Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO)

Charles A. Herzog1,2, Richard W. Asinger1,2, Alan K. Berger2, David M. Charytan3, Javier Díez4, Robert G. Hart5, Kai-Uwe Eckardt6, Bertram L. Kasiske1,2, Peter A. McCullough7, Rod S. Passman8, Stephanie S. DeLoach9, Patrick H. Pun10 and Eberhard Ritz11

1Hennepin County Medical Center, Minneapolis, Minnesota, USA; 2University of Minnesota, Minneapolis, Minnesota, USA; 3Brigham and Women’s Hospital, Boston, Massachusetts, USA; 4University of Navarra, Pamplona, Spain; 5Population Health Research Institute/McMaster University, Hamilton, Ontario, Canada; 6University of Erlangen-Nuremberg, Erlangen, Germany; 7St John Providence Health System, Novi, Michigan, USA; 8Northwestern University, Chicago, Illinois, USA; 9Jefferson Medical College, Philadelphia, Pennsylvania, USA; 10Duke University, Durham, North Carolina, USA and 11University of Heidelberg, Heidelberg, Germany

Cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD) is high, and the presence of CKD worsens outcomes of cardiovascular disease (CVD). CKD is associated with specific risk factors. Emerging evidence indicates that the pathology and manifestation of CVD differ in the presence of CKD. During a clinical update conference convened by the Kidney Disease: Improving Global Outcomes (KDIGO), an international group of experts defined the current state of knowledge and the implications for patient care in important topic areas, including coronary artery disease and myocardial infarction, congestive heart failure, cerebrovascular disease, atrial fibrillation, peripheral arterial disease, and sudden cardiac death. Although optimal strategies for prevention, diagnosis, and management of these complications likely should be modified in the presence of CKD, the evidence base for decision making is limited. Trials targeting CVD in patients with CKD have a large potential to improve outcomes.

Kidney International (2011) 80, 572–586; doi:10.1038/ki.2011.223; published online 13 July 2011

KEYWORDS: atrial fibrillation; heart failure; myocardial infarction; peripheral arterial disease; stroke; sudden death

In October 2010, the KDIGO (Kidney Disease: Improving Global Outcomes) convened a Clinical Update Conference in London, United Kingdom, titled ‘Cardiovascular Disease in CKD: What is it and what can we do about it?’ The objective was to define the current state of knowledge about cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) stages 1–5 (see Table 1 for terminology). Topics included epidemiology, pathophysiology, diagnosis, prevention, and treatment, focusing on areas of clinical relevance: (1) coronary artery disease (CAD) and myocardial infarction (MI); (2) congestive heart failure (CHF); (3) cerebrovascular disease, stroke, atrial fibrillation, peripheral arterial disease (PAD); and (4) sudden cardiac death (SCD). A total of 80 international experts in these areas attended, including nephrologists, cardiologists, neurologists, and representatives of other disciplines. This is a report on conference proceedings and recommendations; it is not intended as a critical review of available literature. Conference details are posted on the KDIGO website, http://www.kdigo.org/meetings_events/Cardiovascular_Disease_in_Chronic_Kidney_Disease.php. Growing evidence suggests that CKD is an important, independent risk factor for CVD. Many patients with CKD die prematurely before or after beginning dialysis. Reasons for these adverse associations are not well understood and are thus the subject of controversy. Whether CVD events differ in patients with and without CKD is poorly defined. Similarly, whether differences in CVD in CKD patients suggest preventative or therapeutic strategies unique to this population is unclear.

CAD AND MI
Epidemiology and pathophysiology
The incidence and severity of obstructive CAD increases as glomerular filtration rate (GFR) declines.1,2 CAD shows a pattern of diffuse multi-vessel involvement with coronary calcification;2,3 small angiographic studies suggest that this
rupture; both are associated with worse cardiovascular outcomes.7,22–24 The role of mineralocorticoid excess in the development of cardiovascular complications is increasingly recognized.25 Recent studies have implicated disordered mineral and bone metabolism in the pathogenesis of coronary disease and CVD in CKD patients.26–28

Table 1 | Glossary of KGIDO chronic kidney disease (CKD) abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKD</td>
<td>All stages of CKD, including dialysis</td>
</tr>
<tr>
<td>CKD 1, 2, 3, or 4</td>
<td>Specific stages of CKD</td>
</tr>
<tr>
<td>CKD 5</td>
<td>Dialysis- and non-dialysis-dependent CKD stage 5</td>
</tr>
<tr>
<td>CKD ND</td>
<td>Non-dialysis-dependent CKD</td>
</tr>
<tr>
<td>CKD 5D</td>
<td>Dialysis-dependent CKD stage 5, including hemodialysis and peritoneal dialysis; equivalent to end-stage renal disease</td>
</tr>
<tr>
<td>CKD SHD</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>CKD SPD</td>
<td>Peritoneal dialysis</td>
</tr>
</tbody>
</table>

incidence exceeds 50% in unselected CKD 5D patients.4–7 Among patients with CAD, concomitant CKD portends a worse prognosis. Cardiovascular morbidity and mortality are inversely and independently associated with kidney function, particularly at estimated GFR < 15 ml/min per 1.73 m2.2,8–15 Although the absolute incidence and mortality rate of MI is clearly elevated in advanced CKD,16 standard cardiovascular risk factors are common in the setting of CKD, and the degree to which CKD is independently associated with the risk of initial MI is not well defined. Standard cardiovascular risk factors are common in CKD, but do not fully explain the high incidence of cardiovascular events or increased mortality rates;17–19 their association with cardiovascular outcomes is attenuated or even reversed at the most advanced CKD stages.20 Inflammation and oxidative stress have been linked to the pathogenesis of plaque formation and plaque rupture;21 both are associated with worse cardiovascular outcomes.7,22–24 The role of mineralocorticoid excess in the development of cardiovascular complications is increasingly recognized.25 Recent studies have implicated disordered mineral and bone metabolism in the pathogenesis of coronary disease and CVD in CKD patients.26–28

