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Abstract

For a global field K and an elliptic curve E� over K(T ), Silverman’s specialization theorem
implies rank(E�(K(T )))� rank(Et (K)) for all but finitely many t ∈ P1(K). If this inequality is
strict for all but finitely many t, the elliptic curve E� is said to have elevated rank. All known
examples of elevated rank for K =Q rest on the parity conjecture for elliptic curves over Q,
and the examples are all isotrivial.

Some additional standard conjectures over Q imply that there does not exist a non-isotrivial
elliptic curve over Q(T ) with elevated rank. In positive characteristic, an analogue of one of
these additional conjectures is false. Inspired by this, for the rational function field K = �(u)

over any finite field � with characteristic �= 2, we construct an explicit 2-parameter family Ec,d

of non-isotrivial elliptic curves over K(T ) (depending on arbitrary c, d ∈ �×) such that, under
the parity conjecture, each Ec,d has elevated rank.
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1. Introduction

Let K be a global field and let E� be an elliptic curve over K(T ). This curve
uniquely extends to a minimal regular proper elliptic fibration E → P1

K . The group
E�(K(T )) is finitely generated, by the Lang–Néron theorem [18, Theorem 1]. (See [4,
§6] for a proof of the Lang–Néron theorem using the language of schemes.) For all
but finitely many t ∈ P1(K), the specialization Et of E at T = t is an elliptic curve
over K. This paper is concerned with a comparison between the ranks of E�(K(T ))

and Et (K) as t varies.
By Silverman’s specialization theorem [30, Theorem C], the specialization map

E�(K(T )) = E(P1
K)→ Et (K)

at T = t is injective for all but finitely many t ∈ P1(K). (To be precise, Silverman’s
theorem only applies to non-constant E�. Injectivity of the specialization map for
constant E� is elementary.) Thus, the generic rank r(E�) := rank (E�(K(T ))) satisfies

r(E�)�rank(Et (K)) (1.1)

for all but finitely many t. The elliptic curve E� (or the fibration E → P1
K , or the

family {Et }t∈P1(K)) is said to have elevated rank if (1.1) is a strict inequality for all
but finitely many t ∈ P1(K).

How are examples of elevated rank constructed? The only known technique depends
on the parity conjecture: for every elliptic curve E over the global field K,

(−1)rank(E(K)) ?= W(E),

where W(E) is the global root number of E. The spirit of the parity conjecture is
that W(E) is supposed to be the sign in the functional equation of the L-function of
E, but such a functional equation is not yet known to exist in general. Therefore, we
adopt the convention that the global root number is defined to be the product of local
root numbers. The local root numbers are defined in all cases via representation theory
[6] and are equal to 1 at non-archimedean places of good reduction. Some convenient
formulas for local root numbers at non-archimedean places will be recalled in Theorem
3.1. The analytic and representation-theoretic descriptions of W(E) are known to agree
when K is Q or a global function field, by work of Deligne, Drinfeld, Wiles, and
others. In particular, since our focus in this paper will be the cases when K = Q or
when K is a rational function field over a finite field, the reader can think about W(E)

in either way.
To find elliptic curves with elevated rank, one tries to construct E→ P1

K such that
W(Et ) has opposite sign to (−1)r(E�) with at most finitely many exceptions. That is,
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we want

W(Et ) = −(−1)r(E�) (1.2)

for all but finitely many t ∈ P1(K). Assuming the parity conjecture for elliptic curves
over K, (1.1) and (1.2) imply that (1.1) is a strict inequality for all but finitely many
t, so the Et ’s have elevated rank.

Because of the role of the parity conjecture in this strategy, all known examples of
elevated rank are, strictly speaking, conditional. Moreover, so far this idea has been
carried out only when K = Q. The first (conditional) examples of elevated rank were
found by Cassels and Schinzel [2]. These are quadratic twists over Q(T ) of the elliptic
curve y2 = x3 − x:

En,� : n(1+ T 4)y2 = x3 − x, (1.3)

where n is a (squarefree) positive integer satisfying n ≡ 7 mod 8. Each En,� should have
elevated rank, because the group En,�(Q(T )) has rank 0 and W(En,t ) = −1 for every
t ∈ Q. We exclude t = ∞ because En,∞ is not smooth. (Although En,t (Q) should
have a point of infinite order for each t ∈ Q, there cannot be an algebraic formula for
a point of infinite order on En,t (Q) as t varies through an infinite subset of Q, since
such a formula would give an element of infinite order in the group En,�(Q(T )).) More
generally, for any elliptic curve E/Q, Rohrlich [26, Proposition 9] proved that there is
a quadratic twist E� of E/Q(T ) by a quartic irreducible in Q[T ] such that E�(Q(T ))

has rank 0 and W(Et ) = −1 for every t ∈ Q.
Nekovář has proved the parity conjecture for any elliptic curve over Q with finite

Tate–Shafarevich group [21; 29, p. 463], but this does not make any examples of
elevated rank over Q unconditional, since there are no non-constant families E→ P1

Q
such that Et is known to have a finite Tate–Shafarevich group for all but finitely many
t ∈ P1(Q). Similarly, the recent work of Kato and Trihan [15] (as well as earlier
work of Artin–Tate, Milne, Schneider, and others) on the Birch and Swinnerton–Dyer
conjecture in characteristic p does not have any impact on the conditional nature of
the parity conjecture in characteristic p as it is applied to the examples considered in
this paper.

The examples of Cassels–Schinzel and Rohrlich over Q(T ) are quadratic twists. The
appeal of quadratic twists is that there are simple formulas that describe the variation
of root numbers under quadratic twists over Q [28, Corollary to Proposition 10; 29,
Theorem 7.2]. However, a family of quadratic twists exhibits no “geometric” variation:
it is isotrivial (that is, j (E�) ∈ K , with no T-dependence), and conversely any isotrivial
family is either a family of quadratic twists or is a family of quartic (resp., cubic or
sextic) twists with j (E�) = 1728 (resp., j (E�) = 0).

The main question we address in this paper is the following: for a global field K, does
there exist a non-isotrivial elliptic curve over K(T ) with elevated rank? In Appendix
A, we explain why some standard conjectures over Q imply that the answer to this
question for K = Q is no. There are natural analogues of these standard conjectures
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over a rational function field �(u) over a finite field �, but (as we explain in Appendix
B) one of these conjectures is false over �(u). This suggests that our question might
have an affirmative answer in the function field case.

Here is our example. Let � be a finite field with characteristic p �= 2, and choose
any c, d ∈ �×. Let F = �(u) and consider the elliptic curve

E� : y2 = x3 + (c(T 2 + u)2p + du)x2 − (c(T 2 + u)2p + du)3x (1.4)

over F(T ). The Weierstrass model (1.4) over F(T ) has the form y2 = x3+Ax2−A3x.
The j-invariant j (E�) ∈ F(T ) is not in F, so E�/F (T ) is non-isotrivial. An inspection
of the poles of j (E�) on P1

F shows that changing (c, d) changes j (E�).
Let E→ P1

F be the minimal regular proper elliptic fibration with generic fiber (1.4).
For all t ∈ P1(F ), the specialization Et of E at T = t is an elliptic curve.

Theorem 1.1. Let F = �(u), where char(�) �= 2, and fix a choice of c, d ∈ �×. Let
E�/F (T ) be as in (1.4), depending on the choice of c and d. For every t ∈ P1(F ), we
have W(Et ) = 1. If t �= ∞, then Et (F ) has positive rank. Moreover, rank(E�(F (T ))) =
1 and

W(Et ) = −(−1)rank(E�(F (T )))

for all t ∈ P1(F ).
Thus, if the parity conjecture is true for elliptic curves over F, the Et ’s are a

non-isotrivial family with elevated rank.

Remark 1.2. When t = ∞, the fiber Et in Theorem 1.1 is the constant elliptic curve
y2 = x3 − c3x over F. The elliptic curve E∞ therefore has global root number 1, and
it must have rank 0 (since F is a function field of genus 0 over the finite field �).

We expect that Et (F ) has rank 2 except for a set of t ∈ P1(F ) with density 0 (as
measured by height), but we have no idea how to prove this expectation.

Remark 1.3. We did not search for non-isotrivial examples of elevated rank with
generic rank 0 or in characteristic 2, but we expect that such examples exist. (The
curve defined by (1.4) in characteristic 2 is not smooth.) Our example has non-empty
locus of nodal fibers in P1

F that is nowhere F-étale. We expect any example of elevated
rank to have this property.

Remark 1.4. For fixed p �= 2, consider the algebraic family Et , where � and (c, d)

vary (in characteristic p) but the logarithmic height of t ∈ �(u)× (i.e., the maximum
of the degrees of its numerator and denominator) is bounded by some integer B > 0.
This is a family parameterized by the �-points (c, d, t) of a smooth Fp-scheme that is
determined by B.

For fixed c, d ∈ �×, the assertions in Theorem 1.1 concerning the fibral root numbers
and the generic rank for the associated elliptic curve in (1.4) are unaffected by replacing
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� with a finite extension. (This is also crucial in the proof of Theorem 1.1; see (4.6)
and the surrounding text.) Thus, granting the parity conjecture, Theorem 1.1 implies
that there is a systematic “rank gap” �1 between generic and special Mordell–Weil
ranks over the connected components of the family of planar Weierstrass models Et as
(c, d, t) and � vary with height(t)�B. This is a contrast with a theorem in [14, §9]
asserting that there is an average “rank gap” � 1

2 (or exactly 1
2 under conjectures of

Tate) between generic and special Mordell–Weil ranks of Jacobians of certain universal
families of pencils of smooth plane curves in characteristic p. (The pencils considered
in [14, §9] are induced by smooth surfaces in P1 × P2, but the closure of (1.4) in
P1

F ×F P2
F is not F-smooth.)

Here is an overview of how we prove Theorem 1.1. To compute the rank of a
Mordell–Weil group, we wish to use a 2-descent, and this is simplest when there is
a rational point of order 2 and we are not in characteristic 2. Weierstrass models for
such elliptic curves can always be brought to the form y2 = x3 + Ax2 + Bx with the
2-torsion point equal to (0, 0).

Step 1: For an odd prime p, consider the non-isotrivial elliptic curve over Fp(T )

given by the Weierstrass model with A = T , B = −T 3:

ET : y2 = x3 + T x2 − T 3x.

For every t ∈ �(u) with t �= 0,− 1
4 , the specialization Et may be considered as an

elliptic curve over �(u). We will compute the reduction type of Et at every place of
�(u). When char(�) = 3, the 2-torsion point (0,0) will prevent the intervention of wild
ramification.

Step 2: We show that QT = (−T , T 2) ∈ ET (Fp(T )) has infinite order, so Qt has
infinite order in Et(�(u)) for every t ∈ �(u) such that t /∈ �. This uses an extension
to characteristic p of the classical Nagell–Lutz criterion in characteristic 0.

Step 3: Letting h(T ) = cT 2p + du, where c, d ∈ �×, we use algebraic properties of
the defining Weierstrass model for ET to find a simple formula (3.16) for W(Eh(t)) for
every t ∈ �(u). (Note h(t) /∈ � for each t.) The formula (3.16) for W(Eh(t)) implies
that W(Eh(t2+u)) = 1 for all t ∈ �(u); the elliptic curve Eh(T 2+u) is (1.4). Our specific
choice of h(T ) is partly motivated by the study of the characteristic-p Möbius function
in [5].

Step 4: As just noted, E� in (1.4) is Eh(T 2+u). The point Qh(T 2+u) on this curve
has infinite order, and we use this point to show that Et (F ) has positive rank for all
t ∈ P1(F )−{∞}. A mixture of geometric, arithmetic, and cohomological arguments is
used to prove that the rank of E�(F (T )) is �1 (so the rank is exactly 1). The essential
inputs are the Lang–Néron theorem over an algebraic closure �, the geometry of the
locus of bad reduction for E� over P1 × P1, and some arithmetic considerations with
the Chebotarev density theorem. Standard geometric upper bounds on the F(T )-rank
give very large bounds when applied to E�. It therefore seems hopeless to calculate
the rank of E�(F (T )) via purely geometric methods, even though the generic-rank
conclusion in Theorem 1.1 holds over �.
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Steps 1 and 2 are carried out in §2, Step 3 is carried out in §3, and Step 4
is carried out in §4–§6. The bulk of the work is in Step 4, which the geometri-
cally inclined reader may prefer to read directly after Step 1. We note that Steps 2
and 3 are logically independent, as are Steps 3 and 4. (Clearly Step 2 is used in
Step 4.)

In Appendix A, we review previous work on variation of root numbers in families
over Q. The reason to expect the possibility of different behavior in positive charac-
teristic is explained in Appendix B. These appendices are expository, but they should
help the reader to have the proper perspective on our work.

Our notation is standard, with two exceptions: F denotes the rational function field
�(u), where � is a finite field that is assumed to have characteristic �= 2 unless otherwise
stated, and in some calculations in a field we shall use the shorthand x ∼ y to denote
the relation x = yz2 for a non-zero z (see Definition 3.2).

2. Reduction type and rank for y2 = x3 + T x2 − T 3x

We begin with two elementary lemmas concerning reduction types for an elliptic
curve over the fraction field of a discrete valuation ring. We write K for the fraction
field and v for the normalized (i.e., Z-valued) discrete valuation on K, with valuation
ring OK and residue field k. Both lemmas are standard when char(k) �= 2, 3, so a key
point of the proofs is to include the case char(k) = 3. For an elliptic curve E over
K, we let �, c4, and c6 denote the usual parameters associated to a Weierstrass model
for E over K. (As is well-known, � mod (K×)12, c4 mod (K×)4, and c6 mod (K×)6 are
independent of the choice of Weierstrass model.)

Lemma 2.1. Let E be an elliptic curve over K with potentially good reduction. If
there is good reduction then v(�) ≡ 0 mod 12. The converse holds in either of the two
following situations:

(1) char(k) �= 2, 3,
(2) char(k) �= 2 and E(K)[2] �= O.

Proof. The necessity of the congruence condition for good reduction is obvious. When
char(k) �= 2, 3, all integral Weierstrass models can be put in the form y2 = x3+�x+�,
so the sufficiency of the congruence condition for good reduction in case (1) is proved
by direct calculation using the standard formulas for j and � (in terms of � and �) and
using the coordinate changes (x, y) �→ (�2x, �3y) with � ∈ K×.

