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0. INTRODUCTION

The rescaling .#, of a 11;-factor .# by a positive number ¢ was introduced
by Murray and von Neumann [8]. In the paper [6], Radulescu and the
author showed that if 2(1),...,2(n) are II;-factors (n e {2,3,...}) and if

0<t<+/1—1/n then
(2(1)% -+ % 2(n), = 2(1) % - -+ 2(n),+ L(F,), (D

where r = (n — 1)(t72 — 1). Here L(F,), (r > 1), is an interpolated free group
factor [2,9]. In note [7], we defined the RHS of (1) for any 1 —n<r<oo.
Several natural formulae were shown to hold, including

(2(1)% -+ 2(n)* L(F,)), = 2(1)% + - 2(n), % L(F 2, o 1)-2 1))
(1—n<r<oo, 0<t<o0).

This paper will study what we call free subproducts of von Neumann
algebras,

M= N % [t, 20)].
1€l

'Supported in part by NSF Grant DMS-0070558. The author would like to thank also the
Mathematical Sciences Research Institute, where he was engaged in this work. Research at
MSRI is supported in part by NSF Grant DMS-9701755.

142

0022-1236/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.


https://core.ac.uk/display/82494006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FREE SUBPRODUCTS AND FREE SCALED PRODUCTS 143

Here we have a coefficient algebra ./~ which must be a I1;-factor, additional
von Neumann algebras 2(1) with specified normal faithful tracial states
and 0<¢,<1. Loosely speaking, each 2(1) is added (freely) with support
projection p, € /", where the trace of p, equals 7,. (See Section 3 for details.)
We prove a number results about free subproducts when all the 2(1) are II;-
factors, including (Theorem 3.10)

Nk [H0), 2D] = A 2(1)  x-eex 2n) 1+ L(F)),

i=1 «(1) 1(n)

where r=—-n+5% ., 1(i)?, and (Theorem 3.11) if A" =~ A %xL(Fy) or
2(i) = 2(i)* L(F,) for some i then
NF

i=1

[1,, 2(1)] = JV*( i*“ 2(i) )

We then turn to compressions and rescalings of free subproducts of II;-
factors. In order to elegently express the rescaling of a free subproduct, we
define

M= N % [, 20), ©)

el

where every 2(1) is a II}-factor and where 0 <, <oo. This generalization of
the free subproduct is called the free scaled product. Analogues of the above-
mentioned results hold for free scaled products. We also prove the rescaling
result (Theorem 4.9)

<./V * [t(1), Q(l)]) ~ N o

1€l 1€l

t
{ W :2(1)] .

s

We then introduce the technique we call free trade in a free scaled product
of II;-factors. This allows, in a free scaled product,

(N =+ L(F))) * [0, 2(1)],

1€l

increasing some ¢, at the cost of decreasing r, or increasing r at the cost of
decreasing some ¢,. Of course, some ¢, can increase while another decreases
and r remains constant. Using free trade, we prove (Theorem 5.5(i)) that

N F [i(n), An)] = JV*( ¥ Q(n)L) 3)
n=1

n=1 t(n)

holds for a free scaled product whenever 307 | #(1)* = 00. We also show that
isomorphism of free group factors is equivalent to isomorphism (3) holding
for free scaled products in general.
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Rescaled free products and free subproducts can arise quite naturally
in von Neumann algebras whose definitions involve freeness. For example,
the results of this paper are used in [4] to describe certain subfactors of
free product factors. In proving isomorphism theorems involving free
subproducts and free scaled products (2) and rescalings of them, we are
careful to keep track of how the algebra ./ and its compressions are
embedded in the free scaled products. Although this requires considerable
extra effort, the results are important for this paper’s development and for
applications.

In Section 1, the notation we use for von Neumann algebras with specified
traces is layed out and results from [1] about free products of certain classes
of von Neumann algebras with respect to traces are reviewed. This section
includes a discussion of the heuristic quantity “free dimension”, which was
introduced in [1] and is useful for proving isomorphisms involving free
products of von Neumann algebras from a certain class. We also introduce a
minor modification of notation for free dimension, which corrects a
misleading aspect of the old notation, and which we will use here and in the
future.

