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Abstract

In this work an existence theorem fath-order ordinary differential inclusions proved without the continuity of multi-valued
functions. Our results are an improvement upon the existence results of Dhage et al. [B.C. Dhage, T.L. Holambe, S.K. Ntouya:
Upper and lower solutions for second order discontinuous differential inclusions, Math. Sci. Res. J. 7 (5) (2003) 206—212] anc
Agarwal et al. [R.P. Agarwal, B.C. Dhage, D. O'Regan, The method of upper and lower solution for differential inclusions via a
lattice fixed point theorem, Dynam. Sggts Appl. 12 (2003) 1-7] under weaker conditions.

(© 2006 Published by Elsevier Ltd
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1. Introduction

LetR be areal lie and let) = [0, T] be a closed and bounded intervaRinConsider the second-order differential
inclusion(for short DI)

xW(t) e F(t,x(t) aeted }

xV0)=x eR, ie{01....n—1 (1.1)

whereF : J x R — Pp(R) andPp(R) is the dassof all non-empty subsets & with property p.

By a soltion of the DI (1.1) we mean a functiox € AC" Y (J, R) that satisfiesx(™(t) = v(t) for some
v e L1(J, R) satisfyingu(t) € F(t, x(t)) a.et € J,andx(0) = x; € R,i € {0,1, ..., n—1} whereAC™ D (J, R)
is the space of realalued functions whosg — 1)th derivative exists and is absolutely continuouslon

The DI (1.1) has already been studied in the literature as regexistence results under different continuity
conditions of F. The exisence heorem for DI(1.1) for the upper semi-continuous multi-functidn is proved in
Dhage et al.T]. Again the existence results for the ordinary second-order differential inclusions

X"(t) € F(t,x(1) aet e J}

xV(O)=x eR, i =01 (1.2)
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have been studied in Benchoh8& {inder upper semi-continuity of the multiduad function between the given lower
and upper solutions.

The case of discontinuous multi-valued functienhas been treated in Agarwal et al] [under monotonic
conditions onF and the existence of extremal solutions proved using a multi-valued lattice fixed point theorem of
Dhage and O’Regar8]. Note that the monotonic conditions used in th®wae papers are of very strong nature and
not every Banach space is a complete lattice. These factgateat us to pursue the study of the present work. In this
work we piove exisence results for the OL.1) under a monotonic condition which is weaker than that presented in
Agarwal ¢ al. [1].

2. Auxiliary results

We aquip the real normed linear spage= AC(J, R) of absolutely continuous real-valued functions dmith
thenorm|| - || and the order relatior defined by

IX]l = sup[x(t)]
ted

and
X<y < X() <y Vted
Now we introduce different kinds of order relationsp as follows:
Let A, B € Pp(X). Then byA < < B we mean “for evena € A there exists & € B suchthata < b” Again

id
A < B means that for eadh € B there exists aa € A suchthata < b. Furtherwe haveA < B < A < B and
A 5 B. Finally A < B implies thata < b for alla € A andb € B. See Dlage p] and rderences therein.

Def|n|t|on 21. A mappmgQ X — Pp(X) is called right monotone increasing (resp. left monotone increasing) if

Qx < < Qy (resp.Qx < < Qy) forall x, y € X for whichx < y. Similarly Q is called monotone increasing if it is left
as well as right monotone increasing ¥n

We reed the following fixed point theorem in the following.

Theorem 2.1 (Dhage [B]). Let [a, b] be an order interval in a subset Y of an ordered Banach space X and let Q
[a, b] — Pcp([a, b]) be a right monotone increasing muitalued mapping. If every sequenga} C [ Q([a, b])
defined by y € Qxy, h € N has a cluster point whenevéx,} is a monotone increasing sequence[m b], then Q
has a fixed point.

In the fdlowing section we prove our main existence results fo{DL)under suitable conditions.
3. Existenceresults

We reed the following definitions later.

Definition 3.1. A multi-valued mapF : J — Pcp e (R") is said to be measurable if for eveyye R", the function
t — d(y, F@t)) = inf{|ly — x|| : x € F(t)} is measurable.

Definition 3.2. A multi-function F (t, x) is called right monotone increasing imalmost everywhere for € J if

F(t, x) Is F(t,y)a.e. fort € J,forallx,y e Rwithx <.