Diagnosis

Although early detection of coronary plaque may permit risk factor modification and pharmacological intervention, the increased prevalence of CAD among CKD patients diminishes the negative predictive value of diagnostic studies in this population. CKD patients are underrepresented in cohort studies evaluating the diagnostic sensitivities and specificities of non-invasive tests. Exercise electrocardiography is limited by lack of specificity of the ST-segment response and by inability of many CKD patients to exercise to a diagnostic workload.29,30 The risks of contrast agents limit the use of perfusion magnetic resonance imaging and computed tomography coronary angiography, and the latter is compromised by a high prevalence of coronary calcification among CKD patients.31 Radionuclide perfusion imaging is more sensitive but less specific than stress echocardiography,32 but may be problematic in the setting of elevated left-ventricular (LV) mass index and frank LV hypertrophy (LVH) because limited spatial resolution and disturbed coronary flow reserve may lead to false results.30 The accuracy of exercise and of pharmacological myocardial perfusion imaging is reduced in CKD patients compared with the general population, and sensitivities and specificities <80% have been reported.4,29,33 Conversely, stress echocardiography may be compromised by small LV cavity size in patients with elevated LV mass index.34,35 Sensitivity and specificity for pharmacological stress echocardiography is 69–95% and 76–94%, respectively.36,37

Diagnosis of acute coronary syndrome may also be problematic in CKD. The classic triad of ischemic symptoms, elevated cardiac biomarkers, and electrocardiographic changes is frequently absent in CKD patients,38,39 who are more likely to present with systolic or diastolic dysfunction causing heart failure symptoms, or with syncope.39 LVH with a strain pattern may mask diagnostic ST depression. Conversely, creatine kinase MB isoform and cardiac troponins (cTns) may be elevated in the absence of true myocardial necrosis, possibly because of myocardial apoptosis or small vessel disease.40 This mandates careful attention to trends over time and reduces the value of single tests, a problem that may be exacerbated by increased sensitivity of next-generation troponin assays.

Prevention

The altered relationship of typical risk factors with cardiovascular outcomes41–43 and the routine exclusion of patients with advanced CKD from most clinical trials testing CVD therapies44,45 engender doubt about the relevance of existing standards of care to these patients. Evidence of the efficacy of glycemic or blood pressure (BP) control or lifestyle modification to reduce cardiovascular events in patients with advanced CKD remains limited. Strict glycemic control may not benefit CKD 5D patients.46,47 Randomized data on the efficacy of specific BP goals in CKD 5D patients are lacking. The labile nature of BP and the absence of clear associations between hypertension and adverse cardiovascular outcomes in CKD 5D48 preclude definitive recommendations about BP control.49 Lifestyle modifications have not been widely studied in CKD patients; in a small trial, multifactorial intervention that included smoking cessation was not associated with significant cardiovascular benefits.50 Nevertheless, smoking cessation, exercise, dietary salt reduction, and weight loss are reasonable interventions at all CKD stages, and control of hypertension to usual goals or lower is indicated to slow CKD progression in patients with pre-dialysis CKD.

Data are sparse regarding efficacy of prophylactic aspirin in advanced CKD. Subgroup analyses of randomized trials have demonstrated convincing cardiovascular risk reduction from daily aspirin in individuals with estimated GFR < 45 ml/min per 1.73 m2, including CKD 5D patients, despite higher incidence of bleeding in CKD patients.51,52 With release of initial results from the SHARP (Study of Heart and Renal Protection) trial, statins may now be the best-studied medical therapy in the context of advanced
CKD. Nevertheless, debate continues regarding their appropriate role. A subgroup analysis of several randomized clinical trials suggests benefit in patients with moderate CKD.53 Conversely, two large trials comparing statins with placebo in hemodialysis patients did not demonstrate benefit.54,55 More recently, in the SHARP trial, the combination of simvastatin and ezetimibe in CKD patients (including CKD 5D) reduced major atherosclerotic events by 17%, but did not appear to reduce overall mortality.56 As no significant harm from statin use was demonstrated in any of the trials, this reduction in non-fatal events provides a rationale for the use of statins in CKD patients despite the apparent lack of efficacy in reducing the risk of death.

Treatment

Randomized data on treatment of acute MI in CKD patients are sparse, but treatment approaches using aspirin, clopidogrel, β-blockers, and angiotensin-converting enzyme inhibitors (ACEIs)/ARBs (angiotensin receptor blockers) seem to have similar benefits in CKD and non-CKD patients.57,58 Several antiplatelet and anticoagulant agents are metabolized through the kidneys and warrant dose adjustment in CKD patients, and low-molecular weight heparins and eptifibatide may not be safe in CKD 5D patients.59

There is little reason to believe that kidney impairment diminishes the benefits of immediate reperfusion therapy in acute ST-elevation MI, but there are no randomized trials of reperfusion therapy in CKD. A recent analysis suggests that, when immediately available, primary percutaneous coronary intervention (PCI) should be the treatment of choice irrespective of CKD status.60

Among patients with non-ST elevation acute coronary syndrome (unstable angina and non-ST-elevation MI), the primary decision is between immediate angiography and a conservative approach. In the general population, an early invasive strategy reduces post-acute coronary syndrome morbidity and mortality by 20–30%,61 and guidelines recommend early angiography in high-risk patients.62 A recent meta-analysis suggested similar benefits in CKD 3–4 patients,63 but CKD 4 was underrepresented (n < 300) and CKD 5D patients were not included. Conversely, a recent retrospective analysis of all non-ST-elevation MI patients in Sweden suggested that an early invasive strategy was harmful for CKD 5 patients.64

There is a paucity of data regarding revascularization in CKD patients with stable angina. Surgical coronary revascularization is generally recommended for non-CKD patients with high-risk features such as left-main CAD, and PCI is typically recommended for symptomatic single- or two-vessel CAD or when a significant amount of myocardium is at risk.65,66 No randomized clinical trials compare coronary revascularization strategies in advanced CKD patients. A subgroup analysis of the COURAGE (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation) trial did not find a benefit from PCI compared with medical therapy in ~320 patients with CKD 3–4 and predominantly anatomically low-risk, multivessel disease.67 The ARTS-1 (Arterial Revascularization Therapies Study) trial found no significant difference in the primary end point (death, MI, stroke) between PCI and coronary artery bypass graft (CABG) surgery in 290 patients with creatinine clearance <60 ml/min.68 However, the revascularization rate was markedly lower in the CABG arm.