In Section 2, the rescaling of free products of II;-factors is revisited and
related results are proved. In Section 3, free subproducts of von Neumann
algebras are defined and a number of facts about them are proved. In
Section 4, free scaled products are introduced and used to describe
rescalings of free subproducts of II;-factors. In Section 5, the technique of
free trade in free scaled products is developed.

1. INTERPOLATED FREE GROUP FACTORS AND FREE
DIMENSION

In this section, we describe some notation for specifying tracial states on
certain sorts of von Neumann algebras, and recall some results from [1]
about free products of von Neumann algebras. We will also describe the
heuristic notion of free dimension, which was introduced in [1] and which is a
useful tool for describing the von Neumann algebras resulting from these
free products. However, whether this free dimension is truly an invariant of
von Neumann algebras is still an open question, depending on whether the
free group factors are isomorphic to each other or not. We will describe this
in more detail, and also make a strictly rigorous interpretation of our free
dimension.

Let us begin by recalling that the family of interpolated free group factors
L(F,), (1<r<o0), extending the family of usual free group factors L(F,),
(ne{2,3,...,00}), was defined in [2,9], these factors satisfy the rescaling
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formula
L(Fr)t = L(FIJFI—Z(,,I)), (1 <r< oo, 0<I<OO) (4)

and their index behaves additively with respect to free products:
L(F,)« L(F,) = L(F,.,),

where the free product is taken with respect to the tracial states on L(F,) and
L(Fy). From these isomorphism, it was shown in [2,9] that the interpolated
free group factors are either all isomorphic to each other or all mutually
nonisomorphic; (however, assuming L(F,) = L(F;) for some 1 <s<r<oo,
the isomorphism of L(F,) =~ L(F,) was shown by Radulescu [9], and not
in [2]).

The operation of free product for von Neumann algebras,

(%a ¢) = (A9 ¢A)*(Ba ¢B)9 (5)

defined by Voiculescu [10] (see also the book [13]) acts on the class of pairs
(A, ) of von Neumann algebras .4~ equipped with normal states iy, whose
GNS representations are faithful. In this paper, we will be concerned only
with pairs (A7, ¢) where i is a faithful tracial state. Moreover, we will
usually avoid writing the traces explicitly, using the notation .# = AxB
instead of notation (5), with the understanding that the algebras 4 and B are
equipped with specific traces and with .# inheriting the free product trace.
We use the following conventions for specifying traces on von Neumann
algebras:

(a) Any II;-factor is equipped with its unique tracial state.

(b) Any matrix algebra M,,(C) is equipped with its unique tracial state.

(c) For any discrete group G, its group von Neumann algebra L(G),
which is the strong-operator closure of the span of its left regular
representation on £*(G), is equipped with its canonical tracial state, 75(x) =
(B¢, x0,>, where J, € £2(G) is the characteristic function of the identity
element of G.

(d) If A is equipped with a tracial state T and if p € 4 is a projection,
then pAp is equipped with the renormalized tracial state t(p) '] pAp-

(e) If A = A; ® A; and if A; and A, are equipped with tracial states t;
and 1,, respectively, then each of the notations

AZA](-BAz, A:A1®A2 and AZA](-BAQ
o o l—a

1—a

indicates that the direct sum of von Neumann algebras 4 = 4; @ 4, is
equipped with the tracial state

(a1, a2)) = ati(ar) + (1 — a)r(ar).
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Moreover, if A; is equipped with tracial state t; then the notation

A=404@ D 4,

o o oy

where o; >0 and oy + --- + o, = 1, indicates that the direct sum of von
Neumann algebras 4 = A4; @ --- @ A, is equipped with the tracial state

(@, an) = Y amilay),
i=1

and we use a similar notation for countably infinite direct sums.

