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1. Introduction

It is well known that many-species Lotka-Volterra system holds many desired properties (for example, existence and
uniqueness of the positive solution, global stability and so on) when the intraspecific competition term dominates the
interspecific interactions, namely, the community matrix is diagonally dominant. For delay Lotka-Volterra system, these
nice properties still hold if the undelayed intraspecific competition dominates both the delayed intraspecific competition as
well as the interspecific interactions (see [3,6] and references therein).

As the generalized Lotka-Volterra system, the n-dimensional deterministic Kolmogorov-type system for n interacting
species is described by the following differential equation

x(t) =diag(x1(0), ..., X (D) f (x(D), (11)
where x = (x1,...,x,)7, diag(x1, ..., x,) represents the n x n matrix with all elements zero except those on the diagonal
which are X1, ..., %, f=(f1,..., f)T. There is an extensive literature concerned with the dynamics of this system and we

here only mention [4,5,11,14]. Tang and Kuang [13] consider the following functional form of Eq. (1.1)

x(t) = diag(x1(t), ... xa(0)) f (X¢), (1.2)

where x; € C([—7,0]; R") is defined by x;(0) =x(t +0), 0 € [—7,0].

Recall that fj(x;) in (1.2) represents the inherent net birth rate of ith species. It is often affected by various unpredictable
factors. According to the well-known central limit theorem, the sum of these factors follows a normal distribution. We can
therefore replace the net birth rate f;(x;) by
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fitxe) + gi(x)w,

where w is a white noise (i.e., w(t) is a Brownian motion) and g;(x;) represents the intensity of the noise, which not
only depends on the current state, but also the history state of n species. Hence (1.2) becomes the following n-dimensional
stochastic functional Kolmogorov-type system

dx(t) = diag(x1 (t), ..., X (0)) [ f (xe) dt + g(x0) dw (D) ] (1.3)
on t >0, where w(t) is a scalar Brownian motion, and

f=U1 ) C([=7, 0, R - R",  g=(g1,...,8n)" : C([-7,0]; R") - R".

Recently, stochastic population systems have received increasing attention. Refs. [1,9] reveal that the environmental noise
may suppress the potential population explosion and guarantee the global positive solution to stochastic delay Lotka-
Volterra system, and moreover, also shows that the stochastic Lotka-Volterra model produces many desired properties, for
example, stochastically ultimate boundedness and the moment boundedness. Under another environmental noise perturba-
tion, [2,12] reveal that the stochastic Lotka-Volterra system behaves similarly to the corresponding deterministic system.
Ref. [10] reviews these two classes of the models and indicates clearly that different structure of environmental noise may
have different effects on the population dynamics. By introducing the more general stochastic perturbations in the sys-
tem (1.3), [15] clearly obtains the conditions for the different effects. These conditions show that if the environmental noise
intensity is strongly dependent on the population size, this noise may suppress the population explosion and guarantee
the global positive solution and the model produces several desired asymptotic properties. When the environmental noise
intensity is weakly dependent on the population size, the stochastic system behaves similarly to the deterministic one and
asymptotic properties are also independent of this noise.

This paper mainly focuses on the behaviors of the stochastic system (1.3) under the diagonally dominant condition, which
is a classical condition in deterministic population systems. Under this condition, this paper establishes the existence-and-
uniqueness theorem of the global positive solution to Eq. (1.3) and examine the asymptotic properties of this global positive
solution, including the moment boundedness, stochastically ultimate boundedness and the moment average boundedness in
time. These are the desired properties for a population system.

In next section, we give some necessary notations and lemmas. In Section 3, under the diagonally dominant condition,
we examine that the system (1.3) almost surely admits a unique global positive solution. Section 4 shows that this global
positive solution holds the desired ultimate boundedness under diagonally dominant condition. Section 5 gives the moment
average boundedness in time. As applications of our results, Section 6 discusses some stochastic Lotka-Volterra systems.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let | -| be the Euclidean norm in R". If
A is a vector or matrix, its transpose is denoted by AT. If A is a matrix, its trace norm is denoted by |A| = \/trace(AT A). Let
R4 =[0,00), Ryt = (0, +00), and let T > 0. Denote by C([—7, 0]; R") the family of continuous functions from [—t, 0] to R"
with the norm |l¢|| = sup_;<g<o |9(0)], which forms a Banach space. Let C+ = C([~7,0]; R}) and Cy1 =C([—7,0; R} ).
For any c = (c1,...,cn)T € R% ., let ¢ = max{cy, ¢z, ...,¢p}, C=min{cq,c2,...,¢y} and C = diag(cq, ..., cp). For any a € R,
let at =avO0.