Observational data consistently show increased risk of serious operative complications in CKD patients.66–74 Incidence of operative death after CABG is 9–12.2% for CKD 5D patients, and 3– to 7-fold higher in CKD 4–5ND patients than in non-CKD patients.69–71 PCI may be an alternative, but may pose the added risk of contrast-induced nephropathy. In a study of CKD 5D patients undergoing first revascularization, in-hospital mortality was lower with PCI (4.1 vs 8.6%), but 2-year survival was better with CABG (56.4 vs 48.4%).72 Similarly, a more recent retrospective study demonstrated that in CKD 5D, CABG was associated with a 71% reduction in the risk of death compared with PCI.73 Available studies thus provide conflicting evidence on the relative merits of PCI and CABG in CKD patients. These studies may also be biased by differential referral of CKD patients to CABG or PCI. Studies in the drug-eluting stent era provide conflicting evidence on their benefit in CKD patients.74,75

Table 2 lists knowledge gaps and research needs.

CONGESTIVE HEART FAILURE

Epidemiology

CKD is associated with increased prevalence of concomitant CHF, ischemic heart disease, cardiac arrhythmias (most commonly atrial fibrillation), and valvular calcification.76–78 In observational studies, CHF prevalence increases with declining kidney function.79 CHF is the leading cardiovascular condition in CKD patients,80 with mortality slightly higher for diastolic than for systolic CHF.81 Terminal events in CHF are pump failure and sudden arrhythmic death.

Pathophysiology

CKD exposes the heart to three major mechanisms that facilitate the development of cardiomyopathy and induce LV failure: pressure overload, volume overload, and CKD-associated non-hemodynamic factors that alter the myocardium (Figure 1). Pressure overload is largely the result of long-standing hypertension and vascular stiffness. Increased LV wall stress (from pressure and volume overload) fuels changes in the composition and function of the myocardium, and this process is accentuated by CKD-associated abnormalities. CKD progression is accompanied by progressive LVH and diastolic dysfunction.82 Arterial stiffening may be a key etiological aspect in CKD leading to CVD.83,84

Beyond hemodynamic factors, inappropriate activation of the renin-angiotensin system, catalytic iron-dependent oxidative stress, inflammation, and stimulation of prohypertrophic and profibrogenic factors (cardiotrophin-1, galectin-3, transforming growth factor-β, fibroblast growth...
and is associated with the risk of CHF and increased CKD-associated structural myocardial remodeling. Reduced extracellular matrix density is reduced in the hypertrophied myocardium, and pronounced interstitial fibrosis is a dominant feature of CKD. Atrial natriuretic factor-23) may be relevant. The bufadienolides (steroid hormones circulating in the blood and excreted in urine) are elevated in CKD. They inhibit preferentially the Na⁺ -K⁺-ATPase, resulting in volume expansion and hypertension. Histopathological studies indicate that capillary density is reduced in the hypertrophied myocardium, and pronounced interstitial fibrosis is a dominant feature of CKD-associated structural myocardial remodeling. LV diastolic dysfunction is frequent among CKD patients, it is a major determinant of LV stiffness, increased LV filling pressure, and disturbances in diastolic filling, predisposing to development of diastolic dysfunction/failure. In CKD patients, resting LV systolic function is usually normal or even hyperdynamic, at least in the absence of mortality; impaired diastolic function may occur early in CKD, even without LVH. Myocardial fibrosis results from an imbalance between exaggerated collagen synthesis and unchanged or depressed collagen degradation. In CKD patients, it is a major determinant of LV stiffness, increased LV filling pressure, and disturbances in diastolic filling, predisposing to development of diastolic dysfunction/failure. Evidence lacking regarding primary and secondary treatment of CAD. Cardiovascular trials have frequently excluded CKD patients from enrollment.}

Table 2 | Future directions for cardiovascular disease in chronic kidney disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Knowledge gaps</th>
<th>Research needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD, MI</td>
<td>Screening may be beneficial, but data are insufficient to advocate screening asymptomatic patients. Evidence lacking regarding primary and secondary treatment of CAD. Cardiovascular trials have frequently excluded CKD patients from enrollment.</td>
<td>Clarify the interdependence of CKD with MI, and its relation to demographic characteristics such as gender. Clarify the pathophysiological relationship between development of plaque and subsequent rupture of selected plaques. Clarify roles of novel risk factors that are potential therapeutic targets. Broad-based validation of current stress and imaging modalities using coronary angiography with fractional flow reserve. Adequately powered CKD-specific clinical trials of aspirin, statins, novel anti-platelet agents, ACEIs, and ARBs.</td>
</tr>
<tr>
<td>SCD</td>
<td>Standard risk factors derived from the general population may not apply. Few autopsy data. Dialysis patients excluded from primary and secondary prevention trials.</td>
<td>Disease-specific, large-scale prospective cohort studies for risk stratification. Study heterogeneous CKD populations at all stages using all available risk-stratification techniques. Remove barriers preventing data linkage to allow for population-wide cohort and case-control studies. Randomized trials assessing the spectrum of interventions: β-blockers (such as carvedilol), ICDs, sympathetic ablation. Incorporate SCD as specific outcome in registry and clinical trial data. Investigate the potential role of sleep apnea in SCD.</td>
</tr>
</tbody>
</table>

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker; CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; ICD, implantable cardioverter-defibrillator; KDOQI, Kidney Disease Outcomes Quality Initiative; LDL, low-density lipoprotein; LV, left ventricular; LVH, LV hypertrophy; MI, myocardial infarction; PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; SCD, sudden cardiac death.
Heart failure, or myocardial stunning, is a consequence of chronic neurohormonal activation, followed by acute neurohormonal activation, which can lead to increased venous pressure and renal congestion. This can result in toxicity and vasoconstriction, which can exacerbate the condition.

