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Abstract

In this work an existence theorem fornth-order ordinary differential inclusionsis proved without the continuity of multi-valued
functions. Our results are an improvement upon the existence results of Dhage et al. [B.C. Dhage, T.L. Holambe, S.K. Ntouyas,
Upper and lower solutions for second order discontinuous differential inclusions, Math. Sci. Res. J. 7 (5) (2003) 206–212] and
Agarwal et al. [R.P. Agarwal, B.C. Dhage, D. O’Regan, The method of upper and lower solution for differential inclusions via a
lattice fixed point theorem, Dynam. Systems Appl. 12 (2003) 1–7] under weaker conditions.
c© 2006 Published by Elsevier Ltd
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1. Introduction

Let R be a real line and letJ = [0, T] be a closed and bounded interval inR. Consider the second-order differential
inclusion(for short DI)

x(n)(t) ∈ F(t, x(t)) a.e.t ∈ J
x(i )(0) = xi ∈ R, i ∈ {0, 1, . . . , n − 1}

}
(1.1)

whereF : J × R → Pp(R) andPp(R) is the classof all non-empty subsets ofR with propertyp.
By a solution of the DI (1.1) we mean a functionx ∈ AC(n−1)(J, R) that satisfiesx(n)(t) = v(t) for some

v ∈ L1(J, R) satisfyingv(t) ∈ F(t, x(t)) a.e.t ∈ J, andx(i )(0) = xi ∈ R, i ∈ {0, 1, . . . , n−1} whereAC(n−1)(J, R)

is the space of real-valued functions whose(n − 1)th derivative exists and is absolutely continuous onJ.
The DI (1.1) has already been studied in the literature as regards existence results under different continuity

conditions ofF . The existence theorem for DI(1.1) for the upper semi-continuous multi-functionF is proved in
Dhage et al. [7]. Again the existence results for the ordinary second-order differential inclusions

x′′(t) ∈ F(t, x(t)) a.e.t ∈ J
x(i )(0) = xi ∈ R, i = 0, 1;

}
(1.2)
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have been studied in Benchohra [3] under upper semi-continuity of the multi-valued function between the given lower
and upper solutions.

The case of discontinuous multi-valued functionF has been treated in Agarwal et al. [1] under monotonic
conditions onF and the existence of extremal solutions proved using a multi-valued lattice fixed point theorem of
Dhage and O’Regan [8]. Note that the monotonic conditions used in the above papers are of very strong nature and
not every Banach space is a complete lattice. These facts motivated us to pursue the study of the present work. In this
work we prove existence results for the DI(1.1)under a monotonic condition which is weaker than that presented in
Agarwal et al. [1].

2. Auxiliary results

We equip the real normed linear spaceX = AC(J, R) of absolutely continuous real-valued functions onJ with
thenorm‖ · ‖ and the order relation≤ defined by

‖x‖ = sup
t∈J

|x(t)|

and

x ≤ y ⇐⇒ x(t) ≤ y(t) ∀t ∈ J.

Now we introduce different kinds of order relations inPp as follows:

Let A, B ∈ Pp(X). Then byA
i≤ B we mean “for everya ∈ A there exists ab ∈ B suchthat a ≤ b”. Again

A
d≤ B means that for eachb ∈ B there exists ana ∈ A suchthata ≤ b. Furtherwe haveA

id≤ B ⇐⇒ A
i≤ B and

A
d≤ B. Finally A ≤ B implies thata ≤ b for all a ∈ A andb ∈ B. See Dhage [6] and references therein.

Definition 2.1. A mapping Q : X → Pp(X) is called right monotone increasing (resp. left monotone increasing) if

Qx
i≤ Qy (resp.Qx

d≤ Qy) for all x, y ∈ X for which x ≤ y. Similarly Q is called monotone increasing if it is left
as well as right monotone increasing onX.

We need the following fixed point theorem in the following.

Theorem 2.1 (Dhage [5] ). Let [a, b] be an order interval in a subset Y of an ordered Banach space X and let Q:
[a, b] → Pcp([a, b]) be a right monotone increasing multi-valued mapping. If every sequence{yn} ⊂ ⋃

Q([a, b])
defined by yn ∈ Qxn, n ∈ N has a cluster point whenever{xn} is a monotone increasing sequence in[a, b], then Q
has a fixed point.