For sufficiency in case (2), we may suppose OK is strictly henselian. Thus, k is
separably closed with char(k) �= 2, so � must be a square in K× since v(�) is even.
By the 2-torsion hypothesis, for any Weierstrass K-model y2 = f (x) for E there is at
least one K-rational root of the cubic f. The discriminant of f is a square in K×, so f
splits over K and hence E[2] is K-split.
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Let Ksep/K be a separable closure and let � ⊆ GL2(Z2) be the image of the 2-adic
representation

�E,2 : Gal(Ksep/K)→ Aut(lim←− E[2n](Ksep)) � GL2(Z2)

attached to E. Since E[2] is K-split, � has trivial reduction modulo 2. Thus, the Galois
action must be pro-2, and hence tame. Since E has potentially good reduction and OK
is strictly henselian, � must be a finite cyclic 2-group. Pick � ∈ �, so � = 1+ 2x with
x ∈ M2(Z2) if a is not a square, and E(a) = E otherwise. Since the 2-adic cyclotomic
character over K is trivial,

1 = det(�) = 1+ 2 Tr(x)+ 4 det(x) = −1+ Tr(�)+ 4 det(x).

In particular, Tr(�) ≡ 2 mod 4. Elements in GL2(Q2) with order 4 have characteristic
polynomial X2 + 1 and thus have trace 0. This shows that � cannot contain elements
of order 4, so � is either trivial or has order 2. Hence, if K′ ⊆ Ksep is the splitting
field for �E,2 then [K′ : K] divides 2.

The quadratic twist E′ of E by K′/K must have trivial 2-adic representation, and
hence it has good reduction. Since OK is strictly henselian and [K′ : K] divides 2,

v(�(E′)) ≡ v(�(E))+ 12/[K′ : K] ≡ 12/[K′ : K]mod 12

and v(�(E′)) ≡ 0 mod 12 (since E′ has good reduction). Thus, [K′ : K] = 1, so E � E′
has good reduction. �

Lemma 2.2. Assume char(k) �= 2 and let E be an elliptic curve over K with poten-
tially multiplicative reduction. The parameters c4 and c6 are non-zero, and there is
multiplicative reduction if and only if v(c4) ≡ 0 mod 4. When OK is complete, there is
split multiplicative reduction if and only if −c6 is a square in K×.

Proof. By hypothesis, j is non-integral. As is well-known, c4 and c6 are non-zero when
j �= 0, 1728. The formation of the Néron model commutes with base change to the
completion, so we may suppose OK is complete. Since 2 ∈ K×, the quadratic extensions
of K are classified by K×/(K×)2, and since 2 ∈ O×K, the unramified quadratic extensions
of K are classified by the unit classes (modulo unit squares). For a ∈ K×, let E(a)

denote the quadratic twist of E by the non-trivial character of Gal(K(
√

a)/K). Clearly

c4(E
(a)) ≡ a2c4(E) mod (K×)4, c6(E

(a)) ≡ a3c6(E) mod (K×)6.

By the theory of Tate models, there is a unique class u = u(E) modulo (K×)2 such
that E(u) has split multiplicative reduction. Moreover,

• E has multiplicative reduction if and only if u is a unit class in K×/(K×)2,
• E has split multiplicative reduction if and only if u is trivial in K×/(K×)2.
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A direct calculation with Tate models shows c4(E
(u)) ∈ (K×)4 and −c6(E

(u)) ∈ (K×)2

(since 2 ∈ O×K). We conclude that

−c6(E) ≡ u mod (K×)2,

so the reduction is split multiplicative if and only if −c6(E) is a square in K×.
Also, u ∈ K×/(K×)2 is a unit class if and only if v(u) ≡ 0 mod 2, or equivalently
v(u2) ≡ 0 mod 4. Therefore, since

v(c4(E)) ≡ v(c4(E
(u)))− v(u2) ≡ −v(u2) mod 4,

the reduction is multiplicative if and only if v(c4(E)) ≡ 0 mod 4. �

Since we are interested in working with elliptic curves that are not in characteristic
2 and have a non-zero rational 2-torsion point, the shape of a Weierstrass model can
be taken to be

E : y2 = x3 + Ax2 + Bx. (2.1)

The discriminant � and parameters c4 and c6 of such a model are given by the
following formulas [31, p. 46]:

� = 16B2(A2 − 4B), c4 = 16(A2 − 3B), c6 = −32A(2A2 − 9B). (2.2)

For P = (x, y) ∈ E −E[2], the point [2]P has coordinates given by [31, pp. 58–59]:

[2]P =
((

x2 − B

2y

)2

,−3x2 + 2Ax + B

2y

(
x2 − B

2y

)2

+ x3 − Bx

2y

)
. (2.3)

We set A = T and B = −T 3 in (2.1), giving the elliptic curve

ET : y2 = x3 + T x2 − T 3x (2.4)

over Fp(T ) with p �= 2. By (2.2), the discriminant and j-invariant of (2.4) are

� = 16T 8(1+ 4T ), j = c3
4

�
= 256(1+ 3T )3

T 2(1+ 4T )
(2.5)

and the parameters c4 and c6 are

c4 = 16T 2(1+ 3T ), c6 = −32T 3(2+ 9T ). (2.6)
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For each t ∈ F = �(u) with t /∈ �, the Weierstrass model

Et : y2 = x3 + tx2 − t3x (2.7)

defines an elliptic curve over F. (If t ∈ �− {0,−1/4} then Et is also an elliptic curve
over F, but assuming t /∈ � will avoid some unnecessary complications.)

Theorem 2.3. Fix t ∈ F = �(u) with t /∈ �. Let v be a place on F. The reduction type
of Et at v is as in Table 1.

Proof. Specializing (2.5) and (2.6), the parameters of Et are

� = 16t8(1+ 4t), j = 256(1+3t)3

t2(1+4t)
, c4 = 16t2(1+ 3t),

c6 = −32t3(2+ 9t).

(2.8)

(We write � instead of �|T=t , and likewise for the other parameters.) None of the
parameters in (2.8) is 0, since t /∈ �.

If v(t) > 0 then

v(�) = 8v(t), v(c4) = 2v(t), v(j) = −2v(t) < 0,

so there is potentially multiplicative reduction. Using Lemma 2.2, there is multiplicative
reduction when v(t) is even and there is additive reduction when v(t) is odd.

If v(t) < 0 and char(�) > 3 then

v(�) = 9v(t), v(c4) = 3v(t), v(j) = 0,

so there is potentially good reduction. If v(t) < 0 and char(�) = 3 then

v(�) = 9v(t), v(c4) = 2v(t), v(j) = −3v(t) > 0,

so again there is potentially good reduction. Using Lemma 2.1 in both cases, there is
good reduction when v(t) ≡ 0 mod 4 and there is additive reduction otherwise.

Finally, suppose v(t) = 0, so

v(�) = v(1+ 4t), v(c4) = v(1+ 3t).

Both 1 + 4t and 1 + 3t have non-negative valuation at v, and the valuations are not
both positive. If v(1 + 4t) = 0 then v(j) = 3v(c4)�0, so there is good reduction
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Table 1
Reduction types for Et , t ∈ F − �

v(t) Reduction type

> 0, even Multiplicative
> 0, odd (Pot. mult.) additive
< 0, ≡ 0 mod 4 Good
< 0, /≡ 0 mod 4 (Pot. good) additive
= 0, v(1+ 4t) = 0 Good
= 0, v(1+ 4t) > 0 Multiplicative

(by Lemma 2.1). If v(1+ 4t) > 0 then v(c4) = 0, so v(j) = −v(�) < 0. This implies
(by Lemma 2.2) that there is multiplicative reduction at v in such cases. �

Now we turn to the Mordell–Weil group of the generic fiber, ET (Fp(T )). As before,
p �= 2. Two obvious non-zero rational points are (0, 0) and Q = (−T , T 2). (There
is another obvious non-zero rational point, (T 2, T 3), but this is (0, 0) +Q.) We will
prove that Q has infinite order, so rank(ET (Fp(T )))�1.

For elliptic curves over Q, explicit rational points are usually checked to be non-
torsion by the Nagell–Lutz integrality criterion. This criterion is really a collection of
local criteria over Z(p) for all primes p. We need an analogue for discrete valuation
rings with positive characteristic. Here is a version over arbitrary discrete valuation
rings.

Theorem 2.4. Let R be a discrete valuation ring with residue field k of characteristic
p�0, and let K be its fraction field. Let E/K be an elliptic curve, and let P ∈ E(K)

be a non-zero torsion point.
If there exists a Weierstrass model of E over R such that one of the affine coordinates

of P does not lie in R, then the scheme-theoretic closure of 〈P 〉 ⊆ E(K) in the Néron
model of E over R is a finite flat local R-group. In particular, p > 0 and P has p-power
order. If in addition char(K) = p, then E/K has potentially supersingular reduction
and j (E) ∈ K is a pth power.

It follows from the Oort–Tate classification and Cartier duality that the only example
of a non-trivial finite flat local group scheme over Zsh

(p) with p-power order and cyclic
constant generic fiber is �2 for p = 2. Thus, Theorem 2.4 recovers the integrality of
non-trivial torsion points on Weierstrass Z-models of the form y2 = f (x) (for which
non-zero 2-torsion points must have the form (x0, 0) with x0 ∈ Z).

Proof. Let W ⊆ P2
R be the chosen Weierstrass R-model for E (so there is a chosen

isomorphism WK � E as pointed curves over K). Let W sm ⊆ W be the open R-
smooth locus of W, and let ε ∈ W(R) = W(K) = E(K) be the section [0, 1, 0], so
ε ∈ W sm(R). Since P viewed as a point

P̃ ∈ W(K)− {[0, 1, 0]} ⊆ A2(K) = K ×K
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is assumed to have at least one coordinate not in R, as a point of P2(K) = P2(R) its
reduction in P2(k) cannot lie in A2

k . Therefore, the reduction must lie on the line at
infinity. However, by the theory of Weierstrass models we know that Wk has εk as its
unique point on this line, so the reduction of P̃ is εk . Since εk ∈ W sm

k , we conclude
that P̃ ∈ W sm(R).

Let E be the Néron model of E over R. By the Néron mapping property, there is
a unique map W sm → E over R extending the identification of K-fibers with E. This
map carries ε to the identity element in E(R), so the image of P̃ in E(R) reduces to
the identity in Ek . In other words, under the equality E(K) = E(R), the reduction of
P in the closed fiber Ek of the Néron model must be the identity.

Let N > 1 be the order of P. By the Néron mapping property, P defines a map
of R-groups Z/NZ → E that is a closed immersion on the generic fiber. Since the
R-group Z/NZ is proper and the target E is separated over the Dedekind domain R,
the scheme-theoretic image of this map is a finite flat R-subgroup G ↪→ E with order
N and constant generic fiber; this must be the closure of 〈P 〉. The closed fiber of G
must be infinitesimal since P has reduction equal to the identity. This forces G to be
local, so the characteristic p of k must be positive and the order N of G must be a
power of p.

Now assume char(K) = p. We must prove that j (E) is a pth power in K and that E
has potentially supersingular reduction. To prove that j (E) is a pth power in K when
E(K) contains a non-trivial point with p-power order, we use the classical fact that if
L is a field with characteristic p > 0 and E is an elliptic curve over L such that there
exists an étale subgroup � ⊆ E with order pn for some n�1 (that is, E is ordinary
and the connected-étale sequence of E[pn] splits over L), then j (E) ∈ L is a pnth
power in L. To prove this fact, let E′ = E/�, so the isogeny E′ → E that is dual to
the projection E → E′ has kernel that is Cartier-dual to �. This kernel is therefore
multiplicative with p-power order, so it is infinitesimal. Since E′ is a 1-dimensional
abelian variety in characteristic p, it contains a unique infinitesimal subgroup of order
pn. The relative n-fold Frobenius E′ → E′(p

n) has this subgroup as its kernel, so the
two quotients E and E′(p

n) of E′ are L-isomorphic as quotients of E′. In particular
j (E) = j (E′(p

n)
) = j (E′)pn

in L.
Finally, returning to our initial situation, we must show that E has potentially su-

persingular reduction if K has characteristic p > 0. The assumptions on R and on the
coordinates of P are unaffected by replacing K with a finite separable extension K′
and replacing R with a maximal-adic localization of its integral closure in K′, so we
may assume that E has semistable reduction. It must be proved that the Néron model
E in this case has fibral identity component E0

k that is a supersingular elliptic curve.
Assume to the contrary, so E0

k is either a torus or an ordinary elliptic curve; we seek a
contradiction. In either case, the finite local subgroups of E0

k are multiplicative. Hence,
if we construct G as we did above (the scheme-theoretic closure of 〈P 〉 in E) then the
infinitesimal closed fiber Gk ↪→ Ek must lie in E0

k , so Gk is multiplicative with p-power
order. Since the generic fiber GK is constant, we conclude that the Cartier dual G∨
has multiplicative generic fiber. However, G∨ is finite and flat over R with special fiber
G∨k that is étale, so G∨ is R-étale. This forces G∨K to be both multiplicative and étale,
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but a non-zero étale K-group with p-power order cannot be multiplicative when K has
characteristic p, so we have reached a contradiction. �

Corollary 2.5. With notation as in Theorem 2.4, if char(K) = p > 0 and j (E) ∈ K is
not a pth power, then non-zero torsion points in E(K) have integral coordinates with
respect to any Weierstrass R-model of E.

As an application of Corollary 2.5, we have:

Corollary 2.6. Assume p �= 2. The Fp(T )-rational point Q = (−T , T 2) on the elliptic
curve ET in (2.4) has infinite order.

In particular, for any field L of characteristic p and any t ∈ L that is transcendental
over Fp, the specialization Qt ∈ Et(L) that is obtained by sending Fp(T ) into L by
T �→ t is a point of infinite order.

Proof. The second claim follows from the first since the field extension Fp(T )→ L

defined by T �→ t induces an injection of groups ET (Fp(T ))→ Et(L).
To see that Q has infinite order in ET (Fp(T )), first note the j-invariant of ET , as

given in (2.5), is not a pth power in Fp(T ). Therefore, by Corollary 2.5, an Fp(T )-
rational point on ET has infinite order provided that, using the Weierstrass model (2.4)
for ET , some non-zero multiple of the point has an x- or y-coordinate that is non-
integral at a finite place on Fp(T ). (The Weierstrass model (2.4) is integral away from
∞.)

Since x(Q) and y(Q) are integral away from ∞ and y(Q) �= 0, we double Q. By
(2.3),

[2](Q) =
((

T + 1

2

)2

,
(T + 1)(T 2 − 4T − 1)

8

)
.

Thus, x([2]Q) and y([2]Q) are integral away from ∞ and y([2]Q) �= 0, so we double
again and find

x([4](Q)) =
(

(T + 1)4 + 16T 3

4(T + 1)(T 2 − 4T − 1)

)2

.

This is non-integral at the place T + 1, so we are done. �

Remark 2.7. By the Lang–Néron theorem, the group ET (Fp(T )) is finitely generated.
This group has rank at least 1, since we have exhibited an explicit element with infinite
order. Theorem 1.1 implies that ET (L) has rank 1 for certain extensions L of Fp(T )

with transcendence degree 2 over Fp, so a posteriori we conclude that ET (Fp(T )) has
rank 1. Presumably the proof of Theorem 1.1 can be modified to give a direct proof
that ET (Fp(T )) has rank 1, without requiring the use of such auxiliary fields L.
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3. Root numbers

For ET as in (2.4), we will compute the local root numbers Wv(Et ) for t ∈ �(u)

with t /∈ �. Let us first collect a general list of local root number formulas. This is
well-known for residue characteristic p �= 2, 3, but we include some cases with p = 3.