Cardio-renal syndrome pathophysiology

- Chronic neurohormonal: ANP, aldosterone, vitamin D, TPH, hypotestosterone, LEPO, Fe utilization, Na-K ATPase
- Inciting events: Medical compliance, sodium intake, ischemia, arrhythmias (AF), OSAS
- Added insults: NSAIDS, TZDs

Figure 1 | Cardio-renal syndrome pathophysiology. ADH, antidiuretic hormone; ANP, atrial natriuretic peptide; BNP, B-type natriuretic peptide; CKD, chronic kidney disease; DM, diabetes mellitus; EPO, erythropoietin; HTN, hypertension; IL-1, interleukin-1; KIM-1, kidney injury molecule-1; LV, left ventricular; N-GAL, neutrophil gelatinase-associated lipocalin; NSAID, non-steroidal anti-inflammatory drug; OSAS, obstructive sleep apnea syndrome; PTH, parathyroid hormone; SNS, sympathetic nervous system; TNF-α, tumor necrosis factor-α; TZD, thiazolidinediones; VSMC, vascular smooth muscle cell.

Ischemic heart disease or severe hemodynamic stress. Hemodialysis is associated with repetitive hemodynamic instability and subsequent myocardial ischemia (perhaps due to microvascular dysfunction), resulting in prolonged LV systolic dysfunction (‘myocardial stunning’) and adverse outcome.

Diagnosis

The clinical syndrome of CHF in CKD, heralded by effort intolerance, fatigue, and edema, is difficult to distinguish from volume overload. Echocardiography (including tissue Doppler imaging) has a key role in diagnosing LVH, diastolic and systolic LV dysfunction, and global assessment of cardiovascular prognosis. Despite issues of cost and availability, performing an echocardiogram is reasonable in each CKD patient with cardiac symptoms, new clinical events, or treatments likely to affect LV function. The Current Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines recommend echocardiograms for all CKD 5D patients 1–3 months after renal replacement therapy initiation and in subsequent 3-year intervals, regardless of symptoms. Follow-up with serial examinations at closer intervals of 12–18 months may increase prognostic value. Less clear is the usefulness of B-type natriuretic peptides (BNP and NT-proBNP) in the diagnosis and management of CHF; the concentration of these peptides is influenced by kidney function and by CHF severity.

The cTnTs T and I, biomarkers of cardiomyocyte damage, accumulate in CHF. Although the clinical significance of increased cTn concentrations in CKD patients with CHF is unclear, they are strong predictors of all-cause mortality in CKD 5D, and the US FDA (Food and Drug Administration) approved cTnT for risk stratification in CKD 5D patients.

Novel cardiac and renal biomarkers include neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, interleukin-18, galectin-3, mid-regional pro-adrenomedullin, catalytic iron, and markers of oxidative stress. For all these markers, the critical issue is independence of GFR. A recent review scaled the following in order of decreasing effect size: tumor necrosis factor-α, hematocrit, interleukin-6, cTn T,
Kt/V(urea), prealbumin, urea reduction ratio, serum albumin, and C-reactive protein. Only troponin T has strong biological plausibility for a link to myocardial disease; the others appear to represent chronic illness, inflammation, and malnutrition.

Prevention and treatment
Prevention relies on BP and volume control and modification of usual risk factors for CHF and CKD progression. Treatment of CHF in CKD patients using the European Society of Cardiology Guidelines is reasonable; however, these therapeutic strategies are not based on strong evidence, as CKD patients are not adequately represented in randomized controlled trials in CHF.

Dietary salt restriction should be a mainstay of clinical counseling. With regard to pharmacological treatment, several considerations are appropriate. CHF patients with kidney dysfunction often retain excessive salt and water and require more intensive diuretic treatment than do CHF patients with normal kidney function. Aldosterone antagonists should be used with caution as they may cause significant hyperkalemia. Despite strong evidence from randomized clinical trials that suggests that treatment with ACEIs and ARBs reduces cardiovascular morbidity and mortality in CHF, there is little equivalent evidence for CKD patients. Randomized clinical trials of CHF management with ACEIs, ARBs, new direct renin inhibitors, and mineralocorticoid receptor blockers (with or without potassium-binding resins) are required for CKD patients. Specialist supervision is recommended for patients with GFR levels below ~30 ml/min per 1.73 m². One small randomized trial supports the combined use of ACEI + ARBs in the treatment of CHF in CKD 5D patients. Recent data strongly support the use of bisoprolol or carvedilol in CKD patients with CHF.

Other potentially useful management strategies include correcting anemia and minimizing vascular calcification. Anemia correction, aiming for hemoglobin levels >10 g/dl, has been shown to reduce LVH in CKD patients, but total correction does not further improve LV geometry or cardiovascular outcome. Erythropoiesis-stimulating agents and/or intravenous iron may improve exercise tolerance but are without survival benefit. Control of calcium and phosphate concentrations is instrumental in minimizing vessel calcification. Concern about calcification due to calcium-containing phosphate binders is increasing. Therefore, the use of non-calcium-containing phosphate binders may be advantageous, although data are insufficient to establish the comparative superiority of these agents over calcium-containing phosphate binders for cardiovascular end points in CKD. Achieving adequate vitamin D status and avoiding excessively high or low parathyroid hormone concentrations (oversuppression) are reasonable treatment goals, although their efficacy has not been demonstrated.

For CKD 5D patients with CHF, adequate ultrafiltration should be coupled with dietary sodium restriction and lower dialysate sodium concentrations; more frequent or longer dialysis sessions may be beneficial. High-flow fistulae or grafts may cause high cardiac output states.

Evidence for management of acute CHF in CKD is limited. Inotropic therapy (dobutamine, milrinone, levosimendan) may be considered in patients with worsening renal function secondary to the fall in cardiac output; however, routine use of inotropes or other adrenergic-stimulating agents for acute decompensated CHF is not indicated in CKD patients. Ultrafiltration may be useful in refractory congestion.

Table 2 lists knowledge gaps and research needs.

CVD AND STROKE, ATRIAL FIBRILLATION, PERIPHERAL ARTERIAL DISEASE

Stroke
CKD 3–4 is an independent risk factor for ischemic and hemorrhagic stroke, with a relative risk of ~1.4 (ref. 118). The relative risk of stroke in CKD 5D patients was estimated to be 5–10 times that of the age-matched general population with an overall stroke rate of ~4% per year.