Definition 3.3. A multi-valued functionF : J x R — Pcp(R) is calledL!-Chandrabhan if

(i) t = F(t, x) is measurable for eache R,
(i) x — F(t, x) isright monotone increasing almost everywheretfer J, and
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(iii) for each real number > 0 there exits a functiorh, € L1(J, R) suchthat
IFt, X)|lp =suful:ue B, x)} <h(t)aeteld
forall x e Rwith |x| <r.
Write
St(x) ={v e LYI,R) | v(t) € F(t, x(t)) a.et € J}

for somex € AC(J, R). The integral of the multi-functior is defined as
t t
/ F(s, x(s)) ds = {/ v(s)ds:v e S,%(x)}.
0 0

Definition 3.4. A functiona ¢ AC"1(J, R) is called a strict lower solution of the {1.1)if for all v € S,%(a),
a™t) <v(t)aeted
xV(©0) <x,ie{01,...,n—1}.
Similarly a strict upper solutiob to DI (1.1)is defined.
We consider the following set of hypotheses below.

(H1) F(, x) is closed and bounded for eack J andx € R.

(H2) St(x) # @ forallx e AC(J,R).

(H3) F is L1-Chandrabhan.

(Hg) DI (1.1)has a strict lower solutioa and a strict upper solutiomwith a < b.

HypothesegH1)—(H2) are common in the literature. Some nicéfigient conditiongor guaranteeingH») appear
in Aubin and Cellina 2], Deimling [4], and Lasota and Opiafl[]. A mild hypothesis of(H4) has been used in
Halidias and Ppageorgiou9]. HypothesigHs) is relatively new to the literature, but special forms have appeared in
the woks of several authors. See Dha§e] and rderences therein.

Theorem 3.1. Assume thatH1)—(Hg) hold. Then the D[1.1) has a solution irffa, b].

Proof. Let X = AC(J, R) and define an order intervid, b] in X which is well defined in view of hypothesid,).
Now the DI(1.1)is equivalent to thentegral inclusion

i _ -1
x(t)e X't f(t )1)’ F(s,x(9)ds, ted. (3.1)

See Dhge et al. [7] andthe references therein. Define a multi-valued oper@oifa, b] — Pp(X) by

{ L it (t— )” !
Qx = ueX:u(t)—Z / v(S)dSveSF(X)
i=0 (3.2)
= (Lo SH)(X)
wherel : L1(J, R) — C(J, R) is a continuous operator defined by
i _ o1
LX(t) = Z ~ it / ¢ ) X ds. (3.3)

Clearly the operato® is well defined in view of hypothesidd,). We shallshow thatQ satisfies all the conditions
of Theorem 2.1

Step |: First, we show thalQ has compact values dm, b]. Observethat the operatof is equivalent to the
compositionl o S,% of two operators oi.1(J, R), wherel : L1(J, R) — X is the continuous operator defined by
(3.3). To showQ has compact values, it then suffices to prove that the composition opetatos,% has compact
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values on[a, b]. Let x € [a, b] be arbitrary and lefv,} be a sequence iS,lz(x). Then, by the definition ofS}:,
vn(t) € F(t,x()) a.e. fort € J. SinceF(t, x(t)) is compact, there is a ceergent shsequence of,(t) (for
simplicity call it vy (1) itself) that converges in measure to sonig), wherev(t) € F(t, x(t)) a.e. fort € J. From the
continuity of Z, it follows thatLvn(t) — Lv(t) pointwise onJ asn — oo. In order to sbw thatthe convergence is
uniform, we first show thatLvn} is an equi-continuous sequence,tlet € J; then

n-1 iti n—-1

BRI JLls

i=0 i=0

_ 1 _ -1
f(t S)l)‘ vn(s) ds — f%vn(s)ds

t—s n-1 _ o1
< |q(t>—q(r>|+'/ % n(s)dS—/O o9 e ds

[Lon(t) — Lon(7)] <

(n—1)!
(t—9"*! -9t
0 W””“)ds‘fo o O
t (t_s)n—l (.L__s)n—l
slq(t)—q(r)l+f0 "D - lun(s)| ds
T _ o1
[l ds (3.4)
T t — n—-1 _ o1
s|q(t>—q(r>|+/0 ((n_s)l)! —(’(n_s)l)! [un(S)| ds
T Tn—l
[ agimlds 35)

whereq(t) = Zi”:_ol X;—,t'

Sincevy, € L1(J, R), the right hand side of3.4)tends to 0 ag — 7. Herce, {Lvn} is equi-continuous, and an
application of the Arzel~Ascoli theorem implies that there is a uniformly convergent subsequence. We then have
Lvn; — Lv € (Lo S,%)(x) asj — oo, and so(L o S,%)(x) is compact-valued. Therefor€) is a compact-valued
multi-valued operator ofia, b].

Step 11: Secondly we show tha® is right monotone increasing and majas b] into itself. Letx, y € [a, b] be

suchthatx <Y. Sincex Ft,x) is right monotone increasing, one hiasgt, x) Ig F(t, y). As a resultve have that

S,%(x) ls S,%(y). Herce Q(x) |§ Q(y). From (H3) it follows thata < Qaand Qb < b. Now Q is right monotone
increasing, so we have

a<QasQx<Qb<b

for all x € [a, b]. Herce Q defines a multi-valued operat® : [a, b] — Pcp([a, b]).