Theorem 3.1. Let K be a local field, with finite residue field of characteristic p �= 2
and normalized valuation v : K× → Z. Let �K be the quadratic character of the
residue field of K, and let E be an elliptic curve over K.

(1) Assume E has potentially good reduction, and if p = 3 then assume E(K)[2] �= O.
Define e = 12/ gcd(v(�), 12). We have e ∈ {1, 2, 3, 4, 6}, with 3 � e when p = 3,
and the local root number WK(E) can be computed by the following formulas:

WK(E) =

⎧⎪⎨⎪⎩
1 if e = 1,

�K(−1) if e = 2 or 6,

�K(−3) if e = 3,

�K(−2) if e = 4.

(2) Suppose E has potentially multiplicative reduction. If the reduction is additive then
WK(E) = �K(−1). If the reduction is multiplicative and c6 = c6(E) is computed
using any Weierstrass K-model of E, then WK(E) = −1 when −c6 is a square in
K× and WK(E) = 1 when −c6 is not a square in K×.

Proof. We first address the properties of e in the cases with potentially good reduction.
By the method of proof of Lemma 2.1(2), if E has potentially good reduction then it
acquires good reduction over a quadratic extension of a splitting field for E[2]. This
splitting field is a tame Galois extension with degree dividing 6, so Lemma 2.1 implies
that e must divide 12 and moreover that if p = 3 then 3 � e. The tameness and Lemma
2.1 ensure that e is the order of the image of inertia in the �-adic representation for
E (any � �= p). The cyclicity of tame inertia therefore rules out the possibility e = 12,
since there are infinitely many rational primes � > 3 for which the 12th cyclotomic
polynomial �12 has no quadratic factors over Q�.

Before we treat the general case, let us consider the special case K = Qp with
p �= 2. In this case, the proposed formulas are proved by Rohrlich for p > 3 in
[26, Proposition 2] when the reduction is potentially good and (using Lemma 2.2)
in [26, Proposition 3] when the reduction is potentially multiplicative. (Also see [27,
Proposition 3] for further discussion in the multiplicative case.) By Lemma 2.1(2) and
Lemma 2.2, the proofs of Rohrlich [26, Propositions 2,3] work in our cases when
p = 3. (The additional 2-torsion hypothesis in potentially good reduction cases for
p = 3 avoids wild ramification.)

Rohrlich’s proofs in [26, 27] are representation-theoretic and rest on papers of Deligne
[6] and Tate [33] that are valid for local fields with any residual (or generic) character-
istic. Thus, these proofs carry over to the general case (with residue characteristic �= 2,
and with a non-trivial rational 2-torsion point in potentially good cases when p = 3).
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Table 2
Local root numbers on Et , t ∈ F − �

v(t) Wv(Et )

> 0, even Hard to use
> 0, odd �v(−1)

< 0, even �v(−1)v(t)/2

< 0, odd �v(−2)

= 0, v(1+ 4t) = 0 1
= 0, v(1+ 4t) > 0 −�v(2)

The “p” in most of the arguments in [26, 27] should be replaced with the size of the
residue field of K, say q, and the Legendre symbol ( a

p
) should be replaced with the

Kronecker symbol ( a
q
). (Note that when q is an odd prime power and a ∈ Z is prime

to q, ( a
q
) = �K(a).) A general discussion in the context of local and global fields of

characteristic 0 may also be found in [28]. �

Using Theorems 2.3 and 3.1, we now compute the local root numbers Wv(Et ) for
every t ∈ F = �(u) with t /∈ �. Let � be the quadratic character of � and let �v be the
quadratic character of the residue field at v. For a ∈ �, we have �v(a) = �(a)deg v , where
deg v is the degree of the residue field of v over �. (Thus, �v = � when deg v = 1.)
Table 2 summarizes the results, and we will see why the first row is undesirable.

The second, third, fourth, and fifth rows are cases of additive or good reduction
(by Table 1 in Theorem 2.3), and these are left to the reader to check via Theorem
3.1. (The third row is the union of two cases from Table 1 with v(t) < 0, namely
v(t) ≡ 0, 2 mod 4. These two cases are checked separately.) It remains to compute
Wv(Et ) in two cases: (i) v(t) is positive and even, and (ii) v(1 + 4t) > 0. Both are
cases of multiplicative reduction, so Theorem 3.1 requires us to check if −c6(Et ) is a
square in the multiplicative group F×v of the completion of F at v. Let us first introduce
some convenient notation.

Definition 3.2. Let L be a field. For x, y ∈ L, write x ∼ y when x = yz2 for some
z ∈ L×.

When v(t) is positive and even, in F×v we compute from (2.6) at T = t that

−c6 = 32t3(2+ 9t)

∼ 2t (2+ 9t)

∼ t since v(t) > 0.

Thus, by Theorem 3.1(2), Wv(Et ) = −1 if t is a square in F×v and Wv(Et ) = 1
otherwise.
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Table 3
Local root numbers on E

t2 , t ∈ F − �

v(t) Wv(E
t2 )

> 0 −1
< 0 �v(−1)v(t)

= 0, v(1+ 4t2) = 0 1
= 0, v(1+ 4t2) > 0 −�v(2)

The last case is v(1+ 4t) > 0. In F×v ,

−c6 = 32t3(2+ 9t)

∼ 2t (2+ 9t)

∼ 2t2 since v(1+ 4t) > 0

∼ 2.

Thus, by Theorem 3.1(2), the last entry in Table 2 is confirmed:

v(1+ 4t) > 0 �⇒ Wv(Et ) = −�v(2). (3.1)

The Et ’s do not have easily manageable global root numbers. There are two main
problems. First, the local root number in the first row of Table 2 depends on whether
or not t is a square in F×v , and that is not something we can easily control. Second,
the last row in Table 2 introduces systematic minus signs. To appreciate the nature of
these difficulties, and how we can avoid them by a change of variables that is peculiar
to characteristic p, let us first try to eliminate the difficulties in the first row of Table
2 by forcing “t” to be a square: we study the elliptic curve ET 2 . Table 2 is easily
translated into this context, and the results are collected in Table 3. The systematic
minus signs in the first and last rows of Table 3 will cause serious problems.

Write t = g1/g2, where g1, g2 ∈ �[u] are non-zero and relatively prime. The product
of the local root numbers Wv(Et2) over all v yields the global root number formula

W(Et2) = W∞(Et2)
∏

v �=∞
v(t)>0

(−1) ·
∏

v �=∞
v(t)<0

�v(−1)v(t) ·
∏

v �=∞
v(1+4t2)>0

(−�v(2))

= W∞(Et2) · (−1)#{	:	|g1} · �(−1)
∑

	|g2
(deg 	) ord	(g2) ·

∏
	|(4g2

1+g2
2)

(−�(2)deg 	)

= W∞(Et2) · (−1)#{	:	|g1}+#{	:	|(4g2
1+g2

2)} · �(−1)deg g2 · �(2)

∑
	|(4g2

1+g2
2 )

deg 	
,
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where 	 runs over monic irreducibles in �[u]. This formula is unwieldy because we
cannot control the parity of the number of irreducible factors of g1 or 4g2

1 + g2
2 as

t varies. We also cannot control the parity of
∑

	|(4g2
1+g2

2) deg 	 because it is hard to

determine when 4g2
1+g2

2 is separable, though this second problem could be eliminated
if we only consider � in which �(2) = 1. Studying Et2 is not helping us to get constant
global root numbers for most t (as is essentially necessary in any example of elevated
rank).

Instead of merely simplifying the first row of Table 2 by replacing t with t2 in
Et , we need to eliminate the intervention of the first row of Table 2. To accomplish
this, we will introduce a change of variables in t such that the numerator is always
squarefree, and thus in particular never has positive even valuation at places of F. We
also need to acquire control over the product of minus signs contributed from the last
row of Table 2, and this will be achieved by arguments that are peculiar to positive
characteristic.

A “squarefree” change of variables is impossible in characteristic 0, but the pth
power map provides a mechanism to find such a change of variables in characteristic
p. The basic idea is that, for all t ∈ F = �(u), tp + u has a squarefree numerator and
has a pole at ∞, and thus, for all places v of F, v(tp + u) is never both positive and
even. With this noted, define

h(T ) = cT 2p + du, (3.2)

where c, d ∈ �×. The use of the exponent 2p instead of p will create a counterexample
to Chowla’s two-variable conjecture over �[u] (see the appendices for a discussion of
this conjecture and its relevance to the study of elevated rank); in concrete terms, this
even exponent will force certain otherwise unknown non-zero quantities we meet later
to be squares. The role of c and d in h(T ) is to provide us with the family of examples
in Theorem 1.1 for each p �= 2, rather than just one example for each p �= 2. (The
reader may take c = d = 1 throughout.)

For h(T ) as in (3.2), consider the elliptic curve Eh(T ) over F(T ), obtained by
replacing T with h(T ) in (2.4). We can run through all of our previous work with h(t)

in place of t (rather than t2 in place of t), and now t can be any element of F since
h(t) /∈ � for all t ∈ F . (Table 3 only lists root numbers in fibers over t ∈ F − �.) We
will compute W(Eh(t)) for all t ∈ F .

Write t = g1/g2, where g1, g2 ∈ �[u] are relatively prime with g2 �= 0, so

h(t) = cg2p

1 + dug2p

2

g
2p

2

. (3.3)

Call the numerator and denominator, respectively, f1 and f2:

f1 = cg2p

1 + dug2p

2 , f2 = g
2p

2 . (3.4)
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Obviously f1, f2 �= 0. Since (g1, g2) = 1, clearly (f1, f2) = 1. Moreover, since f ′1 =
dg

2p

2 = df2, f1 is squarefree. Thus, for all finite places v of F, v(h(t)) is never both
positive and even at v. Since

ord∞(h(t)) = ord∞(ct2p + du) =
{−1 if ord∞(t)�0,

2p ord∞(t) if ord∞(t) < 0,
(3.5)

we see h(t) has a pole at ∞ for every t ∈ F .
We begin computing local root numbers for Eh(t) over F by starting with the place

at ∞, where �∞ = �. Using (3.5) and Table 2 (with h(t) in place of t),

W∞(Eh(t)) =
{

�(−2) if ord∞(t)�0,

�(−1)ord∞(t) if ord∞(t) < 0.
(3.6)

Now let v be a finite place on F. Since h(t) has a squarefree numerator, we obtain
from Table 2 that

v �= ∞, v(h(t)) > 0 �⇒ v(h(t)) = 1 �⇒ Wv(Eh(t)) = �v(−1) = �(−1)deg v.

Since h(t) has a perfect square g
2p

2 as its denominator, Table 2 implies

v �= ∞, v(h(t)) < 0 �⇒ Wv(Eh(t)) = �v(−1)v(h(t))/2 = �(−1)(deg v)·v(g2).

If v(h(t)) = 0, then Table 2 (with h(t) in place of t) tells us that if v(1+ 4h(t)) = 0
then Wv(Eh(t)) = 1, whereas

v(1+ 4h(t)) > 0 �⇒ Wv(Eh(t)) = −�v(2) = −�(2)deg v.

Combining all of this local information, for t ∈ F the global root number W(Eh(t))

is

W∞(Eh(t))
∏

v �=∞
v(h(t))>0

�(−1)deg v
∏

v �=∞
v(h(t))<0

�(−1)(deg v)·v(g2)
∏

v �=∞
v(1+4h(t))>0

(−�(2)deg v). (3.7)

Referring back to Table 1 with h(t) in place of t, the local root numbers for Eh(t) at
places of multiplicative reduction appear in (3.7) as the terms in the last product.
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Writing (3.7) in terms of the numerator and denominator of h(t),

W(Eh(t)) = W∞(Eh(t))
∏
	|f1

�(−1)deg 	
∏
	|f2

�(−1)(deg 	) ord	(g2)
∏

	|(4f1+f2)

(−�(2)deg 	)

= W∞(Eh(t))
∏
	|f1

�(−1)deg 	
∏
	|g2

�(−1)(deg 	) ord	(g2)
∏

	|(4f1+f2)

(−�(2)deg 	)

= W∞(Eh(t))
∏
	|f1

�(−1)deg 	 · �(−1)deg g2 ·
∏

	|(4f1+f2)

(−�(2)deg 	).

Set

f = 4f1 + f2 = 4cg
2p

1 + (4du+ 1)g
2p

2 . (3.8)

Since (f, f ′) = 1, f is squarefree. We already saw that f1 is squarefree as well, so our
global root number formula simplifies to

W(Eh(t)) = W∞(Eh(t))�(−1)deg f1�(−1)deg g2�(f )�(2)deg f , (3.9)

where � is the Möbius function on �[u] (defined much like its classical counterpart
over Z).

Remark 3.3. Let us clarify how this calculation is analogous to what is seen in work
over Q(T ). Let the Liouville function 
 on �[u] be the totally multiplicative function
whose value on irreducible elements is −1, so if f is separable (i.e., is squarefree)
in �[u] then �(f ) = 
(f ). In (3.9), we therefore have an appearance of 
(f ) as
a contribution from local root numbers at places of multiplicative reduction. As is
explained in Appendix A, the Liouville function on Z arises in a similar manner in
the study of average root numbers for elliptic curves over Q(T ) that have a point of
multiplicative reduction on P1

Q. Another similarity with the situation in characteristic
0 is that 
 is being computed on an element f ∈ �[u] that is the value at (g1, g2)

of a homogeneous 2-variable polynomial over �[u], where g1 and g2 are relatively
prime. (Consider g1 and g2 in (3.8) as specializations of independent indeterminates
over �[u].) Compare this with the appearance of 
(fE(m, n)) in the discussion at the
end of Appendix A.

To simplify (3.9) further, we compute the degrees in the exponents. This depends
on the relative sizes of deg g1 and deg g2. Let

n1 = deg g1, n2 = deg g2
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with the standard convention n1 = −∞ when g1 = 0, so

deg f1 =
{

2pn2 + 1 if n1 �n2,

2pn1 if n1 > n2,
deg f2 = 2pn2. (3.10)

By inspection, deg f1 > deg f2, so

deg f =
{

2pn2 + 1 if n1 �n2,

2pn1 if n1 > n2.
(3.11)

Using (3.6), (3.9), (3.10), and (3.11),

W(Eh(t)) =
{

�(−2)�(−1)�(−1)n2�(f )�(2) if n1 �n2,

�(−1)n2−n1 · 1 · �(−1)n2 · �(f ) · 1 if n1 > n2,

so

W(Eh(t)) =
{

�(−1)n2�(f ) if n1 �n2,

�(−1)n1�(f ) if n1 > n2,
(3.12)

where t = g1/g2 ∈ �(u) is expressed in reduced form and f is defined in (3.8). (The
two cases in (3.12) are classified by the sign of ord∞(t) = n2 − n1.)