Ischemic stroke is caused by several distinct arteriopathies; few studies using modern imaging techniques and classification paradigms have assessed etiological subtypes in CKD patients. The best recent descriptive data in CKD 5D patients come from the prospective CHOICE (Choices for Healthy Outcomes in Caring for ESRD) study, involving 1041 incident US CKD 5D patients (74% receiving hemodialysis). The observed stroke rate was ~4.2% per year. Most (87%) strokes were ischemic, and the distribution of etiological subtypes was similar to the distribution in registries of CKD ND patients. Independent predictors of higher risk were age and diabetes. African-American race was associated with lower risk. About one-third of strokes occurred during or shortly after hemodialysis treatment. The stroke mortality rate was nearly three times higher (35%) than that for non-end-stage renal disease patients. High mortality rates were also reported in three randomized trials in which 43, 38, 54, and 36% of all strokes were fatal, apparently reflecting ischemic stroke. The high fatality rate could reflect systematic underdetection of minor strokes in CKD 5D patients or withdrawal of dialysis when stroke occurs. Less is known about stroke rates and stroke subtypes in end-stage renal disease patients undergoing peritoneal dialysis, but available data support similar rates.

Evidence-based secondary prevention of non-cardioembolic ischemic stroke includes BP lowering, antplatelet agents, statin therapy, and, in the presence of ipsilateral high-grade carotid stenosis, carotid endarterectomy. BP lowering with ACEIs and thiazide diuretic reduced stroke recurrence in patients with CKD 3–4. Optimal BP management in CKD 5HD patients with prior stroke has not been defined. Exploratory analyses of randomized trials show that low-dose aspirin for primary prevention of stroke in hypertensive CKD 3–4 patients and antplatelet therapy for prevention of major vascular events are effective in CKD 5HD. Efficacy of antplatelet prophylaxis likely extends to secondary stroke prevention in CKD patients, but no randomized trial data are available. Statin therapy was not efficacious for...
stroke prevention in CKD 5D patients, but results of the SHARP trial indicate efficacy of statins for prevention of atherosclerotic events (including ischemic stroke) in CKD patients. A subgroup analysis of the NASCET (North American Symptomatic Carotid Endarterectomy) trial demonstrated absolute benefit of carotid endarterectomy for CKD 3 patients with recent cerebral ischemia and high-grade ipsilateral carotid stenosis. Carotid artery stenting is more frequently performed recently, and the benefits and risks of carotid artery endarterectomy have been defined by large randomized trials. Although results have engendered controversy, the trials are generally interpreted as favoring endarterectomy except in special circumstances. Because CKD, particularly CKD 5D, patients’ carotid arteries are unduly calcified and stiff, complications of stenting may be increased. The risk of perioperative complications of carotid endarterectomy also seems to be higher for CKD patients. Both procedures require administration of substantial amounts of iodinated contrast for cerebral arteriography (although many surgeons perform endarterectomy based on non-invasive imaging). The benefit vs risk of these procedures compared with medical therapy has not been defined for CKD 5D patients.

Intravenous thrombolysis with tissue plasminogen activator is of net benefit for patients with ischemic stroke when given within 4.5 h of symptom onset, with intracranial bleeding as the major complication. In small studies, intracranial hemorrhage was not increased in patients with CKD stages 3–4 (refs. 131,132). However, CKD may be an independent predictor of poor neurological outcome. Many acute strokes occur in CKD 5D patients. The 2005 KDOQI guidelines on CVD in dialysis patients recommend considering thrombolysis on an individual basis. The safety of intravenous thrombolysis has not been defined in CKD 5HD patients with acute ischemic stroke. Heparin administered during dialysis is often problematic in this situation because recent heparin use with prolonged activated partial thromboplastin time is generally considered a contraindication to intravenous tissue plasminogen activator.

The 2005 KDOQI guidelines state that all CKD 5D patients should follow the AHA (American Heart Association) guidelines for prevention, screening, evaluation, and treatment of stroke, with minor caveats. The paucity of new data precludes modification of most previous KDOQI recommendations.

Atrial fibrillation

Atrial fibrillation is the most common cardiac rhythm disturbance in CKD patients; prevalence among dialysis patients is 15–20%, and it is associated with increased incidence of stroke. The mechanism of stroke associated with atrial fibrillation is embolization of left atrial appendage thrombus. Multiple randomized clinical trials of anticoagulation with the vitamin K antagonist warfarin in the general population have shown a marked reduction in stroke with warfarin compared with placebo or aspirin. Thus, the American College of Cardiology/AHA/European Society of Cardiology guidelines recommend anticoagulation with warfarin for primary and secondary prevention of stroke in patients with atrial fibrillation. Extrapolating these data to CKD 5D patients, the 2005 KDOQI guidelines recommend anticoagulation in non-valvular atrial fibrillation with careful monitoring due to increased risk for bleeding. However, randomized controlled trials of antithrombotic therapy for stroke in atrial fibrillation patients excluded CKD 5D patients.

The clinical conundrum balances reduced risk of stroke with warfarin with increased risk of anticoagulant-associated bleeding, vascular calcification, and calciphylaxis. Multi-variate analyses of placebo- and aspirin-assigned patients from randomized clinical trials identified several risk factors that have been incorporated into stroke risk-stratification schemes. The most common is the CHADS2 risk score, which assigns one point each for CHF (moderate to severe decreased LV systolic performance), hypertension, age older than 75 years, and diabetes, and two points for previous stroke. Patients with a CHADS2 score greater than one are generally considered to be at sufficient risk for stroke to warrant warfarin treatment (target international normalized ratio range of 2–3). Because CKD 5D patients were not included in randomized controlled trials of warfarin, they were also not included in derivation of this or of most other stroke risk-stratification schemes. One large retrospective study of hemodialysis patients with atrial fibrillation found that increasing age, CHF, and systolic BP correlated with stroke risk. Multivariate analysis of another study reported that previous stroke, diabetes, and advancing age independently predicted hospitalization for stroke, but hypertension and CHF did not. These and a third study reported that the CHADS2 scheme successfully stratified stroke risk in CKD 5D patients with atrial fibrillation, but the contribution of each component appeared to differ. How reliably the CHADS2 and other stroke risk-stratification schemes apply to CKD 5D patients with atrial fibrillation remains unclear.

It is uncertain how schemes designed to estimate bleeding risk during warfarin anticoagulation apply to CKD patients, and particularly to hemodialysis patients. Risk stratification for hemorrhage has also been proposed; two schemes were derived from databases that included atrial fibrillation patients with CKD. Both identified CKD as a risk factor, but how many CKD 5D patients were included is unclear. CKD 5HD patients have abnormal platelet function and are subjected to therapeutic heparin three times a week during dialysis. Excessive bleeding has been noted in patients administered warfarin in therapeutic doses. The clinical dilemma is that stroke risk increases with declining kidney function, but bleeding risk increases during warfarin anticoagulation.