Let (2, F,P) be a complete probability space with a filtration {F};>0 satisfying the usual conditions, that is, it is right
continuous and increasing while Fy contains all P-null sets. Let w(t) be a scalar Brownian motion defined on this probability
space. If x(t) is an R"-valued stochastic process on t € [—T, c0), we let x; = {x(t +0): —7 <0 <0, t > 0}. In addition, we
impose the following assumption on the coefficients f and g.

Assumption 2.1. Both f and g are locally Lipschitz continuous.

This paper often uses the function

n
Vp(x)=2xf, forxeR%}, p>0 (2.1)
i=1
and its properties. For the convenience of reference, we give them as lemmas (also see [15]).
Lemma 2.1. Forany x € R", and p > 0,
VPx) <nP DYV, (x). (2.2)
Lemma 2.2. For any x e R", and p > 0,

Vo) <n@=DVOP [xP <nE-DVOy (x). (2.3)
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The following lemma shows the boundedness of polynomial functions.

Lemma 2.3. For any ¢ € C(R" ; R), a, p > 0, when |x| — oo, ¢(x) = o(|x|P), then

sup [@(x) — a|x|P] < oco. (2.4)

n
xeRT

Proof. Define h(x) = ¢(x) — a|x|P. Choose r > 0 such that |¢(x)| < a|x|P when x € R, |x| > r, which implies h(x) < 0. We
therefore have

sup h(x) = sup h(x) < oo,

xeRL xeRT, [x|<r

as required. 0O

3. Positive and global solutions

It is well known that, in order for a stochastic functional differential equation to have a unique global solution for any
given initial data, the coefficients of the equation are generally required to satisfy the linear growth condition and the local
Lipschitz condition (cf. Mao [8]). However, clearly, if both f and g are not bounded, the coefficients of Eq. (1.3) do not
satisfy the linear growth condition. In this section, we examine the existence and uniqueness of the global positive solution
to Eq. (1.3) under the diagonally dominant condition. We need the following definition of local solutions (see [7]).

Definition 3.1. Set F; = Fp for —7 <t <0 and let x(t), —7 <t < p. be a continuous R"-valued F;-adapted process. It is
called a local strong solution of Eq. (1.3) with initial data & € C([—t, 0]; R") if x(t) = &(t) on —T <t <0 and

EALK EA P
X(t A pp) =E(0) + / F(xs)ds + / G(xs)dw(s), Vt=0
0 0

for each k > 1, where F(¢) = diag(¢1(0),...,¢n(0))f(¢), G(p) = diag(g1(0), ..., ¥n(0)g(®), {ok}k>1 is a nondecreasing
sequence of finite stopping times such that px — p. almost surely as k — oo. If moreover, limsup,_, ,, [x(t)| = oo is satisfied
almost everywhere when p, < 00, it is called a maximal local strong solution and p. is called the explosion time. A maximal
local strong solution x(t), —7 <t < p, is said to be unique if for any other maximal local strong solution x(t), —t <t < Qe,
we have p. = pe and x(t) = x(t) for —t <t < p almost surely.

Applying the standing truncation technique (see [7, Theorem 3.2.2, p. 95]) gives

Theorem 3.1. Under Assumption 2.1, Eq. (1.3) almost surely has a unique maximal local strong solution for any initial data & €
C([—7,0]; R™).

To avoid the linear growth condition, we need further conditions for both f and g. For any ¢ € C4+ and 1 <1, j <n, we
give the following assumption:

Assumption 3.1. There exist o, 8 > 0, A = [ajj], B = [bjj], A= [aij], B= [Eij], R =[rij1, D = [djj] e R™" and probability
measures [jj, fLij, Vij such that

n

0
filp) < Z|:aij§0?(0)+bij/(ﬂ?(9)dl/«ij(9):| +o(le©@]).

j=1
n 0
lfitp)| < Z[auw;?‘m) +bjj / ¢ (©0) dﬂij(G)} +o(je@]%).
j=1 —T
n 0
|8i(9)] < Z[mwf (0) +dij f of <9)dv,-,-<9>} +o(|e©]").
j=] -7

This assumption is more general than the corresponding assumption in [15] (see Assumption 3.2 in [15]). Under this
assumption, the existence and uniqueness of the global positive solution of Eq. (1.3) follows.
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Theorem 3.2. Let Assumptions 2.1 and 3.1 hold. If « > 28 and

—a;i > Aj+nB; (1<i<n), (3.1)

where A; = Z?:l,j;ﬁi ag, Bi = 22:1 bf]r then for any initial data & € C44, Eq. (1.3) almost surely admits a unique global positive
solution, namely, x(t, &) € R, with probability one.