To complete the calculation of W(Eh(t)) for t ∈ F , we need to compute �(f ).
For this, we use a remarkable fact: the Möbius function in characteristic p is a more
accessible object than its classical counterpart over Z. Indeed, there is a formula for the
Möbius function on �[u] other than its definition. In particular, the explicit calculation
of

�(f ) = �
(

4cg
2p

1 + (4du+ 1)g
2p

2

)
, (3.13)

where g1 and g2 appear through their pth powers, can be done without factoring.
(Nothing of the sort can be said for classical variants such as �Z(m2 + 5n2).)

The alternative Möbius formula (in Lemma 3.4 below) uses discriminants, so to
avoid any possible confusion on signs and scalar factors, let us briefly recall how to
define the discriminant of a polynomial. For any field K and any non-zero polynomial
P = P(u) in K[u] with degree n, the discriminant of P is

discK P := (−1)n(n−1)/2 · (lead P)n−2 ·
n∏

i=1

P ′(�i ) ∈ K, (3.14)

where �1, . . . , �n are the roots of P (repeated with multiplicity) in a splitting field and
lead P ∈ K× is the leading coefficient of P. Obviously discK(cP ) = c2n−2 · discK(P )
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for c ∈ K×. (In [5], which motivated the work in this section, a different definition
of the discriminant is used that is invariant under K×-scaling of P. That definition
differs from (3.14) by an even power of lead P . Discriminants will only matter up to a
non-zero square scaling factor for our purposes, because of the quadratic character in
(3.15) below, so the different discriminants used in [5] and here are not incompatible
for the intended applications.)

Lemma 3.4. Let � be a finite field with odd characteristic, and let � be the quadratic
character on �, with �(0) = 0. For any non-zero polynomial P ∈ �[u],

�(P ) = (−1)deg P �(disc� P), (3.15)

where disc� P is the discriminant of the polynomial P.

Proof. This formula is trivial when P has a multiple factor: both sides are 0. When
P is separable (that is, squarefree) and has r prime factors, (3.15) is the same as:
�(disc� P) = (−1)deg P−r . Written this way, (3.15) appears in [32, Corollary 1]. The
properties of finite fields that are essential in the proof of [32, Corollary 1] are perfect-
ness and pro-cyclicity of their Galois theory. (The only reason to assume char(�) �= 2
is that the Möbius formula can then be given in terms of the quadratic character; a
formula when char(�) = 2 can be found in [5, 32], but it uses a lift to characteristic
0. We omit this formula since we do not need it.) �

Direct computation of polynomial discriminants can often be unwieldy, so applica-
tions of Lemma 3.4 usually rest on the connection between discriminants and resultants
(see [5, 32]); such work with resultants requires special care in positive characteristic.
In our specific situation we will be able to extract the required information directly
from the definition of the discriminant, so we will not need to use resultants.

In (3.12) we have to compute �(f ) for f = 4cg
2p

1 + (4du+ 1)g
2p

2 such that g2 �= 0

and (g1, g2) = 1. The peculiar coefficient of g
2p

2 is an artifact of our elliptic curve
Eh(T ). We shall carry out the Möbius calculation for a cleaner expression and then
return to �(f ).

Lemma 3.5. Let � be a finite field with characteristic p �= 2. Using the convention
deg (0) = −∞, for a, b ∈ �× and relatively prime g1, g2 ∈ �[u] we have

�(ag
2p

1 + bug
2p

2 ) =
{−�(−1)deg g2 if deg g1 �deg g2,

�(−1)deg g1 if deg g1 > deg g2.

Proof. The cases when g1 = 0 or g2 = 0 are trivial, so we now suppose both are
non-zero. Set g = ag

2p

1 + bug
2p

2 , n1 = deg g1, n2 = deg g2. Since g′ = bg
2p

2 and
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(g1, g2) = 1, g is squarefree. We have (with notation as in Definition 3.2)

deg g =
{

2pn2 + 1 if n1 �n2,

2pn1 if n1 > n2,
lead g ∼

{
b if n1 �n2,

a if n1 > n2.

Let n = deg g, so in a splitting field the set of distinct roots of g may be labelled as
{�1, . . . , �n}. Since g′ = bg

2p

2 , it follows that
∏

i g′(�i ) is in �× and may be computed
modulo squares:

∏
i

g′(�i ) = bdeg g ·
∏
i

g2(�i )
2p ∼ bdeg g

because
∏

i g2(�i ) ∈ �×. Hence,

disc�(g) = (−1)n(n−1)/2(lead g)n−2 ·
n∏

i=1

g′(�i ) ∼ (−1)n(n−1)/2(b · lead g)n.

Since b · lead g ∼ b2 when n is odd (that is, when n1 �n2), we conclude

disc�(g) ∼ (−1)n(n−1)/2 ∼ (−1)max(n1,n2)

by the formula for n. By (3.15), �(g)=(−1)n�(disc�(g))=(−1)n�(−1)max(n1,n2). �

It is now a simple matter to finish the computation of the global root number:

Theorem 3.6. Let h(T ) = cT 2p+ du, where c, d ∈ �×. Let ET be defined as in (2.4).
For any t ∈ F = �(u), the elliptic curve Eh(t) over F satisfies

W(Eh(t)) =
{−1 if ord∞(t)�0,

1 if ord∞(t) < 0.
(3.16)

Proof. Write t = g1/g2 where g2 �= 0 and (g1, g2) = 1. We may apply Lemma 3.5 to
the polynomial f = 4cg

2p

1 + (4du + 1)g
2p

2 by making the linear change of variables
u �→ u− 1/4d that preserves degrees. This yields

�(f ) =
{−�(−1)n2 if n1 �n2,

�(−1)n1 if n1 > n2,
(3.17)

where n1 = deg g1 and n2 = deg g2 (and n1 = −∞ if g1 = 0). Combining (3.17) with
the global root number formula (3.12) yields (3.16). �
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To force the global root number to be 1, we want only the second case of (3.16) to
occur. This can be achieved by a simple trick (related to (3.2), but initially inspired by
[16, p. 57]): replace t with t2 + u, which has a pole at ∞ for every t in F = �(u).
Thus,

W(Eh(t2+u)) = 1 (3.18)

for every t ∈ F = P1
F (F )− {∞}. Since (1.4) is the Weierstrass model in the definition

of Eh(T 2+u), we see that (1.4) is not as arbitrary as it may have initially appeared to
be. Combining (3.18) with Remark 1.2 settles the root number aspect of Theorem 1.1.

4. Generic rank bound I: Specialization at points of height 0

Write (1.4) in the form

E� : y2 = x3 + h(T 2 + u)x2 − (h(T 2 + u))3x, (4.1)

where h(T ) = cT 2p+du and c, d ∈ �×. We have shown in §3 that for each t ∈ P1(F ),
Et is an elliptic curve over F with global root number 1. The elliptic curve E� over
F(T ) = �(u, T ) is obtained from ET/Fp(T ) in (2.4) by replacing T with the element
h(T 2 + u) ∈ F(T ) = �(u, T ) that is not in �, so the point (−T , T 2) ∈ ET (Fp(T ))

goes over to the point

Q = (−h(T 2 + u), (h(T 2 + u))2) ∈ E�(F (T )) (4.2)

that has infinite order (Corollary 2.6). For every t ∈ F the specialization h(t2+u) ∈ �(u)

is not in �, so the specialization of Q in Et (F ) must likewise have infinite order for
all t ∈ F . Thus, all specializations Et (F ) at t ∈ P1(F )− {∞} have positive rank. This
settles the rank aspect of Theorem 1.1 for the F-rational fibers. (We already noted in
Remark 1.2 that E∞(F ) has rank 0.)

The remainder of this paper is devoted to proving that the generic Mordell–Weil
group E�(F (T )), which we know has rank at least 1, has rank exactly 1. This will
complete the proof of Theorem 1.1.

Since the cubic polynomial in x given by the Weierstrass model (4.1) defining E�
is the product of x and an irreducible quadratic polynomial in F(T )[x], the only non-
trivial rational 2-torsion is the point (0, 0). Therefore

dimF2 E�(F (T ))/2 · E�(F (T )) = 1+ rank(E�(F (T ))). (4.3)

A point of infinite order in E�(F (T )) is given in (4.2), so the generic rank is 1 if and
only if the dimension in (4.3) is at most 2.
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Viewing F(T ) = �(u, T ) as the function field of P1 × P1, we shall now consider
specialization along the u-line. We will specialize at the generic points of {u0} × P1

�
for closed points u0 ∈ P1

�; these generic points are identified with the closed points of
height 0 on the u-line P1

�(T ) over �(T ). For such u0, let its residue field be written as
�0 = �(u0); this is a finite field and the notation �0 will be used constantly in what
follows. If u0 �= ∞ then we also write u0 to denote the image of the indeterminate u
under the quotient map �[u]��0.

Using (2.5) and (2.6), the parameters � and c4 for (4.1) are given by

� = 16(h(T 2+u))8(1+4h(T 2+u)), c4 = 16(h(T 2+u))2(1+3h(T 2+u)). (4.4)

From the formula for �, we see that for all closed points u0 ∈ A1
�, the u0-specialization

of (4.1) is an elliptic curve over �0(T ). The elliptic curves Et for t ∈ P1(F ) all live
over the fixed global field F = �(u), but the u0-specializations Eu0 of E� live over
the global fields �0(T ) = �(u0)(T ) that vary. The notation Eu0 presents no risk of
confusion with the notation Et for specialization at t ∈ P1(F ) because we will never
again use such T-specializations.

Let us briefly describe a natural but ultimately unsuccessful strategy for using the
Eu0 ’s to show that the dimension in (4.3) is at most 2. We can prove a “height 0”
version of Silverman’s specialization theorem for abelian varieties, and from this it
follows that for all but finitely many height-0 points u0 ∈ P1

�(T ), the specialization map

E�(F (T ))→ Eu0(�0(T )) (4.5)

at u0 is injective. Thus, it would suffice to prove rank(Eu0(�0(T )))�1 for infinitely
many u0. For an infinite set of points u0 (specifically, the ones arising from Theorem
5.1 below), we can prove rank(Eu0(�0(T )))�3. (Switching root number calculations to
the u0-side, we also can show W(Eu0) = −1. This suggests, but does not prove, that
Eu0(�0(T )) has rank 1 or 3.) For such u0, the subspace Vu0 of everywhere-unramified
classes in the 2-Selmer group S[2](Eu0 /�0(T )) is 2-dimensional, and we can show that
rank(Eu0(�0(T ))) = 1 (resp., < 3) if and only if the natural map Vu0 →X(Eu0)[2]
is injective (resp., non-zero). The Cassels–Tate pairing of the image of a basis of Vu0

in X(Eu0)[2] can be calculated by using a method of Cassels [1], but unfortunately
it always turns out to be trivial! Thus, we do not know how to prove that Vu0 has
non-zero image in X(Eu0)[2] for infinitely many of the points u0 as in Theorem 5.1,
and hence we do not know if rank(Eu0(�0(T ))) < 3 (let alone if Eu0(�0(T )) has rank
1) for infinitely many u0.

Here is the successful strategy for using arithmetic information from the Eu0 ’s to
bound the dimension in (4.3). We are aiming to prove that E�(�(u, T )) has rank 1,
and in (4.2) we have already found a point of infinite order, so it suffices to bound
the rank from above by 1 after replacing � with a finite extension �′ that may depend
on the parameters c, d ∈ �× that were used in the definition of E�. Since E�(�(u, T ))

is finitely generated (Lang–Néron), we may replace � with a suitable finite extension
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(depending on c and d) to reduce to the case when E�(�(u, T )) = E�(�(u, T )). Now
consider the commutative diagram of natural maps

E�(�(u, T ))/2 · E�(�(u, T )) ��

��

E�(�(u, T ))/2 · E�(�(u, T ))

��

Eu0(�0(T ))/2 · Eu0(�0(T )) �� Eu0(�(T ))/2 · Eu0(�(T ))

(4.6)

in which u0 ∈ A1
�(�) is a choice of geometric point over a closed point u0 ∈ A1

�,
and both vertical maps are defined by the valuative criterion for properness. Since we
adjusted � so that E�(�(u, T )) = E�(�(u, T )), the top side of (4.6) is an isomorphism.
Therefore (4.3) is at most 2 if

• the right side of (4.6) is injective for all but finitely many �-points u0 ∈ A1
�(�),

• the image of the map along the bottom side of (4.6) is at most 2-dimensional for
infinitely many closed points u0 ∈ A1

� (equipped with one of the finitely many choices
of �-point u0 over u0).

We consider these two respective assertions as “geometric” and “arithmetic” in nature.

Remark 4.1. We do not know a priori that the left side of (4.6) is injective for all
but finitely many (or even infinitely many) u0, though this injectivity does follow a
posteriori from our proof that E�(F (T )) has rank 1; the a priori difficulty is due to the
fact that � is not separably closed (see Theorem 4.4). However, even if we did know
such injectivity, it would be useless because our rank bounds for Eu0(�0(T )) are not
good enough. The purpose of considering (4.6) is precisely to circumvent our lack of
information concerning the groups Eu0(�0(T )).

We shall now undertake the geometric part of the argument (injectivity of the right
side of (4.6) for all but finitely many u0). This will be deduced from a more general
specialization result for abelian varieties. Let us isolate the essential geometric properties
of E� before we pass to an axiomatized setup with an abelian variety. Consider the
surface S = P1

� × P1
� with factors having respective coordinates u and T. By general

“smearing out” principles, E� extends to an elliptic curve EV over a dense open V ⊆ S.
(In fact, there is a unique maximal such open V, containing all others, and the elliptic
curve EV extending E� over this V is unique. This follows from a general lemma of
Faltings [7, §2, Lemma 1], but we do not need it.) Pick some choice of V and EV .
There are finitely many (if any) codimension-1 points in S not in V, and if E� has
good reduction at such a point s then we can “smear out” the proper Néron model
over OS,s and glue it to EV so as to increase V to contain s. Doing this finitely many
times, we may assume V contains all codimension-1 points of S where E� has good
reduction.

The complement S − V consists of finitely many curves and isolated closed points.
Since Eu0 is smooth for all closed points u0 ∈ A1

�, the curves in the complementary
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locus

S − V ⊆ P1
� × P1

�

are “non-vertical” except for possibly {∞}×P1
�. Put in geometric terms, when the bad

locus for E� over S is fibered over the T-line it “moves” in the fibers St = P1 except
for possibly at the point ∞ in these fibers. We need to analyze the situation along the
vertical line u = ∞.

Lemma 4.2. The elliptic curve E� in (4.1) has bad reduction at the codimension-1
generic point �∞ of the line u = ∞ in S, with reduction type that is potentially good.
The ramification of E�[2] at �∞ is tame.