Step 111: Finally let {x,} be a monotone increasing sequencéganb] and let{y,} be a sequence iQ([a, b])
defined byyn, € Qxa, n € N. We shallshow that{y,} has a cluster point. This is achieved by showing {lya} is a
uniformly bounded and equi-continuous sequence.

Casel: First we $1ow that{yn} is a uniformly bounded sequence. By definition{ gf} there is a, € S,% (Xn) such
that

n—1., i t n—1
Xit (t—>s)
Yn(t) = izgo I—’ +\/(; WUn(S) dS, teld.

Therefore

t' t —
|yn<t)|< il f( (s ds
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t' t t — n-1
ZXl + iIIF(s,xn(S))llpds

= = i! o (=21
n-1 i t n-1
it t—
B D My [l ARTAYRT
= ! o (h—1)!
n—1, 4i t n-1
Xt T
_— —h(s)d
Si; - +/0 P LICL
n-1 i n—-1
X T T
< - h
_g Tl U IE
forallt € J, wherer = ||a|| + ||b]|.
Taking the supremum ovey
n-1.,. Ti n-1
Xi T
Ivall < ) —— + ———IIh ||
g .Z:; TG T

which shows thatyy} is auniformly bounded sequence ®([a, b]).
Next we show thaty,} is an equi-continuous sequenceQ[a, b]). Lett, ¢ € J. Then we have

n—-1 i'[i n—1 Xi‘l:i
Yn(®) = Yn(D)] =< Z - —Zj :
n—-1
/ (t vn(s) ds — / (@ ) vn(s) ds

t—9"t (t—9"*!
< 1q®) —q@)| + ‘f f’vn(s) ds_f an(s) ds

n—1 n—1
f(T )1)‘ vn(s)ds—f ( ) vn(s)ds

n-1 n-1
<190 —a@i+ | (n—S)l)! —(( _S)l)! [un(S)| ds
T (‘L’—S)n_l
+/t NGO lun(s)| ds
T =gh1 _ on—-1
R e e e e LICL

+[p(t) — p(o)]

n-1
wherep(t) = h 5 he(s)ds.
From the above inequality it follows that

[Yn(t) — Yn(z)] = 0O asn — oo.

This shows that{y,} is an equi-continuous sequence @[a, b]). Now {y,} is uniformly bounded and equi-
continuous, so it has a cluster point in view of the Aezédscoli theorem. Now the desired conclusion follows by an
application ofTheorem 2.1 OO

To prove the next radt, we need the following definitions.

Definition 3.5. A multi-function 8 : J x R — Pp(R) is caIIedLa-Chandrabhan if

() t — B(t, x) is measurable for eache R,
(ii) B(t, x) isright monotone increasing ixalmost everywhere fare J, and
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(iii) there exists a functiol € L1(J, R) suchthat
B, )| =sud|ul : u e B(t,X)} <h(t) aeted

forall x € R.

Remark 3.1. Note that if the multi-functiorg(t, x) is L§<—Chandrabhan, then it is measurablet iand integrally
bounded onJ x R x R, and so, by &election theorerrsé has non-empty values, that is,
S0 ={ue LY R) | ut) e pt. x) aet e J} #0

for all x € R. See Damling [4] and the eferences therein.

Theorem 3.2. Assume thatH1) and
(Hs) F is L%-Chandrabhan
hold. Then the D[1.1) has a solution on J.

Proof. Obviously the hypothese@,) and (H3) of Theorem 3.Jhold in view of Remark 3.1 Define two functions
a,b:J— Rhby

i _ -1
a(t) = Z X|t f (t )1)‘ h(S) ds,

and

i n-1
b(t)—zx't /uh(s)ds

It is easy to verify that andb are respectively the strictly lower and upper solutions of thélDl)on J with a < b.
Thus(H4) holds and now the desired conclusion follows by an applicatiorheorem 3.1 [

Example 3.3. Let J = [0, 1] and define a multi-functiof : J x R — R by

{0} if x <O,
F(t,x) = 1[0, p[x]]if x € [0, 2] (3.6)
{3}if x > 2,

forallt € J, wherep € L1(J, R") and[x] is a greatest integer not greater thamNow considerthe DI
xM(t) e F(t, x(t)) a.et e

x1(0) = % eR,ief0,1,...,n—1} (3.7)

Clearly the multi-functior saisfies dl the hypotheses ofheorem 3. with

n-1 i -l g T"
a) =;m and b(t) = i;)n(ui) BT

fort € J.
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