The condition (3.1) shows that the undelayed intraspecific competition dominates both the delayed intraspecific compe-
tition as well as the interspecific interactions, namely, the community matrix is diagonally dominant, which is similar to
the traditional condition for deterministic Lotka-Volterra systems (cf. [6]). To prove this theorem, we need the following
elementary lemma.

Lemma 3.3. For the nonnegative constants a;, b; (1 <i < n), a; > b; if and only if there exist positive constants c¢; (1 <i < n) such
that

min {a;jc;} > max {bjc;}.
i< 1<i<

Proof. The sufficiency is obvious, so we omit it. We now consider the necessity. Assume n > 2 (when n =1, the result is
obvious). If n =2, by a; > b1, a; > bz, we have aja > b1bs, it is obvious that
a b
—_— > —.
b1«
Then there exist c1, c; > 0 such that
ar C1 b2
_— > — > —,
b1 C2 [¢5]
which implies that aycy > byc1, ajcq > bycy. We therefore have
min{aicy, axcz} > max{bici, baca}.

Let n > 2. Assume that there exist positive constants A; (1 <i<n — 1) such that

min {a;A;} > max {b;jr;}, (3.2)
1<i<n— 1<i<n—1
which implies that there exist ig, jo € {1,2,...,n — 1} such that a;jA;, = minigi<p—1{a;A;} and bj X j, = maxigicn—1{biAi}.

For ajyAi, > bj,Aj, and a, > by, by the above result (n = 2), there exist i, ¢, > 0 such that
min{aj, Ao i, AnCp} > max{bj, A j, u, bacp}. (3.3)
Define ¢; = A (1 <i<<n—1). Then by (3.2) and (3.3),

min {a;c; :min[ min {ajrin}, a c]
1@@1{ iCi} n {ajAip}, ancy

<i<n—1

= min{a;,Aiy, dnCn}

> max{bj,Aj,, bncn}

= max{ max {bjA;ju}, bncn}
1<ign—1

= max {bici},

1<i<

which implies desired result by induction. 0O
Then the proof of Theorem 3.2 follows.

Proof of Theorem 3.2. For any initial data &£(0) € C4, by Theorem 3.1, there exists a unique maximal local solution x(t) on
t e[—T1, Te), Where 7, is the explosion time. To show that the solution is global, we only need to prove that 7, = 0o a.s. Let
ko be a sufficient large positive number such that

1 .
o < -T FOT<_max O <ko

For each integer k > ko, define the stopping time
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=inf{t € [-7, Te): x;(t) ¢ (1/k, k) forsomei=1,2,...,n}

with the traditional setting inf#) = co, where ¢ denotes the empty set. Clearly, tj is increasing as k — oo and 7y — Too < Te
a.s. If we can show 7, = 0o a.s., then 7, = 0o a.s., which implies the desired result. This is also equivalent to proving that,
for any t > 0, P(ty <t) — 0 as k — oo. To prove this statement, we examine the condition (3.1). This condition implies that
foralli=1,...,n,

aji + A; <0, —aj; — Aj > nB;. (3.4)

By Lemma 3.3, there exists a ¢ = (c1,C2,...,Cn)! € R7 ., such that
min {c;i(|ajj + A;|)} > max {nc;B;},
1<i<n{ 1(| ii 1|)} 1§i<n{ iBi}

which implies that

max {ci(@ii+ A} <— max {nc;Bi}. (3.5)

]\'\n <i<

Then for ¢ defined in (3.5) and any p > 0, define a C2-function

n
U =) ciux), (3.6)

i=1

where u(x;) —x — plogx;. Clearly, u(-) >0 and u(0") = u(oco) = co. Applying the Itd formula for U(x) and taking expecta-
tion yield

EATE

U(x(t ATp)) =EU(£(0)) + E / LU (xs) ds, (3.7)
0

where LU is defined as

LU@) =) ¢ [ (0P © 1) fitp) + 2 ((p—l)tpl 0) +1)g; (w)}

i=1

= p Zw, 0 fitp) + L2 Zc,gol O)gk@)+ 2 Y al-2fit0) + 9]
i=1 i=1

i=1
=11+ +I3. (3.8)