In the following section we prove our main existence results for DI(1.1)under suitable conditions.

3. Existence results

We need the following definitions later.

Definition 3.1. A multi-valued mapF : J → Pcp,cv(R
n) is said to be measurable if for everyy ∈ R

n, the function
t → d(y, F(t)) = inf{‖y − x‖ : x ∈ F(t)} is measurable.

Definition 3.2. A multi-function F(t, x) is called right monotone increasing inx almost everywhere fort ∈ J if

F(t, x)
i≤ F(t, y) a.e. fort ∈ J, for all x, y ∈ R with x ≤ y.

Definition 3.3. A multi-valued functionF : J × R → Pcp(R) is calledL1-Chandrabhan if

(i) t �→ F(t, x) is measurable for eachx ∈ R,
(ii) x �→ F(t, x) is right monotone increasing almost everywhere fort ∈ J, and
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(iii) for each real numberr > 0 there exists a functionhr ∈ L1(J, R) suchthat

‖F(t, x)‖P = sup{|u| : u ∈ β(t, x)} ≤ hr (t) a.e.t ∈ J

for all x ∈ R with |x| ≤ r .

Write

S1
F (x) = {v ∈ L1(J, R) | v(t) ∈ F(t, x(t)) a.e.t ∈ J}

for somex ∈ AC(J, R). The integral of the multi-functionF is defined as∫ t

0
F(s, x(s)) ds =

{∫ t

0
v(s) ds : v ∈ S1

F (x)

}
.

Definition 3.4. A functiona ∈ AC(n−1)(J, R) is called a strict lower solution of the DI(1.1)if for all v ∈ S1
F (a),

a(n)(t) ≤ v(t) a.e.t ∈ J

x(i )(0) ≤ xi , i ∈ {0, 1, . . . , n − 1}.
Similarly a strict upper solutionb to DI (1.1)is defined.

We consider the following set of hypotheses below.

(H1) F(t, x) is closed and bounded for eacht ∈ J andx ∈ R.
(H2) S1

F (x) �= ∅ for all x ∈ AC(J, R).
(H3) F is L1-Chandrabhan.
(H4) DI (1.1)has a strict lower solutiona and a strict upper solutionb with a ≤ b.

Hypotheses(H1)–(H2) are common in the literature. Some nice sufficient conditionsfor guaranteeing(H2) appear
in Aubin and Cellina [2], Deimling [4], and Lasota and Opial [10]. A mild hypothesis of(H4) has been used in
Halidias and Papageorgiou [9]. Hypothesis(H3) is relatively new to the literature, but special forms have appeared in
the works of several authors. See Dhage [5,6] and references therein.

Theorem 3.1. Assume that(H1)–(H4) hold. Then the DI(1.1)has a solution in[a, b].
Proof. Let X = AC(J, R) and define an order interval[a, b] in X which is well defined in view of hypothesis(H4).
Now the DI(1.1)is equivalent to the integral inclusion

x(t) ∈
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! F(s, x(s)) ds, t ∈ J. (3.1)

See Dhage et al. [7] and the references therein. Define a multi-valued operatorQ : [a, b] → Pp(X) by

Qx =
{

u ∈ X : u(t) =
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! v(s) ds, v ∈ S1
F (x)

}

= (L ◦ S1
F )(x)

(3.2)

whereL : L1(J, R) → C(J, R) is a continuous operator defined by

Lx(t) =
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! x(s) ds. (3.3)

Clearly the operatorQ is well defined in view of hypothesis(H2). We shallshow thatQ satisfies all the conditions
of Theorem 2.1.

Step I: First, we show thatQ has compact values on[a, b]. Observethat the operatorQ is equivalent to the
compositionL ◦ S1

F of two operators onL1(J, R), whereL : L1(J, R) → X is the continuous operator defined by
(3.3). To showQ has compact values, it then suffices to prove that the composition operatorL ◦ S1

F has compact
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values on[a, b]. Let x ∈ [a, b] be arbitrary and let{vn} be a sequence inS1
F (x). Then, by the definition ofS1

F ,
vn(t) ∈ F(t, x(t)) a.e. for t ∈ J. Since F(t, x(t)) is compact, there is a convergent subsequence ofvn(t) (for
simplicity call it vn(t) itself) that converges in measure to somev(t), wherev(t) ∈ F(t, x(t)) a.e. fort ∈ J. From the
continuity ofL, it follows thatLvn(t) → Lv(t) pointwise onJ asn → ∞. In order to show thatthe convergence is
uniform, we first show that{Lvn} is an equi-continuous sequence, lett , τ ∈ J; then

|Lvn(t) − Lvn(τ )| ≤
∣∣∣∣∣
n−1∑
i=0

xi t i

i ! −
n−1∑
i=0

xi τ
i

i !