Let & be the class of all von Neumann algebras, equipped with specified
faithful tracial states, that are either finite dimensional, hyperfinite,
interpolated free group factors or direct sums of the form

@ L(F,) or F® (@1 L(F,‘.)),

iel

where [ is finite or countably infinite and where F is either finite dimensional
or hyperfinite. In [1], it was shown that whenever 4, B e & and dim(4)>2,
dim(B) =3, then their free product .# = A+ B, satisfies

M ~LF) or M =LF)®D, (6)

where D is finite-dimensional von Neumann algebra. Moreover, an
algorithm was proved to determine whether .# is a factor, and if it is not,
to find D and the restriction of the free product trace to D. (This
information in turn depends only on information about minimal projections
in 4 and B and their traces.) In the proof of isomorphism (6), a value for the
parameter r was also found, although it is not yet known whether this
parameter has any meaning. The best way to describe the calculus for
finding r is to use what we called “free dimension”, which we introduced in
[1]. This was a quantity fdim(A4), ostensibly assigned to any von Neumann
algebra with specified tracial state 4 belonging to the class %, according
to certain rules, which will be given below. One of the rules was
“fdim(L(F,)) = . However, the question of whether the free group factors
are isomorphic to each other was and remains open. We pointed out that the
assignement “fdim(L(F,)) = £ does not lead to any mathematical contra-
diction, because the only valid use of free dimension computed using such
assignements is to find the parameter r in (6), which is only meaningful if the
free group factors are mutually nonisomorphic.

However, the valid objection has been raised that the notation
“fdim(L(F,)) = ¢ is extremeley misleading. Therefore, we will modify our
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notation around the heuristic quantity “free dimension”. Instead of writing
“fdim(A4) = ¢” for a von Neumann algebra with specified tracial state 4
belonging to the class %, we will write “4 has a generating set of free
dimension #. Then, with this convention, results of [1] give the following
rules, which allow one to compute r in (6):

(1) If A4 is a hyperfinite von Neumann algebra that is diffuse (i.e. having
no minimal projections) then A has a generating set of free dimension 1.

(i) If 4 = M,,(C), n e N, then A has a generating set of free dimension
1 —n2.

(iii) If 4 is an interpolated free group factor then 4 =~ L(F,) if and only
if A has a generating set of free dimension ¢.

(iv) If

Sk

Il
_

A=4, &---@® A, or A=
o

%n

A;

o

and if 4; has a generating set of free dimension #;, then 4 has a generating set
of free dimension

m

t=1+> a(ti—1),
i=1

where m = n or m = 00, respectively.
v) If

A=By*---%B, or A=

i

00
* B,’
=1

and if B; has a generating set of free dimension ¢; then 4 has a generating set
m

of free dimension ¢ = }_" | t;, where m = n or m = oo, respectively.

We should point out that the phrase ‘“has a generating set of free
dimension” is intended to be used primarily as a code to help us in
computations, not unlike the misleading code “fdim(4)=---" that it
replaces. Thus, for example, if

M = (L(Fz) @ 1§2> *L(F4),

then we note that .# has a generating set of free dimension 5, while from
results of [I] .# must be an interpolated free group factor; hence
A = L(Fs). However, if we wish, we may correctly interpret the phrase
to refer to actual generating sets of von Neumann algebras and, for certain
classes of them, their (heuristic) free dimensions. We will refrain from
explicating this interpretation in detail, but will observe that there is no
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assertion that all generating sets of a von Neumann algebra to which a free
dimension can be assigned will have the same free dimension.

The notion of free dimension as used in [1] and in this paper should not be
confused with the free entropy dimensions which were defined by Voiculescu
[11, 12]. While the former is only a heuristic device to help in intermediate
calculations in order to obtain true statements about certain isomorphisms
of von Neumann algebras, the latter are intrinsic quantities which are
defined on n-tuples of self-adjoint elements in von Neumann algebras having
specified traces.

2. RESCALINGS OF FREE PRODUCTS OF II,-FACTORS
REVISITED

The paper [6], where the compression formula

(* A(l)) =~ (* A(l)t> * L(F 71— 1y2-1)) (7

el el

was proved for II;-factors A(1), was concerned only with the isomorphism
class of the compression. However, we will need to know that if p € A(19) is a
projection, then pA(ig)p is itself freely complemented in p(*,.; A(1))p. The
purpose of the next lemma is to prove this by modifying the proof of
formula (7) found in [6].