Then we estimate I1-I3, respectively. Note that Lemma 2.2 gives

n
Zcixf <EVp(x)
i—1

<en1=5VO0 P
This, together with Assumption 3.1 and the Young inequality, yields

0

chlgol <0>Z[au% (0) + bjj / @%(0)duij () +o(!<p<0>|°‘)]

i=1 “r

=p Z Zc aijel (09 (0) + p Z Zc,bU / oF ()¢ 0) d1uij () +o(|p(0)|*"P)

i=1 j=1 i=1 j=1

<p2ci<aii<o§”"(0)+ Y. ahel e (0)>+p22c, / ©F (0)p% (0) dpaij () +0(|p(0)|*"P)

i=1 Jj=1,j#i i=1 j=1 1

<p2c,-<au<pf‘“’(0)+ > alef (0) max {¢f <0>}>

i=1 J=1,j#
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0

o+ o+ a+p
a+pZZCl |:p‘/)i p(0)+a/§0j p(@)du,-j(e)} +O(|(p(0)| )

i=1 j=1 “r

<chl(au<o, 0+ Aigf 0) max (¢ 0)})

4 [chl 0" "(0)+aZch /?+p(9)dﬂij(9):|+0(|(p(0)|a+p).

C( TP i=1 j=1 1
For any x e R’} | and any given i, define the function

hi(x) = a;ix{ P + Aix! max {x%}).
1<j<n

If X; = max¢jgn{X;j}, then
hi(xi) = (a;; + Ai)x?’Lp,
which implies that

n
> ci(aigf ) + Aigf ©) m max {¢f(0)] )< Za(au + AP (0)
i=1
< 122(”{51'(01'1' + AD}Vaip(9(0)). (3.9)
When x; # maxqgj<niXj}, for x; € [0, maxigj<niXj}),

a+p= +pA,-xf’_1 max {x‘;‘}

hi(xi) = aji(c + p)X; :
1<j<n

which implies that there exists a unique

*_[ pA;

X =

—} max {x;}

(@ + plaji| | 1<i<n

such that the function h;(x?) = 0. Noting h;(0) =0 and h;(maxgj<n{X;}) = (@i + A}) max1<j<n{x‘;+p} < 0, we have h;(x;) <
hi(x) for all x; € [0, maxygjgn{x;}]. Since there must exist some i* € {1,2,...,n} such that x; = maxi¢j<n{X;}, we have

i@y © + Al ©0) max {y ¢ 0)})
i=1
= Ci*hi*<lrgja%(n{(ﬂj(0)}> + i:éi* cihi(i(0))

n p

CitAj DA; )" a+p

< | ¢ (=i + Ajx) + max {@; 0

[ e A iéi*a+p<(a+p)laﬁl A
P

ciaAj PA; a+p
< [1max {ci@i + Ap} +Za+p<(a+p)|aii|> } max {goj 0}

= —K, max {¢* P (0}, (3.10)

SIS

where

CiatAj DA; )
—K, = max {ci(ajj + A;
P gic {ciai ) lea—i-p((ot-l—p)laiil

Rl

Noting A; < |aj;|, we have

Koo = 11m N Kp=-— max {ci(aii + Ap} > 0.

1<ign
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In the following, we choose sufficiently large p such that K}, > 0. Clearly, Vg p(x) < nmaxlgi@{x?” }. We therefore have

n

> cifaig! 7@ + Aig 0 max [0 ) < 17Ky Vasp(0(0)
i=1
This, together with (3.9), implies that

pKp = p?maxi<i<n{ciBi}
LS| —— == Vv 0
1 ( s a+p atp(©(0))
n
N / ") dusy6) +0(|p(0)* ). (311)
pl 1 j=1
By Lemma 2.1, for x1,x2,...,xp >0,

n 2 n
(in> ganiz. (3.12)
i=1 i=1

Then by Assumption 3.1, the Young inequality and the Hoélder inequality,

0 2
< PP B DM chp, (0)|:Z(Tij¢f(0)+dij / gof(e)dvfj(e))+o(|¢(0>|ﬂ)}

j=1

n n 0 2
gp(p—1)+zci‘ﬂf(o)|:Z(rijfpf(o)+dij/§0§5(9)dvij(9)):| +o(|p©)**7)

i=1 j=1

n n 0 2
<2np(P—1)+ZZCi(P,P(O)|: r2pi (0) +d% /¢f(9)av,.j(9) }+o(|¢<0)|2’”")

i=1 j=1

<mp(p -1y D¢ [rfjgo, ¢’ (0) +d? / of (09" (©) dvy; (9)} +o(|©)**7)

i=1 j=1

n

0
2np(p — DT
< ’;(; +p) Zz{pcl ra+d2) P (0) + 2Bcirk 9 P (0) + 2Bcid f wf“"(e)dvﬁ(e)}
i=1 j=1 _
2
+o(|lp@ 1P,
Noting 28 < «, by Lemma 2.2,