∣∣∣∣∣
+

∣∣∣∣
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds −
∫ τ

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
≤ |q(t) − q(τ )| +

∣∣∣∣
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds −
∫ t

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

(τ − s)n−1

(n − 1)! vn(s) ds −
∫ τ

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
≤ |q(t) − q(τ )| +

∫ t

0

∣∣∣∣ (t − s)n−1

(n − 1)! − (τ − s)n−1

(n − 1)!
∣∣∣∣ |vn(s)| ds

+
∣∣∣∣
∫ τ

t

∣∣∣∣ (τ − s)n−1

(n − 1)!
∣∣∣∣ |vn(s)| ds

∣∣∣∣ (3.4)

≤ |q(t) − q(τ )| +
∫ T

0

∣∣∣∣ (t − s)n−1

(n − 1)! − (τ − s)n−1

(n − 1)!
∣∣∣∣ |vn(s)| ds

+
∣∣∣∣
∫ τ

t

Tn−1

(n − 1)! |vn(s)| ds

∣∣∣∣ (3.5)

whereq(t) = ∑n−1
i=0

xi t i

i ! .

Sincevn ∈ L1(J, R), the right hand side of(3.4) tends to 0 ast → τ . Hence,{Lvn} is equi-continuous, and an
application of the Arzel´a–Ascoli theorem implies that there is a uniformly convergent subsequence. We then have
Lvnj → Lv ∈ (L ◦ S1

F )(x) as j → ∞, and so(L ◦ S1
F )(x) is compact-valued. Therefore,Q is a compact-valued

multi-valued operator on[a, b].
Step II: Secondly we show thatQ is right monotone increasing and maps[a, b] into itself. Letx, y ∈ [a, b] be

suchthatx ≤ y. Sincex �→ F(t, x) is right monotone increasing, one hasF(t, x)
i≤ F(t, y). As a resultwe have that

S1
F (x)

i≤ S1
F (y). Hence Q(x)

i≤ Q(y). From(H3) it follows thata ≤ Qa and Qb ≤ b. Now Q is right monotone
increasing, so we have

a ≤ Qa
i≤ Qx

i≤ Qb ≤ b

for all x ∈ [a, b]. Hence Q defines a multi-valued operatorQ : [a, b] → Pcp([a, b]).
Step III: Finally let {xn} be a monotone increasing sequence in[a, b] and let{yn} be a sequence inQ([a, b])

defined byyn ∈ Qxn, n ∈ N. We shallshow that{yn} has a cluster point. This is achieved by showing that{yn} is a
uniformly bounded and equi-continuous sequence.

Case I: First we show that{yn} is a uniformly bounded sequence. By definition of{yn} there is avn ∈ S1
F (xn) such

that

yn(t) =
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds, t ∈ J.

Therefore

|yn(t)| ≤
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds
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≤
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! ‖F(s, xn(s))‖P ds

≤
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! hr (s) ds

≤
n−1∑
i=0

xi t i

i ! +
∫ t

0

Tn−1

(n − 1)!hr (s) ds

≤
n−1∑
i=0

xi Ti

i ! + Tn−1

(n − 1)! ‖hr ‖L1

for all t ∈ J, wherer = ‖a‖ + ‖b‖.
Taking the supremum overt ,

‖yn‖ ≤
n−1∑
i=0

xi T i

i ! + Tn−1

(n − 1)!‖hr ‖L1

which shows that{yn} is a uniformly bounded sequence inQ([a, b]).
Next we show that{yn} is an equi-continuous sequence inQ([a, b]). Let t, τ ∈ J. Then we have

|yn(t) − yn(τ )| ≤
∣∣∣∣∣
n−1∑
i=0

xi t i
1

i ! −
n−1∑
i=0

xi τ
i

i !