Retrospective analyses of large dialysis databases raise concerns regarding the efficacy of warfarin anticoagulation in CKD 5HD patients with atrial fibrillation.
from a national network of incident dialysis patients identified warfarin use with increased risk of stroke and overall mortality.140,146 The increased risk of stroke showed a ‘dose effect,’ with higher international normalized ratios associated with increased, not decreased, risk.140 Another study from the DOPPS (Dialysis Outcomes and Practice Patterns Study) database reported increased stroke hazard ratios for patients receiving warfarin,134 and that warfarin use in patients aged older than 75 years was associated with higher stroke risk (perhaps due to hemorrhagic stroke, but this could not be determined). These observations prompted reconsideration of the value of warfarin for stroke prevention in CKD 5D patients with atrial fibrillation. Weighing the available evidence, the benefit of warfarin anticoagulation for primary prevention of stroke in CKD 5D patients is questionable.

The number of patients with atrial fibrillation is projected to double by the middle of this century,147 stimulating development of new oral anticoagulants and non-pharmacological methods to prevent stroke in atrial fibrillation.148,149 Recently, the US FDA approved the oral direct thrombin inhibitor dabigatran (150 mg twice daily) for stroke prevention in atrial fibrillation, including CKD 3 patients.150 Dabigatran trough levels correlate with efficacy for stroke prevention and are altered in CKD patients because 80–85% of dabigatran is excreted unchanged by the kidney. The superior efficacy and comparable safety of dabigatran compared with warfarin was demonstrated in a subgroup of 3505 participants with estimated creatinine clearance ≥ 30 to ≤ 50 ml/min per 1.73 m2 in the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial.151,152 The 2.8% per year stroke rate among patients assigned to warfarin was reduced to 1.5% per year ($P<0.01$) with dabigatran 150 mg twice daily in CKD 3 patients. The FDA also approved a reduced dose of dabigatran (75 mg twice daily) for CKD 4 patients based on pharmacokinetic and pharmacodynamic studies.153

Therefore, until new data become available, and in contrast to the previous KDOQI recommendation 9.1,91 routine anticoagulation of CKD 5D patients with atrial fibrillation for primary prevention of stroke is not indicated, whereas previous KDOQI recommendations for secondary prevention and careful monitoring134 of all dialysis patients receiving anticoagulation remain valid.

Peripheral arterial disease

PAD is common in CKD patients. Among adults aged >40 years with estimated GFR <60 ml/min per 1.73 m2, National Health and Nutrition Examination Survey data from 1999 to 2000 report prevalence of 24%.155 The Chronic Renal Insufficiency Cohort study data show PAD in 7% of adult CKD ND patients;156 prevalence in CKD 5D patients is 17–48%.157,158 CKD is an independent risk factor for PAD events.159

Higher rates of PAD among CKD patients are attributed to greater prevalence of traditional risk factors, such as diabetes, hypertension, dyslipidemia, advanced age, and ‘renal-specific factors.’ A cross-sectional analysis of the USRDS (United States Renal Data System) data identified traditional (such as age, male sex, diabetes, smoking) and kidney-specific risk factors (diabetes duration, low Kt/V, hypoalbuminemia, low parathyroid hormone) as associated with PAD.160 Hyperphosphatemia, inflammation, and malnutrition have been associated with PAD in CKD 5D.161–163

Screening for PAD is recommended for adults in the general population based on age and number of risk factors.137 For CKD 5D patients, the 2005 KDOQI guidelines recommend screening (including physical examination with assessment of arterial pulse and skin integrity) at the time of dialysis initiation. However, screening guidelines are problematic for clinicians because of the lack of clarity regarding diagnostic testing and optimal therapies for PAD in CKD.

The ankle–brachial index is widely considered the standard diagnostic tool for PAD, with <0.9 generally considered the diagnostic value. Greater prevalence of calcified vessels in CKD patients raises concerns regarding the utility of this test in these patients and suggests consideration of alternate tests, such as toe–brachial index and pulse volume recording. Limited data on these measurements in CKD 5D patients demonstrate an association with future cardiovascular events and amputations.164

Evidence-based medical therapies for PAD in CKD patients are lacking. Smoking cessation is mandatory. Aspirin may be beneficial for prevention of cardiovascular events. Clopidogrel has not been studied in CKD patients with PAD. Antiplatelet agents carry the risk of bleeding, which is of particular concern because CKD patients have inherently higher risks of bleeding associated with renal disease and heparin use with hemodialysis. Prospective studies regarding other medical therapies, such as statins, renin–angiotensin aldosterone system blockade, and exercise therapy, are required. Cilostazol, a phosphodiesterase inhibitor that blocks platelet aggregation and functions as a vasodilator, is also commonly used in PAD. It is approved for symptomatic management of claudication. A retrospective analysis of its impact in reducing restenosis among CKD 5HD patients with PAD who underwent percutaneous transluminal angioplasty found an association between cilostazol use and 5-year event-free survival.165

For patients with advanced PAD, particularly those with critical limb ischemia, revascularization or amputation is often required. Critical limb ischemia is defined by lower-extremity ischemic rest pain, ulceration, or gangrene. No randomized studies evaluating percutaneous vs surgical revascularization techniques have been conducted in CKD patients with PAD. Percutaneous methods are preferred, but outcomes are worse among patients with higher rates of repeat percutaneous angioplasty, subsequent surgical revascularization, or limb loss and death.166 In another retrospective analysis, CKD 5D patients who underwent percutaneous compared with surgical revascularization experienced higher limb salvage rates.167 Perioperative morbidity and mortality are high among CKD patients undergoing these
procedures. Surgical revascularization is often complicated by perioperative mortality, prolonged hospitalization, and limb loss in dialysis patients. Diabetes, advanced age, and African-American or American-Indian race/ethnicity are also associated with greater risk for amputation in this population. Optimal management of CKD patients with critical limb ischemia is unclear. Rates of complications, including subsequent amputation and perioperative and 1-year mortality, are higher for PAD therapies in CKD patients. Preventive strategies may be key for reducing PAD-associated morbidity, particularly for decreasing amputation rates. Diabetes is the leading cause of CKD in the United States. Diabetic foot ulcers and neuropathy increase the risk of amputations. Small, single-center studies have shown preventive foot care to be beneficial in reducing amputation rates in CKD 5D patients with diabetes.