Proof. Since deg u(h(T 2 + u)) = 2p, we see from (4.4) that deg u(�) = 18p is not
divisible by 12. Therefore, there is bad reduction at �∞. The j-invariant j (E�) is a unit
at �∞ because j in (2.5) is a unit at ∞, so the reduction at �∞ is potentially good.
Since E�[2](�∞) �= O and the residue characteristic at �∞ is not 2, the 2-torsion E�[2]
is tamely ramified at �∞. �

Now we pass to a general situation that uses the properties proved in Lemma 4.2.
Let k be a separably closed field and let S be a connected geometrically normal k-
scheme of finite type, equipped with a surjective k-morphism S → P1

k whose fibers
are geometrically reduced and whose generic fiber is geometrically irreducible. By [10,
IV3, 9.7.7] there is a dense open in P1

k over which S has geometrically integral fibers. In
the above discussion, k = � and S is the product of the projective u-line and projective
T-line over k with projection S → P1

k onto the u-line.
Let A be an abelian variety of dimension g�1 over the function field k(S). For all

but finitely many closed points u ∈ P1
k , A has good reduction A�u

at the codimension-1
generic point �u of the geometrically integral fiber Su in the normal S; we write k(Su)

to denote the function field of this fiber. By the valuative criterion for properness we
have a specialization mapping

�u : A(k(S))→ A�u
(k(Su))

for such u. (Since we are not assuming that the Chow k(S)/k-trace of A vanishes,
A(k(S)) might not be finitely generated. Hence, �u cannot be defined by elementary
denominator-chasing with a finite set of elements and their relations in A(k(S)), so
we really do need the valuative criterion for properness in order to define �u; more
specifically we cannot expect A(k(S)) to “smear out” beyond the codimension-1 local
ring on S at the generic point �u of Su.) Motivated by the goal of proving that the
right side of (4.6) is injective with only finitely many exceptions, we want to analyze
the kernel of the reduced map

�u mod n : A(k(S))/n · A(k(S))→ A�u
(k(Su))/n · A�u

(k(Su))
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for suitable integers n and for u avoiding a finite set of closed points on P1
k . To this

end, we first prove a general finiteness lemma.

Lemma 4.3. Let V be a geometrically integral variety over a field k and let B be an
abelian variety over K = k(V ). For all non-zero integers m with char(k) � m, the group
B(K)/m ·B(K) is finite if k is separably closed. The same holds for arbitrary non-zero
integers m if k is algebraically closed.

Proof. We shall use Chow’s theory of the K/k-trace [17, Chapter VIII]. Here are the
key points of this theory (for our purposes). In the category of pairs (B0, f0) consisting
of an abelian variety B0 over k and a map f0 : (B0)K → B of abelian varieties over
K, there is a final object (TrK/k(B), �) and the canonical map � : (TrK/k(B))K → B

has infinitesimal kernel. This object is the K/k-trace of B. Obviously the map

TrK/k(B)(k) ↪→ TrK/k(B)(K)
�→ B(K)

is injective. The Lang–Néron theorem [18, Theorem 1] says that the quotient group

B(K)/TrK/k(B)(k) (4.7)

is finitely generated. (To the best of our knowledge, all published references on these
topics are written in pre-Grothendieck terminology; the reader is referred to [4] for a
discussion of the Chow trace and Lang–Néron theorem using scheme-theoretic meth-
ods.)

Now assume that k is separably closed. Since TrK/k(B)(k) is the group of rational
points of an abelian variety over a separably closed field, it is m-divisible (and the
restriction char(k) � m can be removed if k is algebraically closed). Thus,

TrK/k(B)(k) ⊆ m · B(K),

so

B(K)/m · B(K) � (B(K)/TrK/k(B)(k))/m · (B(K)/TrK/k(B)(k)).

This yields the desired finiteness because (4.7) is finitely generated. �

We return to the abelian variety A/k(S) described before Lemma 4.3.

Theorem 4.4. Assume that k is separably closed and that for all closed points u ∈ P1
k

distinct from ∞, A has good reduction at some generic point of the (possibly reducible)
geometrically reduced fiber Su. Assume moreover that at some generic point �∞ of the
fiber S∞ there is potentially good reduction.
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Fix n ∈ Z with |n| > 1 such that char(k) � n, and assume that the Galois splitting
field of the finite étale k(S)-group A[n] is tamely ramified at the codimension-1 point
�∞ ∈ S.

The mod-n reduction

�u mod n : A(k(S))/n · A(k(S))→ A�u
(k(Su))/n · A�u

(k(Su))

of the specialization map along Su is injective for all but finitely many closed points
u ∈ P1

k .

The tameness assumption is equivalent to the condition that A acquires good reduction
over a finite separable extension of k(S) that is tame at a place over �∞ (this is
explained in the proof), and so this hypothesis is automatically satisfied when every
positive prime ��2g + 1 is a unit in k (that is, char(k) = 0 or char(k) > 2g + 1).
Thus, by setting g = 1 and n = 2 in Theorem 4.4, we may conclude via Lemma 4.2
(which also gives the desired tameness in characteristic 3) that the right side of (4.6)
is injective for all but finitely many u0 ∈ A1

�(�).

Proof. The hypotheses on S and A are preserved under extension of the base field.
Moreover, if k is an algebraic closure of k then we claim that the natural map

A(k(S))/n · A(k(S))→ A(k(S))/n · A(k(S))

is injective, so we may reduce to the case when k is algebraically closed. The case
of characteristic 0 is trivial, so we can assume char(k) = p > 0. It suffices to check
more generally that if K is a field with characteristic p > 0 and G is a commutative
K-group of finite type then the map G(K)/n ·G(K)→ G(K ′)/n ·G(K ′) is injective
for any purely inseparable algebraic extension K ′/K and any integer n not divisible
by p. We may assume K ′ = K1/p, so we get an identification G(K ′) � G(p)(K)

that identifies the inclusion G(K)→ G(K ′) with the map on K-points induced by the
relative Frobenius morphism FG : G→ G(p). Since [p] : G→ G factors through FG

[11, VIIA, §4.3], it suffices to prove that the p-torsion in G(K)/n ·G(K) vanishes, and
this is clear since p � n.

Let W ⊆ S be a dense open such that A extends to an abelian scheme AW over W.
The complement S−W contains at most finitely many codimension-1 points of S, and
if A has good reduction at any such point s then we may glue AW with a smearing-out
of the proper Néron model of A over OS,s to increase W to contain a neighborhood of
s. Thus, by the hypothesis on reduction for A, we may suppose that no fiber Su over
a closed point u ∈ P1

k is disjoint from W except for possibly S∞. This property of W
is unaffected by shrinking W in codimension �2. Let � be the generic point of S.

By Lemma 4.3 with V = S, A(k(S))/n · A(k(S)) is finite. We conclude from
the pigeonhole principle that if �u mod n has non-trivial kernel for infinitely many u
(ignoring the finitely many for which Su is reducible, in which case �u is not defined),
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then some non-zero

R ∈ A(k(S))/n · A(k(S))

is killed by �u mod n for infinitely many u. Thus, it suffices to prove that if R� ∈
A(k(S)) has the property that �u(R�) lies in n · A�u

(k(Su)) for infinitely many u
(ignoring the finitely many u for which �u is not defined) then R� ∈ n · A(k(S)).

Choose R� ∈ A(k(S)) such that �u(R�) lies in n · A�u
(k(Su)) for infinitely many

u. By denominator-chasing, R� extends (uniquely) to RU ∈ AW(U) for some dense
open U ⊆ W . The valuative criterion for properness extends RU over each of the
finitely many codimension-1 points of W not contained in U. Thus, by shrinking W in
codimension �2 if necessary, we may assume that R� extends to a section R ∈ AW(W)

of the abelian scheme AW → W .
The pullback of [n] : AW → AW along R ∈ AW(W) is a finite étale cover

[n]−1(R)→ W. (4.8)

Our goal is to prove that (4.8) has a section over the generic point � = Spec k(S) of W.
Let L be a residue field on [n]−1(R)� = [n]−1(R�), so L is a finite separable extension
of k(S), say with degree dL. We want dL = 1 for some such L.

Lemma 4.5. For each L, the subfield k(P1) is algebraically closed in L.

Proof. Let K/k(P1) be the algebraic closure of k(P1) in L, so K/k(P1) is a finite
separable extension because L/k(P1) is a finitely generated separable extension (as k(S)

is separable over k(P1), since the generic fiber of S → P1 is geometrically integral).
The intermediate fields K and k(S) in the separable extension L/k(P1) are linearly
disjoint over k(P1) because K/k(P1) is algebraic and k(P1) is algebraically closed in
k(S). Thus, if � ∈ P1 is the generic point then the function field

K(S�) := K ⊗k(P1) k(S) (4.9)

of the geometrically integral generic fiber S�/K is identified with the intermediate
composite field K ·k(S) in L/k(S). The hypothesis on the good reduction of A implies
that for every closed point u ∈ P1 − {∞}, some generic point �u of the reduced fiber
Su lies in W. Hence, since [n]−1(R)→ W is a finite étale cover, the residue field L on
[n]−1(R�) is unramified over the discrete valuation on k(S) arising from some such �u

for every closed point u ∈ P1− {∞}. It follows that for every such u, the intermediate
finite separable extension K(S�)/k(S) is also unramified at some generic point �u

of Su.
We also need to understand the ramification behavior of L/k(S) at the discrete

valuation on k(S) arising from a generic point �∞ on the reduced fiber S∞ such that
A has potentially good reduction over a tame extension at �∞; the existence of such
an �∞ was one of our initial assumptions on A. We claim that L/k(S) is tamely
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ramified at all places of L over �∞. Some care will be required because L/k(S) may
be non-Galois.

The first step is to check that L admits at least one place that is tame over �∞,
and to do this it suffices to choose a separable closure of the residue field at �∞
and to show that [n]−1(R�) splits over a tame extension of the fraction field of the
associated strict henselization Osh

S,�∞ . Since A[n] is assumed to be tamely ramified at

�∞, there exists a finite tame extension F ′ over the fraction field of Osh
S,�∞ such that

A[n]F ′ is a constant group. We can assume |n| > 1, so there exists a prime �|n and
� �= char(k). Since A[n]F ′ is constant, the Galois-action on the �-adic Tate module
of A/F ′ has pro-� image that is finite (since A has potentially good reduction at �∞),
so after replacing F ′ with a suitable �-power (hence tame) extension we can assume
that A/F ′ has good reduction. Let A denote the proper Néron model of A/F ′ over
the integral closure OF ′ of Osh

S,�∞ in F ′. The group A(F ′) = A(OF ′) is n-divisible
because OF ′ is strictly henselian and n is not divisible by the residue characteristic of
OF ′ , so [n]−1(R�)(F

′) �= ∅. Since A[n]F ′ is split, it follows that the étale A[n]-torsor
[n]−1(R�) must therefore be split over F ′. Hence, L admits a k(S)-embedding into F ′,
so L/k(S) is tamely ramified at some place wL over the discrete valuation on k(S)

arising from �∞.
By definition, L is a residue field on an étale A[n]-torsor [n]−1(R�) over k(S), and

(by hypothesis) the k(S)-group A[n] splits over a finite Galois extension M/k(S) that is
tamely ramified over �∞. Thus, the factor fields of the finite étale M-algebra L⊗k(S) M

are residue fields on the torsor [n]−1(R�)M for a finite constant group over M (namely,
the constant group A[n]M ). Hence, the factor fields Li of L⊗k(S) M are Galois over
M and the Li’s are pairwise M-isomorphic. Pick a place wM on M lifting the place
�∞ on k(S). Since wM and wL lift the same place on k(S), we can find a factor field
Liw of L⊗k(S) M and a place viw on Liw that lifts the places wL and wM . The place
viw on Liw must be tame over the place wM because wL is tame over �∞ on k(S).
The extension Liw/M is Galois, so Liw/M is tame at all places over wM . Since the
Li’s are pairwise M-isomorphic and wM is an arbitrary place on M over �∞, every Li

is tame over every place on M lifting �∞. Since all places of M over �∞ are tame
over �∞, we conclude that all places lying over �∞ on each Li are tame over �∞.
Upon choosing some Li0 , the extension L/k(S) is a subextension of Li0/k(S) and
hence L/k(S) is tamely ramified at all places over �∞. The same therefore holds for
the intermediate extension K(S�)/k(S) in (4.9).

Summarizing our conclusions, the finite separable extension K(S�) = K ⊗k(P1) k(S)

over k(S) is unramified at some generic point of the reduced fiber Su for each u �=
∞ and is tamely ramified over some generic point of the reduced fiber S∞. The
reducedness of the fibers implies that a uniformizer at a closed point u ∈ P1 pulls
back to be a uniformizer in the local ring at the codimension-1 point �u on the normal
variety S. Hence, the discrete valuation on k(P1) associated to u has ramification
index 1 under the discrete valuation on k(S) associated to �u, and the corresponding
residue field extension is separable (because the residue field at u is the field k that
is algebraically closed). It follows by classical valuation theory and (4.9) that if �u is
unramified (resp., tamely ramified) in K(S�) then u must be unramified (resp., tamely
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ramified) in K. Hence, the finite separable (possibly non-Galois) extension K/k(P1)

is unramified away from ∞ and is tamely ramified at all places over ∞. Since k is
separably closed, we conclude that K = k(P1). �

We return to the proof of Theorem 4.4. Let CL be the connected component of
[n]−1(R) with function field L. Since L/k(P1) is a finitely generated separable exten-
sion, it follows from Lemma 4.5 that the fiber of CL over the generic point of P1

k must
be geometrically integral over k(P1). By [10, IV3, 9.7.7], there is a Zariski-dense open
UL ⊆ A1

k such that the fiber (CL)u is geometrically integral over k(u) for all u ∈ UL.
By removing finitely many closed points from UL, we may (and do) also assume that
Su is geometrically integral over k(u) for all u ∈ UL. Since [n]−1(R) is finite étale
over W and the open subset Wu ⊆ Su is non-empty for all u ∈ A1

k , the finite étale map
(CL)u→ Wu has degree

[k(CL) : k(W)] = [L : k(S)] = dL

for all points u ∈ UL.
Choose u ∈ ∩LUL, where L runs over all the residue fields on [n]−1(R�). We have

just proved that the fiber (CL)u is connected (even geometrically integral over k(u))
for all L. It follows that {(CL)u}L is the set of connected components of the finite
étale Wu-scheme [n]−1(R)u = [n]−1(Ru) and the map

(CL)u→ Wu ⊆ Su

is étale with generic degree dL for all L. Membership in ∩LUL omits only finitely
many closed points u, so by the hypothesis that �u(R�) ∈ n · A�u

(k(Su)) for infinitely
many u (with �u(R�) the generic point of the section Ru of AW over Wu) we conclude
that there exists a closed point u′ ∈ ∩LUL such that

�u′(R�) ∈ n · A�u′ (k(Su′)).