2 ﬁ+p < 2 2B+p
p;l;lczr +dj;) 0 < nplglyé czr +dj;) § ;" (0)
_M 2B+
<npl£r113xn{ i(rizj+d,~2j)}n(1 2V 4(0)| p

=o(|e@]"").

Similarly,

283> cirkpi? ) =o(|p©]""").

i=1 j=1

These imply that

0
4 DT o o
Iy < MZZcid%j/wfﬁ”(e)duij(e)+o(|¢(0)| Py, (3.13)

28+r  H =1
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By Assumption 3.1 and the condition 28 < «,

I3 < pZCi|fi((ﬂ)| -+ gzcig?(fﬂ)

<p Z Zc, [auw, (0) + bj; / ¥ (e)d;zijw)} +o(le©@|%)

i=1 j=1
0

+2anZcz[ 2o (0) +d} fwfﬁ(e)dvuw)} +o(le©]*).

i=1 j=1 r

Note that

Py > cidijgf (0) = o(|e©)|""P),

i=1 j=1

2np Y ciriei’ (0) =o(|e(0)|* 7).

i=1 j=1
We therefore have

<p Z Zc byj f 9% ©)djLij(©) + 2np Z Zc a7 / 97’ 0)dvij©) +0(|p©)|* 7).

i=1 j=1 i=1 j=1
Substituting I1-1I3 into (3.8) yields

0
LU(¢) = H(p(0)) +—ZZc, [ / wj‘*"(e)duij<e>—¢§‘+"(0)}
i=1 j=1 —T

4pnp(p — )" 28 28
MRy Zch [f ¢;" " (0)dvij(6) — ¢ *‘%m}

i=1 j=1 1
0

+pZZC1bu|: /wf‘(g)dﬂij((?)—w?(())}

i=1 j=1

+2np ZZcid?j[ / 7" () dvy(©) — 93" (0)},

i=1 j=1

where

K 2 maxi<i<n{CiBi
H(x) = (_p p +p 1<ignlCi 1}>Va+p(x)+ ZZCb
n oa+p i1 =

P by +2m Y3 et o).

i=1 j=1 i=1 j=1
Noting

> P =),

i=1 j=1
n

n
Z Z CiBin(J)-l =o(|x|**P),

i=1 j71

ZZC du § =o(x*"P)

i=1 j=1

+ a+p+4,3np(p_l)
0% 2617

111

(3.14)

n
> eyt

i=1 j=1
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we therefore have

pK,  p*maxi<icnlciBi}
oy = (22 + Pl Va+P<X>+—ZZab$ P 4 o((*)
i=1 j=1
- ( pKp N p? maxq <i<nlciBi} N apmaxq<j<nfd jq Ci :;}
= n a+p a+p
=:—n""pbp Vi p®) +0(1x*1P),

) Vatp() + 0(|x|a+p)

where

b K n(p maxi<i<n{CiBi} + @ maxi<j<n{d iy Cib;ﬂ)

L a+p '
By (3.5), we have

lim by = Koo —n max {c;B;}

p—>00 <ign

= — max c;(a;; + A) — max {nc;Bi} > 0,
SIsn SIS

(3.15)

which implies that for sufficiently large p, bp > 0. Then Lemma 2.3 gives that there exists a constant H such that H(x) < H

So we have

tATE 0
U (x(t A i) <EU(£(0)) + Ht +—— Z Zc bﬂE[ / ( /x‘]’.‘“’ (s +0)duwij(6) — x‘;‘“’ (s)) ds:|