∣∣∣∣∣
+

∣∣∣∣
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds −
∫ τ

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
≤ |q(t) − q(τ )| +

∣∣∣∣
∫ t

0

(t − s)n−1

(n − 1)! vn(s) ds −
∫ t

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

(τ − s)n−1

(n − 1)! vn(s) ds −
∫ τ

0

(τ − s)n−1

(n − 1)! vn(s) ds

∣∣∣∣
≤ |q(t) − q(τ )| +

∫ t

0

∣∣∣∣ (t − s)n−1

(n − 1)! − (τ − s)n−1

(n − 1)!
∣∣∣∣ |vn(s)| ds

+
∣∣∣∣
∫ τ

t

∣∣∣∣ (τ − s)n−1

(n − 1)!
∣∣∣∣ |vn(s)| ds

∣∣∣∣
≤ |q(t) − q(τ )| +

∫ T

0

∣∣∣∣ (t − s)n−1

(n − 1)! − (τ − s)n−1

(n − 1)!
∣∣∣∣ hr (s) ds

+|p(t) − p(τ )|
wherep(t) = Tn−1

(n−1)!
∫ t

0 hr (s) ds.
From the above inequality it follows that

|yn(t) − yn(τ )| → 0 asn → ∞.

This shows that{yn} is an equi-continuous sequence inQ([a, b]). Now {yn} is uniformly bounded and equi-
continuous, so it has a cluster point in view of the Arzel´a–Ascoli theorem. Now the desired conclusion follows by an
application ofTheorem 2.1. �

To prove the next result, we need the following definitions.

Definition 3.5. A multi-function β : J × R → Pp(R) is calledL1
X-Chandrabhan if

(i) t �→ β(t, x) is measurable for eachx ∈ R,
(ii) β(t, x) is right monotone increasing inx almost everywhere fort ∈ J, and
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(iii) there exists a functionh ∈ L1(J, R) suchthat

‖β(t, x)‖ = sup{|u| : u ∈ β(t, x)} ≤ h(t) a.e.t ∈ J

for all x ∈ R.

Remark 3.1. Note that if the multi-functionβ(t, x) is L1
X-Chandrabhan, then it is measurable int and integrally

bounded onJ × R × R, and so, by aselection theorem,S1
β has non-empty values, that is,

S1
β(x) = {u ∈ L1(J, R) | u(t) ∈ β(t, x) a.e.t ∈ J} �= ∅

for all x ∈ R. See Deimling [4] and the references therein.

Theorem 3.2. Assume that(H1) and

(H5) F is L1
X-Chandrabhan

hold. Then the DI(1.1)has a solution on J .

Proof. Obviously the hypotheses(H2) and(H3) of Theorem 3.1hold in view of Remark 3.1. Define two functions
a, b : J → R by

a(t) =
n−1∑
i=0

xi t i

i ! −
∫ t

0

(t − s)n−1

(n − 1)! h(s) ds,

and

b(t) =
n−1∑
i=0

xi t i

i ! +
∫ t

0

(t − s)n−1

(n − 1)! h(s) ds.

It is easy to verify thata andb are respectively the strictly lower and upper solutions of the DI(1.1)on J with a ≤ b.
Thus(H4) holds and now the desired conclusion follows by an application ofTheorem 3.1. �

Example 3.3. Let J = [0, 1] and define a multi-functionF : J × R → R by

F(t, x) =



{0} if x < 0,

[0, p(t)[x]] if x ∈ [0, 2]
{3} if x > 2,

(3.6)

for all t ∈ J, wherep ∈ L1(J, R
+) and[x] is a greatest integer not greater thanx. Now considerthe DI

x(n)(t) ∈ F(t, x(t)) a.e.t ∈ J

x(i )(0) = 1

1 + i
∈ R, i ∈ {0, 1, . . . , n − 1}


 . (3.7)

Clearly the multi-functionF satisfies all thehypotheses ofTheorem 3.1with

a(t) =
n−1∑
i=0

t i

i !(1 + i )
and b(t) =

n−1∑
i=0

t i

i !(1 + i )
+ 3

Tn

(n − 1)!
for t ∈ J.
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