In particular, the Wu′ -étale scheme [n]−1(Ru′) has a k(Su′)-rational point. This rational
point lies in some fibral connected component (CL0)u′ , so the generic degree dL0 of
this component over Su′ must equal 1. �

5. Generic rank bound II: Arithmetic arguments

Our remaining task is to prove that the bottom side of (4.6) is injective for infinitely
many closed points u0 ∈ A1

�. In Theorem 5.1 we will find infinitely many points u0
such that the elliptic curve Eu0/�0(T ) over the global field �0(T ) has exactly two places
of bad reduction, and in §6 we will prove injectivity along the bottom of (4.6) for
such u0.
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As preparation for the study of the image along the bottom side of (4.6) for well-
chosen closed points u0 ∈ A1

�, we fix an arbitrary u0 and find the reduction type of
Eu0 at each place of �0(T ). After we find these reduction types, the points u0 that
will become our focus of interest will be those such that Eu0 has the smallest possible
number of physical points of bad reduction on the T-line P1

�0
.

Recall that (4.1) defines E� in terms of h(T 2 + u), where h(T ) = cT 2p + du.
From (4.4), the discriminant of (4.1) involves h(T 2 + u) and 1+ 4h(T 2 + u). Under a
u0-specialization, h(T 2 + u) becomes a pth power in �0[T ]:

h(T 2 + u)|u=u0 = (c1/p(T 2 + u0)
2 + d1/pu

1/p

0 )p.

Likewise, 1+ 4h(T 2 + u) specializes to a pth power in �0[T ]:

(1+ 4h(T 2 + u))|u=u0 = (1+ 4(c1/p(T 2 + u0)
2 + d1/pu

1/p

0 ))p.

For all but finitely many closed points u0 ∈ A1
�, the pth-root polynomials

	1 := c1/p(T 2 + u0)
2 + d1/pu

1/p

0 , 	2 := 1+ 4	1 (5.1)

are separable in �0[T ]. (These quartics over the finite field �0 may be reducible for
many points u0, and so even in characteristic p > 3 these quartics may be fail to
be separable for some non-empty finite set of points u0. In Theorem 5.1 below, we
will show that for infinitely many u0 we can do much better than mere separability.)
We now restrict attention to those u0 such that the two polynomials in (5.1) are both
separable. (Our notation 	1 and 	2 does not indicate the dependence on u0; it would
be more accurate to write 	1,u0 and 	2,u0 , but we simply ask the reader to remember
the dependence on u0.)

Specializing (4.4) at u0, the Weierstrass model that defines Eu0/�0(T ) has parameters

�|u=u0 = 16	8p

1 	p

2 , c4|u=u0 = 16	2p

1 (1+ 3	p

1 ) = 16	2p

1 (	2 − 	1)
p, (5.2)

and this Weierstrass model is integral away from T = ∞. Thus, the only possible bad
reduction for Eu0 over the T-line P1

�0
is at ∞ and at the zeros of 	1 and 	2.

What is the behavior of Eu0 at the point ∞ ∈ P1
�0

? We return to Lemmas 2.1 and
2.2. Both 	1 and 	2 have degree 4 in �0[T ], so by (5.2) we have

ord∞(�|u=u0) = −36p.

When char(�) > 3,

ord∞(c4|u=u0) = −12p, ord∞(j |u=u0) = 0.
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When char(�) = 3,

ord∞(c4|u=u0) = −8p, ord∞(j |u=u0) = 12p.

Thus, there is potentially good reduction at T = ∞ in all cases, and Lemma 2.1 ensures
that this reduction is good.

Now we analyze the reduction types at points xj in the zero-scheme of 	j on P1
�0

.
Since 	1 is separable in �0[T ] (by our choice of u0), we see from (5.2) that for any
x1,

ordx1(�|u=u0) = 8p, ordx1(c4|u=u0) = 2p ≡ 2 mod 4.

Therefore ordx1(j (Eu0)) = 6p − 8p = −2p < 0. By Lemma 2.2, there must be
(potentially multiplicative) additive reduction at x1. Similarly, we compute

ordx2(�|u=u0) = p, ordx2(c4|u=u0) = 0,

so ordx2(j (Eu0)) = −p < 0. By Lemma 2.2, there is multiplicative reduction at x2.
We have shown that the Néron model N(Eu0)→ P1

�0
enjoys the following reduction

properties:

(a) good reduction at all closed points of P1
�0

away from zeros of 	1 and 	2,
(b) multiplicative reduction at zeros x2 of 	2, with ordx2(ju0) = −p.
(c) additive reduction at zeros x1 of 	1, with ordx1(ju0) = −2p < 0.

Properties (b) and (c) will be used in our work with Néron models and Selmer groups
in §6, but now we focus on (a). The most favorable u0’s for our purposes will be those
such that Eu0 has the least possible number of physical points of bad reduction, so we
want to find many u0 such that 	1 and 	2 are both irreducible in �0[T ]. For such u0,
Eu0 has exactly two physical points of bad reduction on P1

�0
.

Theorem 5.1. There exist infinitely many closed points u0 ∈ A1
� such that 	1, 	2 ∈

�0[T ] are irreducible.

To find the infinitely many u0 as in the theorem will require some effort, so let us
first sketch the basic idea. In (5.1) we see that u0 ∈ �0 intervenes in 	1 and 	2 through
the value u

1/p

0 ∈ �0, so to put ourselves in the position of specializing polynomials in
u we apply arithmetic Frobenius of �0 to the coefficients of 	1 and 	2. This leads us
to consider the polynomials

�1(u, T ) := c(T 2 + up)2 + du, �2(u, T ) := 1+ 4�1(u, T ) ∈ �[u][T ]. (5.3)

For any closed point u0 ∈ A1
�, the specialization �j (u0, T ) ∈ �0[T ] is the image of

	j ∈ �0[T ] under the arithmetic Frobenius automorphism of �0. Thus, Theorem 5.1 is
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equivalent to the existence of infinitely many u0 ∈ A1
� such that both �1(u0, T ) and

�2(u0, T ) are irreducible in �0[T ], where �0 = �(u0) is varying with u0. It is this
equivalent statement that we will actually prove (Theorem 5.8 below).

Expanding �1 and �2 as polynomials in �(u)[T ], we have

�1=c

(
T 4+2upT 2+u2p+du

c

)
, �2=4c

(
T 4+2upT 2+u2p+du

c
+ 1

4c

)
. (5.4)

It is left to the reader to check that �1 and �2 are separable and irreducible over �(u),
via the following elementary criterion concerning polynomials of the form X4+aX2+b.

Lemma 5.2. Let K be a field with char(K) �= 2. A polynomial f = X4 + aX2 + b ∈
K[X] is separable if and only if b and a2− 4b are non-zero. It is irreducible if b and
a2 − 4b are non-squares in K×.

Proof. The condition for separability is obvious. We now assume that b and a2 − 4b

are non-squares in K×. Since a2 − 4b is not a square, f has no roots in K and has no
factors of the form X2− c in K[X]. Thus, if we write the four roots of f in a splitting
field as ±r1 and ±r2, a non-trivial monic factor of f in K[X] must have the form
(X ± r1)(X ± r2). If such a factor exists then r1r2 ∈ K and b = (r1r2)

2, contradicting
the assumption that b is a non-square in K. �

In view of the irreducibility of each �j in �(u)[T ] and our desire to prove

�1(u0, T ), �2(u0, T ) ∈ �0[T ]

are irreducible for infinitely many closed points u0 ∈ A1
�, our problem resembles Hilbert

irreducibility. However, finite fields are not Hilbertian and anyway we are not generally
specializing u at elements of � (since [�0 : �] > 1 with only finitely many exceptions).

The main idea that will produce the desired u0’s is the following theorem. It gives
a group-theoretic criterion for a polynomial over a global field to specialize to an
irreducible polynomial over the residue field at infinitely many places (see Remark
5.4).

Theorem 5.3. Let K be a global field and let f ∈ K[T ] be a monic separable ir-
reducible polynomial of degree n. Let K ′/K be a splitting field for f and let G =
Gal(K ′/K). For any non-archimedean place v of K at which f has integral coefficients,
f mod v is irreducible over the residue field Fv at v if and only if v is unramified in
K ′ and the Frobenius elements over v in G act as n-cycles on the set of roots of f
in K ′.

Proof. Let r be a root of f in K ′. If f is v-integral and f mod v is separable, then the
discriminant of f is a v-adic unit, so v is unramified in K(r). Since K ′ is a composite
of such extensions of K, in such cases v must be unramified in K ′. Let v′ be a place
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of K ′ over a place v in K that is unramified in K ′. The action of Frob(v′|v) on the n
roots of f in K ′ is identified with the action of the finite-field Frobenius x �→ x#Fv on
the full set of n roots of f mod v (in Fv′ ). In particular, f mod v is irreducible over
Fv if and only if v is unramified in K ′ and Frob(v′|v) acts as an n-cycle on the roots
of f. �

Remark 5.4. In the setting of Theorem 5.3, if r ∈ K ′ is a root of f and H ⊆ G is
the subgroup associated to the intermediate field K(r) ⊆ K ′, then an element � ∈ G

acts as an n-cycle on the set of roots of f in K ′ if and only if the cyclic subgroup
〈�〉 is a set of representatives for the coset space G/H of order n. We conclude by
Chebotarev’s density theorem that f mod v is irreducible for infinitely many places v

of K if and only if G/H admits a set of representatives that is a cyclic subgroup of G.

Corollary 5.5. Let K be a global field and let f ∈ K[T ] be a monic separable
irreducible polynomial of degree n. The following are equivalent (restricting attention
to non-archimedean places at which the coefficients of f are integral):

(1) There is some place v such that f mod v is irreducible.
(2) There is a positive proportion of places v such that f mod v is irreducible.

Proof. The implication (2) ⇒ (1) is trivial, and the converse follows from Theorem
5.3 and Chebotarev’s density theorem. �

Example 5.6. Let f satisfy the hypotheses in Theorem 5.3, and let {r1, . . . , rn} be an
ordering of the set of roots of f in K ′. Identify G = Gal(K ′/K) with a subgroup
G ⊆ Sn via the G-action on the rj ’s. By Theorem 5.3, f mod v is irreducible for
infinitely many v if and only if G contains an n-cycle.

(1) If G is isomorphic to Sn as abstract groups (where n = deg f ), then G = Sn. Since
G contains an n-cycle, f mod v is irreducible for infinitely many v.

(2) What if G is isomorphic to An (as abstract groups)? Since An embeds into Sn with
only one possible image, and An contains an n-cycle if and only if n is odd, we
see that f mod v is irreducible infinitely often if and only if n is odd.

(3) What if G (and thus G) is isomorphic to Dn (as abstract groups) with n > 2? Then
G is isomorphic to Dn as a permutation group, so f mod v is irreducible infinitely
often.
The identification of G with Dn as a permutation group was explained to us by
D. Pollack. Write G = 〈
, �〉, where 
n = 1, �2 = 1 and �
�−1 = 
−1. Since
〈
〉 is normal in G and G is a transitive subgroup of Sn, all 〈
〉-orbits have
the same length. Therefore, since 
 has order n it must be an n-cycle. Writing

 = (1, 2, . . . , n), �
�−1 = 
−1 says (�(1), �(2), . . . , �(n)) = (n, n − 1, . . . , 1) as
n-cycles. We can replace � in the presentation of G with �
k for any k, so we
may assume �(1) = 1. Identifying j with e2	i(j−1)/n, 
 and � are now the standard
generators for Dn in its natural action on an n-gon.

(4) What if f is a normal polynomial; i.e., G has order n? A transitive subgroup
of order n in Sn contains an n-cycle if and only if it is cyclic, so the reduction
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of f at infinitely many places is irreducible if G is cyclic but not
otherwise.

(5) In the preceding four examples, the structure of the Galois group G as an abstract
group was sufficient to determine if the permutation group G contains an n-cycle.
However, this is not generally the case. For example, there is a group of size
2592 = 25 · 34 admitting two transitive actions of degree 12 such that one action
contains 12-cycles and the other does not. The actions were found for us by N.
Boston using MAGMA; they are the 245th and 246th transitive groups of degree 12
in MAGMA’s enumeration. MAGMA also realizes both of these transitive groups
as Galois groups over Q.

We now apply these ideas to the polynomials �1(u, T ) and �2(u, T ) from (5.4). To
determine their Galois groups over �(u), we use the following classical lemma.

Lemma 5.7. Let K be a field with char(K) �= 2, and let f = X4 + aX2 + b ∈ K[X]
be separable and irreducible. Let K ′/K be a splitting field and G = Gal(K ′/K). We
have the following possibilities for G as an abstract group:

• G � Z/4Z if and only if b(a2 − 4b) ∈ K× is a square, in which case the quadratic
subfield is K(

√
b) = K(

√
a2 − 4b),

• G � Z/2Z× Z/2Z if and only if b ∈ K× is a square, in which case the quadratic

subfields are K(
√

a2 − 4b), K(
√
−a + 2

√
b), and K(

√
−a − 2

√
b) for a fixed choice

of
√

b ∈ K×,
• G � D4 if and only if b and b(a2 − 4b) are not squares in K×, in which case

the quadratic subfields are K(
√

a2 − 4b), K(
√

b), and K(
√

b(a2 − 4b)). The unique
quadratic subfield over which K ′ is a cyclic extension is K(

√
b(a2 − 4b)).

Proof. This classification of Galois groups according to properties of the coeffi-
cients can be found as an exercise in many basic algebra books, although usually
it is stated only over Q. In that spirit, the other assertions are left as an exercise for
the reader. �

To apply Lemma 5.7 to �1 and �2, we look at (5.4) and label the coefficients inside
the parentheses as

A1 = 2up, B1 = u2p + du

c
, A2 = 2up, B2 = u2p + du

c
+ 1

4c
,

so �j = T 4 + AjT
2 + Bj modulo �×-scaling. Since we used Lemma 5.2 to prove

that each �j is separable and irreducible, we already know that Bj and A2
j − 4Bj

are non-squares in �(u)×. A direct calculation also shows that Bj (A
2
j − 4Bj ) is a

non-square in �(u)×. Therefore, by Lemma 5.7, each of �1 and �2 has Galois group
over �(u) that is isomorphic to D4. Example 5.6(3) now tells us that �1 and �2 each
have infinitely many irreducible u0-specializations. What about simultaneous irreducible
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specializations? This is what we need to resolve in order to complete the proof of
Theorem 5.1.

Theorem 5.8. There exist infinitely many u0 such that �1(u0, T ) and �2(u0, T ) are
both irreducible in �0[T ].