Table 2 lists knowledge gaps and research needs.

SUDDEN CARDIAC DEATH

Epidemiology

SCD is generally defined as sudden, unexpected death within an hour of symptom onset, or unwitnessed, unexpected death without obvious non-cardiac cause in patients known to be well within the past 24 h. In CKD 5D patients, this definition is problematic. Determining the unexpectedness of death is vexing in patients with a high burden of comorbidity who spend a disproportionate amount of time in health-care facilities. CKD 5D patient deaths are frequently unobserved, and the exact timing is unknown. Many possible non-cardiac causes (for example cerebrovascular) may contribute to sudden death in CKD 5D patients, and their relative contribution is unknown. However, commonly accepted definitions of SCD should be adopted to facilitate communication between disciplines and interpretation of existing literature. Some circumstances unique to CKD 5D patients may require special consideration. For instance, sudden death occurring in the setting of missed hemodialysis treatment should not be considered SCD.

SCD accounts for about one-fourth of dialysis patient deaths, with an annual rate of 5.5%. Survival of CKD 5D patients after sudden cardiac arrest is universally poor, with a 6-month survival of 3–11%. The cause of death derived from registry data may be prone to misclassification because of the lack of a precise SCD definition; however, findings from randomized clinical trials (HEMO, 4D) and prospective CKD 5HD (CHOICE) and CKD 5PD cohorts are remarkably consistent regarding the relative contribution of SCD to all-cause mortality (22–26%) in dialysis patients. Further studies in two areas are warranted. First, little is known about regional differences in SCD epidemiology. Preliminary evidence suggests that SCD rates may vary in different populations; for example, reported rates are substantially lower in Japanese patients. Second, although available data do not suggest a significant difference between hemodialysis and peritoneal dialysis patients, less is known about comparative SCD rates in patients using non-conventional hemodialytic techniques such as frequent and nocturnal hemodialysis.

The relationship between less severe CKD stages and SCD risk has recently been explored. Secondary analyses of patients with moderate CKD enrolled in the MADIT-II (Second Multicenter Automated Defibrillator Implantation) and the COMPANION (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure) trials have found an incremental risk of SCD with decreasing baseline GFR. Inverse linear relationships between kidney function and SCD risk have been observed in a large cohort with CKD and significant CAD, postmenopausal women with CAD, and elderly individuals without clinically significant cardiac disease. In one observational study of 19,440 patients, estimated GFR was independently associated with sudden death (hazard ratio 1.11 per 10 ml/min decline in estimated GFR). In these studies, the increased risk of SCD associated with CKD could not be accounted for by the degree of measured cardiac or other comorbidities.

Pathophysiology

The association between CKD 5D and SCD is multifactorial and complex, likely involving vulnerable myocardial substrate and superimposed transient triggers. Both are abundant in the dialysis population. For example, CAD is prevalent among CKD patients, producing structural heart disease (ischemic cardiomyopathy with decreased systolic function) and a source of triggering events (acute myocardial ischemia) from which terminal arrhythmias arise. CAD is the underlying substrate in most SCD in non-CKD patients, and recognized risk factors for CAD identified in the general population are prevalent among CKD patients.

However, the pathophysiology of CAD as the main determinant of SCD risk is problematic among CKD patients. Evidence suggests that CAD-related risks are insufficient to explain the markedly increased risk of SCD among CKD patients. In CKD ND patients, SCD risk associated with diminished GFR cannot be accounted for by severity of CAD, CHF, diabetes, or decreased use of cardiovascular medications. In clinical trials, only 9% of deaths were directly attributable to CAD, whereas SCD accounted for 26%. Recognized risk factors such as LV systolic dysfunction are present in only a minority of CKD 5D patients, but LVH is endemic. The degree to which unique dialysis-specific complications (such as hyperkalemia) and other non-cardiac mechanisms contribute to the overall sudden death rate is unknown, and few autopsy data are available. A small autopsy series of Japanese CKD 5D patients found stroke to be the most frequent cause of sudden death (26%), followed by cardiac disease (19%) and infectious disease (17%). Obtaining autopsy data is difficult, but additional studies using postmortem information would be illuminating.

A related issue is characterizing the primary arrhythmias responsible for sudden death in CKD patients. In the general population, SCD may be due to several catastrophic events and sustained ventricular tachycardia and ventricular
fibrillation constitute about half the cases. Whether the same pattern holds true among CKD 5D patients is unclear, given the differences in underlying cardiac disease patterns. Small retrospective studies of presenting arrhythmias in CKD 5D patients with SCD report a wide range of ventricular arrhythmias (19–72%). Unique metabolic derangements and other non-cardiac events may cause terminal arrhythmias beyond ventricular tachycardia and ventricular fibrillation. Characterizing SCD arrhythmias in CKD 5D patients is important, because non-ventricular arrhythmias would not be expected to respond to traditional resuscitative measures involving defibrillation. Implantable loop recorders used to identify terminal arrhythmias could prove useful, but a coordinated effort would be necessary given low enrollment rates anticipated in such studies.

Prevention

Preventive strategies for SCD in CKD 5D patients should be a major public health concern. Attempts to evaluate the efficacy of preventive strategies in CKD patients rely on reasonable risk-stratification data. This is extremely challenging, as SCD is a generic term encompassing widely disparate events, the risk factors of which likely also vary widely. Diminished GFR by itself should be considered a significant SCD risk factor. CKD 5D confers additional risk; one study suggested that SCD risk doubles in CKD 5 patients with dialysis initiation. Most studies of SCD risk factors in dialysis patients focus on retrospective and small observational prospective cohorts, and are limited by small sample size, inherent limitations in the adjudication of end points, and failure to examine a wide range of candidate variables.