THEOREM 2.1. Let I be a finite or countably infinite set and for each 1 € I
let A(1) be a 11 -factor. Let

M= = AQ).
1€l

Single out some 1y €1 and let p € A(1y) be a projection of trace t, where
O0<t<l. Then pA(ig)p is freely complemented in p#p by an algebra
isomorphic to

< * AO);) * L(F(7-1y¢2-1))- )]

el \{1p}

Proof. 1ft = 1/nfor some n € N then this follows directly from the proof
of Lemma 1.1 of [6].
Suppose ¢ is not a reciprocal integer. From the proof of Lemma 1.2 of [6],

potlp = W[ pApupAGop o | u@*AQuG) |

1l \ {10}
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where u(1) € 4" are some partial isometries with u(1)*u(1) = p and u(1)u(1)* €
A(1). Moreover, the family

pJVp, pA(l())p, (u(l)*A(l)u(l))tel\{lo}

of subalgebras of p.#p is free over a common two-dimensional subalgebra

and
‘ L(Fy) if <1 -4,
PRty ec, i1
where
x=(0I - D = 1)+ 2Ir(1 —r),
w=2—(Il+ D2l - 172
a =21 — Q- D'
Let

of = *(CC—B C).
el \ 7 1—r

Note that .7 has a generating set of free dimension 2|/|r(1 — r). We will find
2 such that pA/'p = 9+.of.
First suppose (|| — 1)(t72 = 1)>1, i.e.

1
1<yl ——.
]

Then <1 — <L, and it suffices to take

Bk
L(F(Il\fl)(rlq)) if 1< \/T_‘%’

2
R if t= ﬂ’

where R is the hyperfinite II;-factor.
Now suppose

1
- —<i<l——.
7] 2/
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1 7]
<r<y /-, 10
=1\ m= (10)

_ J L0, 1] ® Mx(C) @ Cioy if [I] =2,
| L(F) @ Cippy if [1]>3,

Then,

so |Ilr<1 and

(11)

where v = (2|I| — 1)/|I|. If we can find 2 having a generating set of free
dimension (1| — 1)(t > — 1) = (| — 1)(#* + 2r) and such that 2 has no
central and minimal projections of trace >|I|r, then we will have
o %2 = L(Fp_1y¢2—1)421r1-r)> as required. Since

o1
-1 2

|I|r=

we can let
2=92)@® ‘g,
g

where 2(1) € # has a generating set of the appropriate free dimension. We
must show this is possible. 2(1) must have generating set of free dimension
t1, where

(] = D +2r) = 1= (111> + (1 = Ul (1 = D).
Solving yields
. QUP +|I| — Dr* = 2r
- (1= |1y’

(12)

But the lower bound (10) gives that (2> + |I| — 1)r2 — 2r > 0. We can take
2(1)= L(F,) ® C

for suitable # > 1 and y > 0 making (12) hold, and this yields p/'p =~ .o/ % 2.

Finally, suppose

t>1 !
7}

Then 0<r<1/(2|I]—1) and |I|r<1, so (11) holds. In isomorphism (9),
a=1— Q|- Dr. So letting

2=L|F C
( 2+|1+1> ® 1-(I]-Dyr

we find that pA'p = o/ % 2.
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Therefore, in every case we have

pNp=W* (Fu U D)

1€l

where F € % has generating set of free dimension (|| — 1)(#~> — 1) and with
D c F, each D, is a tracially identical copy of D and the family F,(D,),; is
free. Then

ptlp=W*|(FuD,)updtop o | @®*A@u@) v D,)
1€\ {10}

and the family
WHF O D,,), pAGi0)p, (W*u(* AQu(t) U D)oy,

is free over D. But D,, is in W*(F u D,,) both freely complemented by F and
unitarily equivalent to D. Hence D is freely complemented in W*(F u D,,)
by an algebra isomorphic to F. Similarly, as D is in W*(u(1)*A(1)u(1) v D,)
both freely complemented by an algebra isomorphic to A(1), and unitarily
equivalent to D, we conclude that D is freely complemented in W*(u(1)*
A(u(1) U D,) by an algebra isomorphic to A(1),. Altogether, we have
that pA(ip)p is freely complemented in p.4/"p by an algebra isomorphic to
algebra (8). 1