1]]] 0 1

EATR 0
4pnp(p —D* ¢ 2 26
LY S— 28+p ZZCd |: /( /Xj +p(5+9)dvij(9)—xj *P(s) ) ds

i=1 j=1 “r

EATE 0
+pZZc,b,]]E[/(/x‘}‘(s—i—@)dﬂij(@)—x‘j‘(s))dsi|

i=1 j=1 1

tAT, 0
+2anZc dUIEl|: / ( /xiﬂ(sw)duij(e)_x?ﬂ(s)) dsj|.
i=1 j=1 “r
By the Fubini Theorem and a substitution technique, we may estimate that
EATE 0 0 EAT+0 EATE
a—+p a+p _ a+p oa+p
/ ( /xj (s+0)duij®) —X; (s)) ds_/ dpij(0) / X; (s)ds — / X (s)ds
0 -7 -7 0 0
0 AT tAT
fdu,,](e) f ‘”P(s)ds / x‘}‘*p(s)ds
-7 0
< / &P @) de.
-7
Similarly,
EAT, 0 0
/ ( /x§ﬁ+p(s+9)d\)1~j(9) —x?ﬁ"’p(s)) dsgfgjzﬁ“’(e)de,
0 -t -
EATE 0

0
/(/X'}‘(S-l-e)dﬂij(@)—X?(S)>d5</$f‘(9)d9,

0 -7
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tATE 0 0
/( /x?ﬁ(ere)dvij(e)—x?ﬁ(s)) dsg/sfﬁ(e)de.
0 -1 -

We therefore have

0
U(x(t A ) < EU(£(0)) + Ht + Z chbﬂE / £ (0)do

11]1
n

4pnp(p — 1T & 2 2+p
T h ;;cidij]]i/sj () do

i=1 j=1 i=1 j=1

0
—i—pZchbUE/S"‘(Q)d@—i—anZch /gfﬁ(e)de
-7

=:Ki,

where K; is independent of k. By the definition of 7, x;(tx) =k or 1/k for some i =1,2,...,n, so

P(re <O[u(1/k) Aul)] < P(te < OU(X(E A 7))

<EU(x(t A Ty))
<K,
which implies that
limsupP(t, <t) < 11 L =0,
k—o00 k—oo u(k) Au(1/k)

as required. O

In this theorem, the diagonally dominant condition (3.1) is independent of the environmental noise. The key condition
is B < «/2. By Assumption 3.1, this condition implies that the intensity of environmental noise weakly depends on the
population size, so the environmental noise does not play a crucial role for the global positive solution (also see [15]).
4. Asymptotic bound properties

Theorem 3.2 shows that the solutions of Eq. (1.3) will remain in the positive cone R} ,. This nice positive property
admits us to further examine how the solutions vary in R, in more detail under the diagonally dominant condition.
Comparison with nonexplosion of the solution, stochastically ultimate boundedness is more interesting from the biological

point of view. To discuss stochastically ultimate boundedness, we first examine the pth moment boundedness.

Theorem 4.1. Let Assumptions 2.1 and 3.1 hold. If « > 28 and the condition (3.1) hold, then for any q > 0, there exists a constant I_<q
independent of the initial data such that the global positive solution x(t) of Eq. (1.3) has the property
lim supIE|x(t)]q < Kq. (4.1)
t—00
Proof. For any p > 0, define a C2-function V, : R", — R by
n
V=) cind, (4.2)
i=1
where c is defined in (3.5). Applying the It6 formula to ef\_/p (x(t)) and taking expectation yield

t
EVp(x(t)) =e"EV,(£(0)) + e 'E / e[LVp(xs) + Vp(x(5))]ds, (4.3)
0

where LV, is defined by
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n

LV, (@) = Z[pcmof’(o)ff () +

i=1

—1
%cm" (O)g?(so)}.

By Assumption 3.1 and the computation of I; and I,

LVyp(@) + Vp(9@) <+ 12+ ) cigf (0)
i=1

0
®(9(0) +—Zch [ / @7 O) dui(©) — €7 w“*"(m}
i=1 j=1 “r
4 Dt o 0
A VS5 ] [ moamo-eiitro)
i Jj=1 “r
where
pK p? maxi <i<nfciBi} o+
¢(X):<_Tp+ oa+p ) chlb; J ’

11]1

4np(p — e’ (- ¢ 2 2B+p . p a+p
DD S i o).
b i=1 j=1 i=1

Noting that 28 < «, we therefore have

D(x) = <_p_P+p 1<ign{Ci z}+ j<nt 2ui=1 CiDj;
a+p a+p
=:—n""pbpVaip(X) +0(Ix**P),

) Vayp() + O(|X|a+p)

where

T i n T
npmaxigigniciBi} &ne maxi<j<n{d iy cibii}

a+p a+p

BP =Kp—
By the definition of Kp,

lim bp = K5 — max {nc;B;} > 0.
p—00 1<i<n

So, for sufficiently large p, we have Ep > 0, which implies that there exists a positive constant H > 0 such that ®(x) < H