Proof. Let Lj/�(u) be a splitting field of �j , so Gal(Lj/�(u)) is isomorphic to D4.
We will show L1 and L2 are linearly disjoint over �(u). It will then follow, by the
Chebotarev density theorem, that any element in Gal(L1/�(u)) × Gal (L2/�(u)) is a
pair of Frobenius elements for infinitely many common places on �(u). Theorem 5.3
and Example 5.6(3) then imply there are infinitely many u0 such that �1(u0, T ) and
�2(u0, T ) are both irreducible in �0[T ].

Any intermediate extension in Lj/�(u), other than �(u), contains a quadratic exten-
sion of �(u) since every proper subgroup of a 2-group is contained in a subgroup of
index 2. We will show that L1 and L2 do not contain quadratic subfields (over �(u))
that are �(u)-isomorphic, so they must be linearly disjoint over �(u).

Inspection shows the only occurrences of non-trivial common factors among

B1, A2
1 − 4B1, B2, A2

2 − 4B2 (5.5)

are: the linear polynomial A2
1 − 4B1 divides B1 and (when c = 4d2p) the linear

polynomial A2
2 − 4B2 divides B1. Since B1 is separable with deg B1 > 2, we conclude

that the four elements in (5.5) are multiplicatively independent modulo squares in
�(u)×. This independence modulo squares, coupled with the list of quadratic subfields
in the D4-case of Lemma 5.7, shows L1 and L2 do not share a common quadratic
extension of �(u). Thus, they are linearly disjoint over �(u). �

6. Generic rank bound III: Cohomological arguments

By Theorem 5.1, there are infinitely many closed points u0 ∈ A1
� such that the

“specialized” polynomials

	1 = c1/p(T 2 − u0)
2 + d1/pu

1/p

0 , 	2 = 1+ 4	1 (6.1)

in �0[T ] are both irreducible. These are the only u0 that we shall henceforth consider.
We view 	1 and 	2 as closed points on A1

�0
⊆ P1

�0
. The arithmetic of

Eu0 : y2 = x3 + 	p

1 x2 − 	3p

1 x (6.2)

for such u0 is our focus of interest, as this will provide the information that we need
to prove that the image of the bottom map in (4.6) has dimension �2 for these points
u0. This will complete the proof that E�(F (T )) has rank 1, thereby concluding the
proof of Theorem 1.1.
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Rather than work with Eu0 , it will simplify matters to work with the elliptic curve

E′u0
: y2 = x3 + 	1x

2 − 	3
1x; (6.3)

this elliptic curve is p-isogenous to Eu0 = (E′u0
)(p), so by oddness of p it follows that

the map along the bottom of (4.6) is canonically identified with the map

E′u0
(�0(T ))/2 · E′u0

(�0(T ))→ E′u0
(�0(T ))/2 · E′u0

(�0(T )), (6.4)

where �0 is an algebraic closure of �0. We shall prove that (6.4) is injective for the
points u0 presently under consideration.

The reduction properties of the Néron model N(Eu0)→ P1
�0

were worked out in §5
(see above Theorem 5.1), and the additive and multiplicative properties are the same
for the Néron model of the isogenous elliptic curve E′u0

. Thus, letting j ′u0
= j (E′u0

),
for points u0 such that 	1 and 	2 are irreducible in �0[T ] we obtain the following
properties for N(E′u0

):

• good reduction at all closed points of P1
�0

away from 	1 and 	2,
• multiplicative reduction at 	2, with ord	2(j

′
u0

) = −1,
• additive reduction at 	1 that is potentially multiplicative, with ord	1(j

′
u0

) = −2.

By the theory of Tate models for multiplicative reduction, the component group for the
Néron model at 	2 is trivial, so the 	2-fiber N(E′u0

)	2 is a torus.
Fix a geometric point 	1 over the point {	1} ∈ P1

�0
. The reduction at 	1 is (additive

and) potentially multiplicative, and ord	1(j
′
u0

) = −2 is negative and even. We need
to know the structure of the component group of the additive geometric fiber of the
Néron model at 	1. This can be deduced from Tate’s algorithm, but we give here a
direct proof via general principles.

Lemma 6.1. Let R be a discrete valuation ring with residue field k and fraction field
K, and let E be an elliptic curve over K with Néron model N(E) over R. Assume
that ordR(j (E)) is negative and even, that E has additive reduction over R, and that
char(k) �= 2.

If k is perfect and k/k is an algebraic closure, then the geometric component group
N(E)k/N(E)0

k
is isomorphic to Z/2Z× Z/2Z.

Proof. The formation of the Néron model over a discrete valuation ring commutes
with base change to a strict henselization and to a completion, so we may assume that
k is separably closed and that R is complete. Since ordR(j (E)) < 0, it follows from
Tate’s theory that E is a quadratic twist of the Tate curve E0 over K with j-invariant
j (E). Since char(k) �= 2 and R is strictly henselian, the Tate parameter qE0 must be
a square in K× because ordR(qE0) = −ordR(j (E0)) = −ordR(j (E)) is even. Thus,
the 2-torsion on the Tate curve E0 is a constant group over K. This property of the
2-torsion is unaffected by quadratic twisting, so E[2] is a constant group over K.
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Using the Néron mapping property, we obtain a map of R-groups

Z/2Z× Z/2Z→ N(E),

and by passing to k-fibers we arrive at a map of finite étale groups

Z/2Z× Z/2Z→ N(E)k/N(E)0
k.

This map is injective by the hypothesis that the reduction is additive and char(k) �= 2. It
is a general fact that for any discrete valuation ring R and any elliptic curve E over the
fraction field of R, the component group of the closed fiber of the Néron model N(E)

has order at most 4 when E has additive reduction and the residue field k is perfect. This
follows from the relationship between N(E) and the minimal regular proper model Ereg

over R, together with the combinatorial classification of the extended Dynkin diagrams
that describe the special fiber E

reg
k (equipped with its intersection form) when k is

algebraically closed; see [19, 10.2]. �

Theorem 6.2. The 2-torsion subgroup N(E′u0
)[2] is quasi-finite, étale, and separated

over P1
�0

. It is finite étale of order 4 over P1
�0
− {	2} and has fiber of order 2 over

{	2}.

Proof. Since all points on P1
�0

have residue characteristic not equal to 2, doubling on
N(E′u0

) is an étale map that has fiberwise-finite kernel. Hence, N(E′u0
)[2] is a quasi-

finite, étale, and separated P1
�0

-group, so it is finite over an open U ⊆ P1
�0

if and only if
its fiber rank is constant on U. Since N(E′u0

)	2 is a torus, N(E′u0
)[2]	2 = N(E′u0

)	2 [2]
has order 2. For x ∈ P1

�0
−{	1, 	2} the fiber N(E′u0

)x is an elliptic curve, so its 2-torsion
subgroup has order 4. It remains to check that N(E′u0

)[2]	1 has order 4. Consider the
exact sequence of smooth groups

0→ N(E′u0
)0
	1
→ N(E′u0

)	1 → N(E′u0
)	1/N(E′u0

)0
	1
→ 0. (6.5)

By Lemma 6.1, the final term has order 4 and is killed by 2. Since we are not in
characteristic 2, doubling is an automorphism of the additive group N(E′u0

)0
	1

, so (6.5)
splits. This gives the result. �

Consider the two points P ′0 = (0, 0) and Q′0 = (−	1, 	2
1) in E′u0

(�0(T )), where
P ′0 is a rational point of order 2 and (Q′0)(p) ∈ (E′u0

)(p)(�0(T )) = Eu0(�0(T )) is the
u0-specialization of (4.2).

Theorem 6.3. The natural map

E′u0
(�0(T )) = N(E′u0

)(P1
�0

)→ N(E′u0
)	1/N(E′u0

)0
	1
� Z/2Z× Z/2Z, (6.6)
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carries P ′0 and Q′0 to linearly independent elements. In particular, the component group
at 	1 is a constant group generated by the classes of P ′0 and Q′0.

Proof. The meaning of the theorem is that P ′0 and Q′0 reduce into distinct non-identity
components of N(E′u0

)	1 . By [19, 9.4/35,37] and [19, 10.2/14], the smooth locus in a
minimal Weierstrass model is the relative identity component of the Néron model over
any discrete valuation ring. The Weierstrass model (6.3) is minimal at 	1. Since P ′0
and Q′0 reduce to the unique non-smooth point (0, 0) on the closed fiber of this model,
we conclude that the reductions of P ′0 and Q′0 in the Néron model at 	1 do not lie in
the identity component.

To see that the reductions of P ′0 and Q′0 in the Néron model at 	1 lie in distinct
components, we just have to check that the difference P ′0−Q′0 = −(P ′0+Q′0) also has
reduction not in the identity component on the 	1-fiber of the Néron model; that is,
the point P ′0+Q′0 should have reduction (0, 0) with respect to the minimal Weierstrass
model (6.3) at 	1. It is trivial to compute P ′0 +Q′0 = (	2

1, 	
3
1), and this has reduction

(0, 0). �

Theorem 6.4. Let �0 be an algebraic closure of �0 = �(u0), with u0 ∈ A1
� a closed

point such that 	1 and 	2 as in (6.1) are irreducible in �0[T ]. The image of the
canonical map

c : E′u0
(�0(T ))/2 · E′u0

(�0(T ))→ E′u0
(�0(T ))/2 · E′u0

(�0(T ))

in (6.4) is spanned by c(P ′0) and c(Q′0), so dimF2 image(c)�2.

Proof. Let � : E′u0
(�0(T ))/2E′u0

(�0(T )) → S[2](E′u0/�0(T )) be the injective Kummer

map to the 2-torsion Selmer group. Let Kh
x denote the fraction field of the henselization

Oh
P1

�0
,x

of the local ring at a closed point x ∈ P1
�0

. For any element 
 ∈ S[2](E′u0/�0(T )),

the local restriction


x ∈ H1(Kh
x ,E′u0

[2])

is in the image of the local Kummer map �x at x. Write 
x = �x(�x) for a point

�x ∈ E′u0
(Kh

x ) = N(E′u0
)(Oh

P1
�0

,x
).

By Theorem 6.3, subtracting a suitable Z-linear combination of �(P ′0) and �(Q′0) from

 gives a Selmer class 
′ such that 
′	1

= �	1(�
′
	1

), where �′	1
reduces into the identity

component at 	1. Thus, S[2](E′u0/�0(T )) is generated by �(P ′0), �(Q′0), and classes 
′

such that 
′	1
= �	1(�

′) for some local point �′ in E′u0
(Kh

	1
) that reduces into the

identity component at 	1; note that this local property of 
′ at 	1 is independent of the
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non-canonical choice of �′ since any two choices differ by an element in [2](E′u0
(Kh

	1
))

and doubling on N(E′u0
)	1 kills the component group (by Lemma 6.1).

The doubling map on N(E′u0
) is fiberwise surjective over P1

�0
away from {	1} and

doubling is surjective on the additive identity component at 	1 (since p �= 2). Thus,
for Selmer classes 
′ as above with local restriction 
′x = �x(�

′
x), the image of �′x

in E′u0
(Ksh

x ) lies in [2]E′u0
(Ksh

x ) for every closed point x ∈ P1
�0

and every choice of
�′x (with Ksh

x denoting a maximal unramified extension of Kh
x ). In other words, the

inertial restriction 
′x |Ksh
x

is a trivial cohomology class for all x. Hence, S[2](E′u0/�0(T ))

is spanned by the images of P ′0 and Q′0 and the intersection of this Selmer group with
the subgroup of everywhere unramified classes in H1(�0(T ),E′u0

[2]).
Let us now recall how to describe the group of everywhere unramified classes in

terms of étale cohomology. Let G = N(E′u0
)[2] and P = P1

�0
, so G is a quasi-

finite separated étale commutative P-group. If we let i� : � → P be the canonical
map from the generic point � of P, then the identity N(E′u0

) = i�∗(E′u0
) on the smooth

site over P implies G = i�∗(G�) as étale sheaves (by passing to 2-torsion subsheaves).
Thus, using the étale topology, the Leray spectral sequence Er,s

2 = Hr (P, Rs i�∗(G�))⇒
Hr+s(�, G�) has Er,0

2 = Hr (P, G), so we get an exact sequence of low-degree
terms

0→ H1(P, G)
�→ H1(�, G�)

⊕�x→
⊕

x

H0(�0(x), H1(Ksh
x , G)). (6.7)

Here � is the canonical restriction map to the generic point and �x is the canonical
local restriction map at the non-generic point x of P. Hence, H1(P, G) ⊆ H1(�, G�) is
the group of everywhere unramified classes.

In view of the preceding considerations, to prove Theorem 6.4 it suffices to prove
that the restriction map

H1(�0(T ),E′u0
[2])→ H1(�0(T ),E′u0

[2])

kills the subgroup H1(P, G) of everywhere unramified classes, where G = N(E′u0
)

[2]. We will prove the stronger assertion that the map H1(P, G) → H1(P�0 , G)

vanishes.
Let U ′ = P − {	2} and let j ′ : U ′ ↪→ P be the canonical open immersion.

By Theorem 6.2, G|U ′ is finite étale over U ′ and G	2 has order 2 over �(	2).
Thus, the non-trivial 2-torsion point (0, 0) defines a short exact sequence of étale
sheaves

0→ Z/2Z→ G→ j ′! (Z/2Z)→ 0 (6.8)
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over P. By considering the exact sequence of pullback sheaves on P�0 = P1
�0

and using

the vanishing of H1(P1
�0

, Z/2Z), we arrive at a commutative square

H1(P�0 , G) �� H1(P�0 , j
′
! (Z/2Z))

H1(P, G)

��

�� H1(P, j ′! (Z/2Z))

��

(6.9)

whose top side is injective and whose vertical maps are the natural pullback maps. It
therefore suffices to prove that the pullback map on the right side vanishes, and this
is a property that does not involve G.

Since j ′! (Z/2Z) is represented by an étale P-group that is quasi-affine over P (it
is the complement in (Z/2Z)P of the non-identity point over {	2} ∈ P), the elements
of H1(P, j ′! (Z/2Z)) are in bijection with isomorphism classes of (representable) étale
j ′! (Z/2Z)-torsors on P; the same holds over P�0 , and the right side of (6.9) is thereby
identified with base-change on torsors. Thus, we just need to prove that every étale
j ′! (Z/2Z)-torsor on P has a P�0 -point.

Let i : Spec �0(	2) ↪→ P be the closed complement to U ′, so we have a short exact
sequence

0→ j ′! (Z/2Z)→ Z/2Z→ i∗(Z/2Z)→ 0 (6.10)

of étale sheaves on P, with i∗(Z/2Z) supported at one physical point on P. Thus, the
natural map

H1(P, j ′! (Z/2Z))→ H1(P, Z/2Z)

is injective. Since H1(P, Z/2Z) = H1(P1
�0

, Z/2Z) = H1(�0, Z/2Z), clearly H1(P, Z/2Z)

has order 2 with its non-trivial element represented by the non-trivial Z/2Z-torsor
P�′0 → P for a quadratic extension �′0/�0, and the subgroup H1(P, j ′! (Z/2Z)) has

order 1 or 2.
The fiber of the Z/2Z-torsor P�′0 over the point 	2 ∈ P is a split double cover of

Spec �0(	2) since deg �0	2 = 4 and [�′0 : �0] = 2. Removing one of the two points
over {	2} in P�′0 gives an open T ⊆ P�′0 that is a non-trivial j ′! (Z/2Z)-torsor over P.