An important and consistent observation is increased SCD occurrence in CKD 5HD patients on the first hemodialysis day following the long intradialytic period, suggesting that fluid and electrolyte accumulation and rapid shifts during hemodialysis may be important triggering factors. Exposure to low-potassium and calcium dialysate, volume removal on dialysis, and pre-dialysis hyperkalemia and hypokalemia have been consistently associated with increased risk of intradialytic SCD. Obstructive sleep apnea has been associated with arrhythmias in the general population, and disordered nocturnal breathing is highly prevalent among CKD 5D patients. Although evidence of a direct link to SCD is lacking, nocturnal hypoxemia in CKD 5D patients has been associated with increased cardiovascular events. Measures of structural heart disease have been variably associated with increased SCD risk; one small study suggested that change in the LV mass index is the most potent predictor of SCD, and another found no association between LVH and SCD risk. The high prevalence of LVH in CKD 5D patients limits its utility in SCD risk stratification. Ejection fraction \(\leq 35\% \), regardless of etiology, identifies a subgroup of CHF patients with high risk of sudden death due to arrhythmia, and even milder degrees of LV dysfunction may be associated with increased event rates in peritoneal dialysis patients.

Other non-invasive cardiac markers, including ambient ventricular ectopy, heart rate variability, QT dispersion, baroreflex sensitivity, and T-wave alternans, have been insufficiently studied in this population to be of clinical utility. Serum biomarkers, particularly cTnT, have been associated with all-cause mortality and SCD and may serve as markers for cardiac apoptosis and CHF. Other biomarkers associated with SCD among CKD 5D patients include markers of inflammation (interleukin-6, C-reactive protein, and adiponectin) and nutrition (serum albumin, pre-dialysis serum creatinine), but these have not been validated across cohorts. Multinational observational cohorts including diverse populations of CKD ND and CKD 5D patients and examining a broad spectrum of potential risk factors and risk-stratification techniques are desirable.

The major question facing risk-stratification studies is what to do with results. Avoiding rapid fluid and electrolyte shifts and low-potassium dialysate in hemodialysis is supported by observational data, but controlled trials should be performed to determine the potential benefit of intensive dialytic management with dialysate and ultrafiltration profiling to improve tolerance of the hemodialysis procedure. Whether frequent or long, slow hemodialysis or other modifications can improve tolerance and help prevent SCD remains to be seen. Otherwise, few effective therapies are available to prevent SCD in CKD 5D patients. \(\beta \)-Adrenergic blockers improved survival and decreased SCD risk in a study of CKD 5D patients with dilated cardiomyopathy, but more work in this promising area is required. There are no data on the prevention of SCD using anti-arrhythmic therapy, and such an approach is unlikely to prove beneficial in CKD 5D patients. A recent study reported that use of digoxin was associated with increased mortality in CKD 5HD patients. Implantable cardioverter-defibrillators (ICDs), a highly effective but expensive technology with a proven track record in CHF patients, have been inadequately studied. Although 4% of all ICD implants in the United States are in CKD 5D patients, no prospective trial data assess their utility. The USRDS reports median survival of only 18 months in CKD 5D patients receiving ICDs for primary prevention indications, well below survival in non-dialysis ICD recipients. Observational data suggest modestly improved survival of CKD 5D cardiac arrest survivors receiving ICDs for secondary prevention indications. Complications following device implantation increase fivefold in CKD 5D patients and short-term post-implant mortality fourfold. Whether wearable defibrillators or leadless subcutaneous devices can impact survival while reducing complication rates is unknown.

Table 2 lists knowledge gaps and research needs.

CONCLUSIONS

Data that have become available in recent years generally reinforce the importance of CVD in determining quality of life and prognosis of CKD patients. Increasing evidence demonstrates that pathology, manifestations, and complications of CVD differ in the presence of CKD. Thus, the risk-benefit
relationship of management strategies evaluated in the general population may differ significantly in patients with CKD. The number of trials that specifically address CVD in CKD patients, or that enroll CKD patients, remains small; however, increasing awareness may stimulate future trials. When results of needed studies of atrial fibrillation, coronary revascularization, SCD, and other relevant topics become available, KDIGO will consider developing a clinical practice guidelines based on a systematic evidence review.

DISCLOSURE
PHS has received research funding from Satellite Health Care. BLK has received research funding from Bristol-Myers Squibb and Genzyme and is a paid advisor for Litholink (Lab Corp). RGH has received research consulting fees from Boehringer Ingelheim. RWA is a paid advisor for Atritech. RSP receives research support, speaker’s fees, and consulting fees from Medtronic. K-UE has received lecture or consulting fees from Amgen, Bayer, Genzyme and GSK, Johnson & Johnson, Novartis, Roche, Sanofi-Aventis. CAH has received research support from Amgen and Johnson & Johnson and honoraria from UpToDate, is a consultant for Amgen, CorMedix, Abbott Labs, FibroGen, Affymax, Fresenius, and Merck, and has equity interest in Cambridge Heart, Merck, Boston Scientific, and J&J. All other authors declared no competing interests. This conference was sponsored by KDIGO and was partially supported by unrestricted educational grants from Novartis, Takeda, and Abbott.

ACKNOWLEDGMENTS
We thank Shane Nygaard, BA, and Nan Booth, MSW, MPH, ELS, of the Chronic Disease Research Group, Minneapolis Medical Research Foundation, for manuscript preparation and manuscript editing, respectively.

REFERENCES
Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 2009; 119: e561–e587.

34. Bangalore S, Yao SS, Chaudhry FA. Usefulness of stress echocardiography for risk stratification and prognosis of patients with left ventricular hypertrophy. Am J Cardiol 2007; 100: 536–543.

56. The SHARP Collaborative Group. Should We Reduce LDL Cholesterol in Patients with Chronic Kidney Disease? The Results of the Study of Heart and Renal Protection (SHARP). American Society of Nephrology Renal Week 2010: Denver CO.

meeting report

95. Dickstein K, Cohen-Solal A, Filippatos G et al. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008; 29: 2388-2442.

185. Wanner C, Krane V, Marz W et al.
169. Reddan DN, Marcus RJ, Owen Jr WF et al.
181. Parekh RS, Plantinga LC, Kao WH et al.
199. Davis TR, Young BA, Eisenberg MS et al. Outcome of cardiac arrests attended by emergency medical services staff at community outpatient dialysis centers. Kidney Int 2008; 73: 933–939.