We therefore obtain
t 0
EVp(x(t) < e "EV,(£(0)) + e—f]E/ [H +— Z Zc, ( fx‘;.‘“’ (s +0)dpuij(0) —e™x] ™" (s))
0 -7

n n

1t
+%22cd (/ 2./5+p(s+9)dv,-j(9)—e’x?ﬁ+p(s))i|ds

i=1 j=1

Applying the Fubini Theorem and a substitution technique yields

t t 0 t+6 t
/ / “+p(s+9)duu(9)ds—/ eStTx “+p(s)ds_/d,u,](9)/ e X (s +0)ds — / et (s)ds
0 0 -7 0
0 t
/dﬂu(@)/. eSt? a+p(s+0)ds / S+TX‘;+p(5)ds
i 0
0

=eT / eeg}”p(e) de.

-7
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Similarly,
t 0 ¢ 0
f/ 2ﬁ+p(s+6)dvu(9)ds_/ s+rx?ﬂ+p(s)dsger/eegfﬁ+p(9)d0.
0 -7 0 -

We therefore have
0

EV,(x(t)) < e "BV, (£(0) + (1—e ')A + et = a+ ZZc,bﬂE/eGsf‘*p(e)d@

i=1 j=1

_4Bnp(p — Dte’ < o0 26+
+e f—Zch / &7 (0)do.
2ﬁ+P i=1i=1

Clearly,
limsup EV,, (x(t)) < H
t—00

Lemma 2.2 gives
limsupE|x(t)|” < limsupn(%_l)VOEVp(x(t))
t—o00 t—>o00

n(gfl)vo _
< limsup f]EVp (x(0))

t—00

n(%—l)vON

c
For any q > 0, choose sufficiently large p such that p > q. By the Lyapunov inequality,

q
Elx®)|* < (E|x®)|")?,
which implies that

q

' q n(g—l)VON 7
limsupE[x(®)|" <| ———H| .

t—00 C
Then the desired assertion (4.1) follows by setting K, = [n(z~DV0¢=1H9/P, 0

From the pth moment boundedness, the stochastically ultimate boundedness will follow directly. We describe it as the
following theorem.

Theorem 4.2. Let Assumptions 2.1 and 3.1 hold. If « > 28 and the condition (3.1) hold, for any € € (0, 1), there is a positive constant
M = M (¢) such that for any initial data & € C4, the solution x(t) of Eq. (1.3) has the property that

limsupP{|x(t)| <M} >1—¢, (4.4)

t—o00

namely, x(t) is ultimately bounded.
Proof. Theorem 4.1 shows that for any p > 0, limsup,_, ., E[x(t)|” < K. Now for any € € (0, 1), let M = K;/p/el/p. Then by
the Chebyshev inequality

Elx(t)lp
MP

P{|x(®] > M} <
Hence
limsupP{|x(t)| <M} >1—¢,
t—o00

as required. O
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5. Moment average in time

The result in the previous section shows that the solution of Eq. (1.3) will be stochastically ultimately bounded. That is,
the solution will be ultimately bounded with large probability. The following result shows that the moment average in time

of the solution of Eq. (1.3) will be bounded under the diagonally dominant condition.

Theorem 5.1. Let Assumptions 2.1 and 3.1 hold. Under the conditions (H1) and (H2), if @ > 28 and the condition (3.1) hold, then there
exists a constant p such that for any p > p, there exists a constant K * independent of the initial data such that the global positive

solution x(t) of Eq. (1.3) has the property
. t
lim sup — / E|x(s)|" P ds < K
t—00 t

Proof. Directly applying the It6 formula to Vp (x) as defined in (4.2) and taking expectation give

t

EVp(x(®)) =EV,(£(0)) +fu7p(xs) ds.
0
Repeating the proof of Theorem 4.1 yields

LVp(@)<h+12

0
¥ (¢(0)) +—ZZC, [ / w?‘“’(e)dmj(e)—w?“’(O)}
i=1 j=1 1
4np(p — DT = ¢ ; 28 28
- 42 +p 3 +p
+W22c,dﬁ[ fw,» (0)dvij () — ¢ (0)},
i=1 j=1 7
where
pKp | p? maxigicalciBi} 2P
W(X):(_T+ a+p Vaﬂ,(x)—}-—ZZCbl] i

11]1

4np(p — DT a2 2640
d o+p .
T h IZ;JZ;C 2P o(Ix*FP)

By the same way as before, we have

W (x) = —n"'pbpVyip(x) +0(|x|*"P).