The following standard lemma will allow use of Theorem 2.1 in reverse
(see Corollary 2.3). For completeness, we indicate a proof.

LEMMA 2.2.  Suppose N is a lli-factor, 4 (1) and .4 (2) are von Neumann
algebras and ny : N — M (k), (k = 1,2) are normal, unital *-homomorph-
isms. Let p € A" be a nonzero projection and suppose there is an isomorphism

p i (p)ADmi(p) = ma(p)-A(2)ma(p)

such that pom 1, , = ml,, Then there is an isomorphism o :.#(1) —
M(2) such that 6omy = my and 61 () 4(1ymy(p) = P-

Proof. There is n e N u {0} and there are vy, vy,...,v, such that Z}’:O
viv; = 1, vouf <p and vvf = p (1<j<n). Define o by

o(x) = Z T(v;)* p(m1 (v)xm (1)) (v)). |

0<ij<n
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COROLLARY 2.3. Let A" be a llj-factor unitally contained in a von
Neumann algebra M with fixed tracial state. If p € N is a projection of trace t
and if pN'p is freely complemented in p#p by an algebra which is trace-
preservingly isomorphic to

( * A(’)) *L(Fn(rLl))y

el

for some 11 -factors A(1), then N is freely complemented in M by an algebra
isomorphic to

* A(1)].
el 1

Proof. Let m: A" — . denote the inclusion. Let .4# = N (o g A1), )
and let #: 4" — .4 denote the embedding arising from the free product
construction. By Theorem 2.1 and the hypothesis on p.#p, there is an
isomorphism p : p.#p > #(p).A7(p) such that po Tl pup = Rl pip- By Lem-
ma 2.2, p extends to an isomorphism ¢ : .# — ./ such that o = 7.

Radulescu and the author showed [7] that if 4 € & has a generating set of
free dimension r and if 4" is a II;-factor then A4 x4 =~ A"« L(F,). We now
show that the resulting embedding A" < A"« L(F,) is independent of the
choice of the particular algebra A4, so long as it has a generating set of free
dimension r.

ProrosiTION 2.4. Let A be a lly-factor and let A,Are F
have generating sets of the same free dimension r>0. Let (i) =
NxA; (i=1,2). Then there is an isomorphism J(1)> #(2) which
intertwines the embeddings N < (i) arising from the free product
construction.

Proof. By [1], we may take k€N be so large that A;*M;(C)
is isomorphic to the interpolated free group factor L(F, ;_,—) for

both i=1 and 2. Let (¢;),<;j<x be a system of matrix units in 4" and
let

P(i) = W¥({ey | 1<i,j<k} U A) < ().
Then,

(D) = W*({8U| 1<i,j<k} vepNep uep?(ier).
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By [1, Theorem 1.2], ej;./"e;; and e 2(i)e;; are free. Choosing any
isomorphism e;;2(1)e;; > e112(2)er; and taking the identity maps on ey
Aerr and  {ey|1<i,j<k}, we construct the desired isomorphism
A > #2). 1

DErINITION 2.5. Let A" be a IIj-factor and let r > 0. By the canonical
embedding N < N« L(F,), we will mean any inclusion such that the image
of A in N« L(F,) is freely complemented by an algebra A4 which (together
with the restriction of the trace) belongs to the class # and has a generating
set of free dimension r.

DErFINITION 2.6. Let us extend the notation /"« L(F,) to the case r = 0,
defining A" L(Fy) to be /" and the canonical embedding A" < A"« L(F) to
be the identity map.