Hence, H1(P, j ′! (Z/2Z)) has order 2 and contains T as its unique non-trivial element.
Since T obviously acquires a section upon extending the ground field �0 to �′0, we
conclude that T(P�0) is non-empty. �
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Appendix A. Known results over Q

In the Introduction, we saw how to search for (conditional) examples of elevated rank
over Q(T ): assume the parity conjecture over Q and try to construct an elliptic curve
over Q(T ) that satisfies (1.2) for all but finitely many t ∈ P1(Q). We wish to explain
why this sufficient strategy is essentially necessary if we also assume three additional
standard conjectures over Q. Moreover, we will see that if all of these conjectures are
true then there do not exist non-isotrivial examples of elevated rank over Q(T ). The
three additional conjectures we bring in are: the density conjecture, the squarefree-value
conjecture, and Chowla’s conjectures.

The density conjecture says that for any elliptic curve E� over Q(T ), the rank of
Et (Q) equals rank(E�(Q(T ))) or rank(E�(Q(T ))) + 1 except for a set of t ∈ P1(Q)

with density 0, as measured by height. Granting this and the parity conjecture, any
example of elevated rank over Q(T ) will satisfy (1.2) for all t outside of a set of
density 0. Therefore, if E� has elevated rank then the average value of W(Et ), in the
sense of the following definition, is either 1 or −1.

Definition A.1. For any elliptic curve E� over Q(T ), its average root number is

AvgQ W(Et ) := lim
N→∞

∑
t∈P1(Q),hQ(t)<N W(Et )

#{t ∈ P1(Q), hQ(t) < N} (A.1)

if this limit exists, where hQ is the standard logarithmic height function on P1(Q) (de-
fined by the standard normalized collection of absolute values on Q). In the summation,
the finitely many t at which Et is non-smooth are dropped out.

The existence of the average root number is not evident a priori, and its value might
depend on the choice of coordinate on P1. (The height hQ depends on the coordinate.)
If the average exists, then clearly −1�AvgQ W(Et )�1. If we assume the parity and
density conjectures then any example of elevated rank over Q(T ) must have average
root number 1 or −1.

Remark A.2. For any elliptic curve E0 over Q, Rizzo [24] proved that the set of
average root numbers that unconditionally exist for quadratic twists of E0 over Q(T )

is dense in the interval [−1, 1].
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We now introduce the squarefree-value conjecture and Chowla’s conjectures; these
lead to a formula for AvgQ W(Et ) for any elliptic curve E� over Q(T ). This formula
turns out never to equal 1 or −1 for non-isotrivial elliptic curves over Q(T ), thereby
(conditionally) ruling out the possibility of elevated rank for such elliptic curves.

The squarefree-value conjecture says that a polynomial over Z takes squarefree values
as often as is suggested by naive probabilistic heuristics. For example, if f (T ) ∈ Z[T ]
is squarefree, then the prediction is

#{1�n�x : f (n) is squarefree} ∼ Cx

as x → ∞, where C = ∏
p

(
1− cp/p2

)
with cp denoting the number of solutions

to f (T ) = 0 in Z/(p2). (If 1 − cp/p2 = 0 for some p, then C = 0 and obviously
f (n) is never squarefree. Otherwise C is an absolutely convergent (positive) product.)
We refer the reader to work of Granville [9] for a more complete statement of this
conjecture, including the variant for homogeneous polynomials in two variables over
Z. The squarefree-value conjecture is known unconditionally for polynomials in Z[T ]
with small degree, and Granville [9] deduced the general case (all degrees) from the
abc-conjecture. (Poonen [22] extended these results to polynomials in any number of
variables over Z, but only the cases treated by Granville in one and two variables are
related to the variation of root numbers in pencils of elliptic curves over Q.)

Remark A.3. Low-degree proved instances of the squarefree-value conjecture were
used in the study of ranks of elliptic curves over Q in [8], where families of quadratic
twists were considered.

The final conjecture we need over Q, due to Chowla [3, p. 96] in the one-variable
case, concerns the average behavior of the Liouville function on values of a polynomial.
Recall that Liouville’s function 
 is the totally multiplicative function on Z defined by

(±p) = −1 when p is prime, 
(±1) = 1, and 
(0) = 0.

The one-variable Chowla conjecture says that for any non-constant f (T ) in Z[T ]
which is not a perfect square up to sign, the sequence 
(f (n)) has average value 0 as
n runs over any arithmetic progression. That is, for any arithmetic progression a + bZ
(with a ∈ Z and b ∈ Z, b �= 0), as N →∞ we have

∑
n∈(a+bZ)∩[0,N ] 
(f (n))

#((a + bZ) ∩ [0, N ]) → 0.

(Clearly, with a linear change of variables, we can state this as a conjecture over all
f using only a = 0 and b = 1. We prefer the above superficially more general form
because it matches the two-variable conjecture more closely.)

The two-variable Chowla conjecture says that for any non-constant homogeneous
f in Z[U, V ] which is not a perfect square up to sign, the sequence 
(f (m, n)) has
average value 0 as (m, n) runs over lattice points in any sector of the plane with vertex
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at the origin. More precisely, for any coset L ⊆ Z2 of an arbitrary sublattice of Z2,
and any open sector S ⊆ R2 with positive angular measure and vertex at the origin,

∑
(m,n)∈S∩L∩[−N,N ]2 
(f (m, n))

#(S ∩ L ∩ [−N, N ]2) → 0 (A.2)

as N →∞. If the condition (m, n) = 1 is imposed on the terms in the sum in (A.2),
then the resulting general conjecture is logically equivalent to the general conjecture
(A.2).

In [12, 13], the squarefree-value conjecture and the two-variable Chowla conjecture
are used to derive (conditional) formulas for AvgQ W(Et ) for any E�/Q(T ). The analysis
falls into two cases:

Case 1: The minimal regular proper model E→ P1
Q has no nodal geometric fiber.

(That is, E� has no point of multiplicative reduction on P1
Q.)

Case 2: The fibration E→ P1
Q has a nodal geometric fiber.

Consider a non-isotrivial E�/Q(T ) in Case 1. Let Mt denote the finite set of primes
p ∈ Z such that Et has multiplicative reduction at p. The collection {Mt }t∈P1(Q) is
restricted as t varies, in the following sense. Assuming the squarefree value conjecture,
we have that, for any small ε > 0, there is a finite set of prime numbers Sε such
that the set of t ∈ P1(Q) with Mt ⊆ Sε has height density �1 − ε. That is, roughly
speaking, “most” fibers have their primes of multiplicative reduction lying in a common
finite set. (This remark is implicit in [20, Lemma 2.1].) Moreover, for such t the bad
primes for Et/Q outside of Sε are the prime factors of values of certain irreducible
primitive polynomials over Z that correspond to the points of additive reduction for
E� on P1

Q. (In particular, these primitive polynomials are independent of t and ε.) For
the study of average root numbers of elliptic curves over Q, the essential difference
between additive and multiplicative reduction is the simpler statistical variation for local
root numbers in the additive case. (See the formulas in Theorem 3.1.) Assuming the
squarefree-value conjecture, for “most” t the set of bad primes for Et outside of Sε

can be controlled, and a formula

AvgQ W(Et ) = C∞
∏
p

Cp (A.3)

is thereby obtained, where C∞ is an algebraic number in R, each Cp is a non-zero
rational number, and

∏
p Cp is an absolutely convergent (non-zero) product.

Here are two examples that illustrate (A.3) (not elevated rank) for non-isotrivial
elliptic curves in Case 1.

Example A.4. An example of Washington [34, §3] over Q(T ) is

E� : y2 = x3 + T x2 − (T + 3)x + 1. (A.4)
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The point (0, 1) on this curve has infinite order (use Theorem 2.4, as in the proof
of Corollary 2.6). Since E is a rational surface, it is not difficult to prove (using
either analytic methods of Rosen–Silverman or a reduction to positive characteristic
and algebraic methods of Artin–Tate) that E�(K(T )) has rank 1 for every number
field K.

In [25], Rizzo shows W(Et ) = −1 for every t ∈ Z. However, W(Et ) = 1 for many
non-integral t ∈ Q, such as (using PARI) t = −1/2, 1/3, and 3/2. An application of
one of the proved instances of the squarefree-value conjecture in low degree shows
that (A.3) is unconditionally true for E� in (A.4), and a computation yields C∞ = 0.
Therefore, in this example, AvgQ W(Et ) = 0 unconditionally.

Example A.5. Let f (T ) = −5− 2T 2 and g(T ) = 2+ 5T 2. Consider

E� : y2 = x3 + a(T )x + b(T )

over Q(T ), where

a(T ) = −27fg(f 3 − g3)2, b(T ) = −54(f 3 + g3)(f 3 − g3)3

2
.

Low-degree proved instances of the squarefree-value conjecture imply that the condi-
tional formula (A.3) is true for this E�. This leads to the explicit formula

AvgQ W(Et ) = 1

6
·

∏
p �=2,3,7,19

(
1− ap

(p + 1)2

)
= 0.1527 . . . ,

where ap = 1+�p(−1)+(1+�3(p))(1+�19(p)) and �� is the mod � Legendre symbol.

A closer analysis of the work that leads to (A.3) in Case 1 shows that if the
squarefree-value conjecture is assumed then AvgQ W(Et ) cannot equal 1 or −1 in Case
1 when E� is non-isotrivial. Therefore, if the density conjecture, parity conjecture, and
squarefree-value conjecture are true, then in Case 1 there does not exist a non-isotrivial
elliptic curve over Q(T ) with elevated rank.

We turn now to Case 2, so E → P1
Q has a nodal geometric fiber. Such E must

be non-isotrivial. The reasoning in Case 1 breaks down, since there do not exist sets
of t with height density arbitrarily close to 1 such that the Et /Q’s have multiplicative
reduction in a common finite set of primes. Now there is a non-constant homogeneous
two-variable polynomial fE ∈ Z[U, V ] (which is not a square up to a sign) such
that as t ∈ P1(Q) varies with Et/Q smooth, the variation of the product of the local
root numbers of Et/Q at the places of nodal reduction is governed by the variation of

(fE(m, n)), where m/n is the reduced form of t. In our function field examples we
have a similar conclusion, with the Liouville function on �[u] that assigns value −1
to irreducibles and extends to all of �[u] by total multiplicativity; see Remark 3.3. If
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we assume Chowla’s two-variable conjecture for fE, then the variation of 
(fE(m, n))

as t = m/n varies can be controlled. Using this, in [12, §1.7] it is shown that if the
squarefree-value conjecture is also assumed, then AvgQ W(Et ) exists and equals 0; in
particular, this average does not equal 1 or −1. Thus, the parity, density, squarefree-
value, and Chowla conjectures predict that no elliptic curve in Case 2 has elevated
rank.

Our discussion of AvgQ W(Et ) has shown that if we assume the squarefree-value
conjecture and Chowla’s two-variable conjecture then this average cannot equal 1 or
−1 if E� is non-isotrivial. If we accept the parity conjecture and the density conjecture,
then any example of elevated rank over Q(T ) has AvgQ W(Et ) = 1 or −1. Therefore,
if all four conjectures are true then all examples of elevated rank over Q(T ) must be
isotrivial.

Appendix B. The surprise in characteristic p

We now replace Q with F = �(u) and replace Z with �[u], where � is any finite
field. For the moment, � may have characteristic 2. Granting the parity conjecture over
F, no new ideas should be required to construct isotrivial examples of elevated rank
over F(T ) analogous to the examples of Cassels–Schinzel and Rohrlich. (The case of
characteristic 2 is presumably more delicate.) We want to explain why it is reasonable
to expect a priori that non-isotrivial examples of elevated rank might exist over F(T ),
despite the conclusions over Q(T ) in Appendix A.

The squarefree-value conjecture for multivariable polynomials over �[u], for � with
any characteristic, was proved by Ramsay [23] in the separable case for one variable,
and was proved by Poonen [22] in general. Thus, provided that char(F ) �= 2, 3 (to
avoid problems with wild ramification at arbitrarily many places), the methods used
over Q(T ) can be adapted to prove an unconditional formula akin to (A.3) in the
analogue of Case 1 in Appendix A. (This is the case of elliptic curves E�/F (T ) such
that E→ P1

F does not have any nodal geometric fibers.) However, to adapt the Q(T )-
methods to prove that AvgF W(Et ) is strictly between 1 and −1 for a non-isotrivial
E→ P1

F without nodal fibers, we need to impose a restriction that is always satisfied
in characteristic 0: the points in the (non-empty) support of the conductor of E� on P1

F

are étale over F. We expect that if this étale restriction on the support of the conductor
is dropped, then there should be non-isotrivial examples without nodal geometric fibers
such that the average root number is 1 or −1. Moreover, in all positive characteristics
there should exist such examples that also have elevated rank (granting the parity
conjecture).

Let us now turn to the analogue of Case 2 from Appendix A, so E → P1
F has

some nodal geometric fibers. The study of such elliptic fibrations in characteristic 0
uses Chowla’s conjectures over Z, as we saw in Appendix A. However, there are
counterexamples to the �[u]-analogues of Chowla’s conjectures. In [5], it is shown that
counterexamples to Chowla’s one-variable conjecture are a common but not “generic”
phenomenon. For example, elementary (but non-obvious) methods show that for any
finite field � with arbitrary characteristic p, f (T ) = T 4p + u ∈ �[u][T ] violates the
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one-variable Chowla conjecture: 
(f (g)) = 1 for every g ∈ �[u] with g /∈ �. Similarly,
in the sense of Chowla’s two-variable conjecture, the homogeneous polynomial

aX4p + buY 4p ∈ �[u][X, Y ]

with a, b ∈ �× has rather non-random 
-values:


(ag
4p

1 + bug
4p

2 ) =
{−1 if deg g1 �deg g2,

1 if deg g1 > deg g2
(B.1)

for any g1, g2 ∈ �[u] not both zero, using the convention deg 0 = −∞. (If p �= 2 then
(B.1) is a special case of Lemma 3.5, replacing g1 and g2 in that lemma with their
squares. We omit the additional considerations that are required to verify (B.1) when
p = 2.) In particular, 
(ag

4p

1 + bug
4p

2 ) only depends on the sign of ord∞(g1/g2) =
deg g2−deg g1. The proof of Theorem 1.1 rests on a similar counterexample to Chowla’s
two-variable conjecture, with exponent 2p rather than 4p. (See (3.17).) The failure of
Chowla’s conjecture in positive characteristic was our initial clue to the possibility that
elevated rank may occur in non-isotrivial families in the function field case.
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