(5.1)

The definition of b, implies that there exists a p such that by > 0 for all p > p. Clearly, Lemma 2.3 gives that there exists a

constant H* such that
oo+ 22 Vap(®) < "zl:f Varp @) +0(|x|**P)
< H*,
which implies that
t n
p—b"/]EZx;?‘”(s) ds <EV,(x(t)) + pb" /EZx"“’(s) ds

2n
o =l 0

i=1 j=1

0
<EV,(£(0)) + H* “FTZZC bﬂE/gj‘.”"(e)de

4np(p — 1T & 2 / 284p
4+ == id; E ‘ 6)do.
28+p ;;C 5O
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By Theorem 4.1, we therefore have

¢ n
pbP : 1 / o+p 7%
—~limsup- [ E X s)ds < H*.
2n t—)oop t Z ! ( )
0 i=1
Lemma 2.2 gives

t

b o 1 ~
POp = 442)00 i, sup —/]E]x(s)]‘”p ds < H*. (5.3)
2n t>oo L

0

Then we may obtain the desired assertion by setting f(; = ZI?*n#V]/(pbp). m]
6. Stochastic functional Lotka-Volterra systems

In this section, we apply the results in the previous sections to study the following generalized n-dimensional stochastic
functional Lotka-Volterra system

n n 0 n
dx;(t) = x;(t) |:<a,- + Za,-jx‘;‘ t) + Z / bu(@)x‘;‘ (t+0) d,bL,'j(@)) dt + <CIi + Zqijxf (t)) dW(t):|
j=1 j=1"¢ =1
1<ign, (6.1)

which is a special case of Eq. (1.3). This equation may be regarded as the stochastically perturbed equation of the generalized
functional Lotka-Volterra system

n n 0
xi (1) = x;(0) <Cli + Zaijx(j-l(t) + Z /bij(g)x?(t‘f'e)dl/«ij(@)) a<gign. (6.2)

j=1 j=1 -7

Define a = (a1,....an)", ¢ = (@q1,....q0)" € R", A = [a;j], Q = [gij] € R™", B(®) = [b;j(0)] € C([—7,0];R™™), f =
(fi..... f)" and g=(g1.....gn)" and

n n 0
fi@)=ai+Y ag? 0+ / bij(0)¢% (1) dpsij(®). for g € Co,

= = (63)
n
gix) =qi + Zq,-jxf(t), forxe R .
j=1

Clearly, f and g satisfy Assumption 3.1 if we choose l_7,~j =sup_;<p<otbij(®)} and dj; =0 for 1 < i, j <n. By Theorems 3.2,
4.2 and 5.1, we have following theorem.

Theorem 6.1. If o« > 28 > 0 and
n n _
Za$+n2bg<—aﬁ a<i<n), (6.4)
j=1 j=1

then for any initial data & € C4 4, Eq. (6.1) admits a unique global positive solution x(t) and this solution has the properties (4.4)
and (5.1).

If we choose o =1, w;; is the Dirac measure in the point —7 and define b;; = b;j(—7) and B = [bjj], Eq. (6.1) may be
rewritten as the following stochastic delay Lotka-Volterra system

dx(t) = diag(x1 (), ... xa (D)) [(a + Ax(t) + Bx(t — 7)) dt + g(x()) dw(t)], (6.5)
where g is defined as (6.3). Applying Theorem 6.1 gives
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Theorem 6.2. Let B <1/20r Q =0.If
n n
Za$+n2blf]¢<—ai,~ 1<i<n), (6.6)
j=1 j=1

then for any initial data & € Cy4, Eq. (6.5) admits a unique global positive solution x(t) and this solution has the properties (4.4)
and (5.1).

To close this paper, let us recall the existing results on stochastic Lotka-Volterra system and compare them with our
results. In [2], Bahar and Mao study the stochastic delay Lotka-Volterra system

dx(t) = diag(x1 (), ..., xa (1)) [(a + AX(t) + Bx(t — 7)) dt + qdw(t)] (6.7)

and obtain

Theorem 6.3. (See [2, Theorems 2.1 and 3.1].) Assume that there exist c = (c1, ..., c;)T € R7 | and 6 > 0 such that
+ (1 T 1 T
At E(CA—i-A c)+4—9c33 C+61)<0, (6.8)

where [ is the n x n identity matrix. Then for any given initial data & € C, there is a unique global positive solution x(t) to Eq. (6.7)
and this solution is ultimately bounded.
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