �→ w1w2 · · ·wk

is bijective, hence to generate all strings of the form (13) we only need to genera
strings of lengthF(k) − k. Hence, we consider the enumeration of all strings of the f
(13) for k = 1,2, . . . . The lengths of these strings form the sequence

F(1),F (1), . . . ,F (1)︸ ︷︷ ︸
2F(1)−1times

, . . . ,F (k),F (k), . . . ,F (k)︸ ︷︷ ︸
2F(k)−k times

, . . .

which is computable and satisfies the inequality (1) as
∑∞

k=1 2F(k)−k · 2−F(k) = 1. Hence,
by the Kraft–Chaitin Theorem, for every stringw of lengthF(k)−k there effectively exists
a stringzw having the same length asw such that the set{zw ∈ B∗: |w|2 = F(k)−k, k � 1}
is prefix-free. Indeed, from a stringw of lengthF(k) − k, we get a unique decompositio
w = w1 · · ·wk , andzw as above, so we can defineC(zw) = w1xF(1)w2xF(2) · · ·wkxF(k); C

is a machine. Clearly,δC(w1xF(1)w2xF(2) · · ·wkxF(k)) � |zw|2−F(k) = −k, for all k � 1.
So by the Invariance Theorem, we get the inequality (12).

Consider now Chaitin’s Omega Number, the halting probability ofU : ΩU = 0.ω1ω2 · · ·,
see [15]. The binary sequenceω1ω2 · · · is (algorithmically) random. There are various wa
to characterize randomness (see, for example, [6,18,26]). A particular useful way
following complexity-theoretic criterion due to Chaitin: there exists a positive constaµ

such that for everyn � 1,

δ2(ω1ω2 · · ·ωn) � −µ. (14)

The condition (14) is equivalent to
∑∞

n=0 2−δ2(ω1ω2···ωn) < ∞, cf. [42].
It is easy to see that the inequality (12) in Lemma 6.1 contradicts (14), so a seq

x1x2 · · ·xn · · · satisfying the hypothesis of Lemma 6.1 cannot be random.

Theorem 6.2. Consider a consistent, sound, finitely-specified theory strong enough t
malize arithmetic. Then, we can effectively compute a constantN such that the theory

cannot determine more thanN scattered digits ofΩU = 0.ω1ω2 · · · .
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Proof. Assume that the theory can determine infinitely many digits ofΩU = 0.ω1ω2 · · ·
Then, we could effectively enumerate an infinite sequence of digits ofΩU , thus satisfying
the hypothesis of Lemma 6.1 which would contradict the randomness ofω1ω2 · · · . �

7. Conclusions

There are various illuminating proofs of Gödel’s Incompleteness Theorem and
interesting examples of true but unprovable sentences (see, for example, [21,33,44
the phenomenon of incompleteness seems, even after almost 75 years since its
ery, strange and to a large extent irrelevant to ‘mainstream mathematics,’ whatev
expression might mean. Something ismissingfrom the picture. Of course, the ‘gran
examples’ are missing; for example, no important open problem except Hilbert’s
problem, see [41], was proved to be unprovable. Other questions of interest inclu
source of incompleteness and how common the incompleteness phenomenon is
two last questions have been investigated in this note.

Chaitin’s complexity-theoretic proof of Gödel’s Incompleteness Theorem [14] sh
that high complexity is a sufficient reason for the unprovability of infinitely many (t
sentences. This approach suggested that excessive complexity may be a sourc
completeness, and, in fact, Chaitin (in [21,22]) stated this as a “heuristic princ
“the theorems of a finitely-specified theory cannot be significantly more complex
the theory itself.” By changing the measure of complexity, from program-sizeH(x) to
δ(x) = H(x) − |x|, we have proved (Theorem 4.6) that for any finitely-specified, so
consistent theory strong enough to formalize arithmetic (like Zermelo–Fraenkel set
with choice or Peano Arithmetic) and for any Gödel numberingg of its well-formed for-
mulae, we can compute a boundN such that no sentencex with complexityδg(x) > N

can be proved in the theory; this phenomenon is independent on the choice of the
numbering. For a theory satisfying the hypotheses of Theorem 4.6, the probability
true sentence of lengthn is provable in the theory tends to zero whenn tends to infinity,
while the probability that a sentence of lengthn is true is strictly positive. This result rein
forces the analysis in [9] which shows that the set of independent sentences is topolo
large.

According to Theorem 4.6, sentences expressed by strings with largeδg-complexity
are unprovable. Is the converse implication true? In other words, given a theory as
statement of Theorem 4.6, are there independent sentencesx with low δg-complexity?
Even if such sentences do exist, in view of Theorem 5.2, the probability that a true se
of lengthn with δg-complexity less than or equal toN is unprovable in the theory tends
zero whenn tends to infinity.

Other open questions which are interesting to study include:

(a) the complexity of some concrete independent sentences, like the sentence exp
the consistency of the theory itself,

(b) the problem of finding other (more interesting?) measures of complexity satis

Theorem 4.6,
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(c) a stronger version of Theorem 5.2: under the same conditions, the probability
sentence of lengthn, expressible in the language of the theory, is provable in the th
tends to zero whenn tends to infinity.
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