3. FREE SUBPRODUCTS OF VON NEUMANN ALGEBRAS

What follows is the construction of the free subproduct. We have as a
coefficient algebra a 1I;-factor ./ and we add, in a free manner, von
Neumann algebras 2(1) having with specified normal faithful tracial states at
projections in A" with traces t,.

ProrosiTION 3.1.  Let A" be a 1ly-factor. Let I be a set and for every 1 € I
let 9(1) be a von Neumann algebra with fixed normal, faithful, tracial state and
let 0<t,<1. Then there is a von Neumann algebra /4 with normal faithful
tracial state t, unique up to trace-preserving isomorphism, with the property
that

M= W*<AUU B,>,

1€l
where

(1) A is a unital subalgebra of . isomorphic to N

(ii) for all 1€ I, p, € B, < p,.dp, for a projection p, € A having trace t,
and there is a trace-preserving isomorphism B, = 9(1);

(i) for all 1€ I, B, and

pl Wl 4u U B | |p
Jel\tn}

are free with respect to t; 'z}, ;..
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Proof. Let

92%*(* <1C (—BQ(Z))) 13)
1€l - t

Let Ay : AN P2 and 4,0 C@ 2(1) S 2 be the embeddings arising from the
free product construction. Let

P(1) = WO (N) U 4(C @ C)).

Then by [7, Proposition 4(ix)], (1) is the II;-factor A" L(Fy,1_,)). Let
¢, = 2,(0 @ 1) € 2(1) and let v, € 2(1) be such that v,0* = ¢, and p, = v¥v, €
Ay (AN). By [1, Theorem 1.2], 2,(0 @ 2(1)) and

v, | W¥ 2(0) v U LC @ 23) | |t

Jel\{ny

are free. Let 4 = 2(A"), B, = v"2,(0 @ 2(1))v,, let

M= W*(AuUB,)

1€l

and let 7 be the restriction of the free product trace on 2 to .#. Then the
pair (., ) satisfies the desired properties. Moreover, if the p, are fixed then
A is clearly unique up to trace-preserving isomorphism. However, using
partial isometries in A, the projections p, € A may be chosen arbitrarily so
long as t(p,) = t,. This shows the desired uniqueness. 1

Remark 3.2. For future use note that if C,= W*(4 u B,) then the
family (C,),.; is free over A4, with respect to the trace-preserving conditional
expectation .# — A, which is the restriction of the canonical conditional
expectation - 4 = A (A") arising from the free product construction
in (13).

DerFINITION 3.3. The von Neumann algebra .# of Proposition 3.1 will
be called the free subproduct of A" with (2(1)),.; at projections of traces
(2,),e1» and will be denoted

N w1, 200)] (14)

1€l

The inclusion A < . is called the canonical embedding

NS N % 6, 20)].

1€l
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The following variants of notation (14) may be used:

N[, 2] if 1= {1},

N o[ty 20)] it I={1,...,n},
i=1

N ¥ [1,23G)]  if I=N.
i=1

1

Remark 3.4. Dimitri Shlyakhtenko has pointed out to us that the free
subproduct

M=N =% [t,20)]
el

is isomorphic to the amalgamated free product

(g Drer <'/V*(C@C) <1Ct, @ Qt(‘l)) ) >

where all amalgamations are with respect to the trace-preserving conditional
expectations and where the 1th amalgamation over C @ C is with respect to
the copy of C @ C in C @ 2(i) suggested by the notation (and any copy in
A7) having minimal projections of traces 1 — ¢, and ¢,.

We will be primarily interested in free subproducts (14) where the 2(1) are
either I1;-factors or belong to the class of algebras 4. We begin, however,
with a few easy properties of free subproducts.

ProPOSITION 3.5. Let

M= N % [t,20)]

1€l

be a free subproduct of von Neumann algebras.
(A) If I =1, U I is a partition of I then there is an isomorphism

%;<JV * [n,ﬂz)]) * [t,20)]

IGII lEIz

intertwining the canonical embedding N < 4 with the composition of the
canonical embeddings

NSH % [t 20)]

1€l}
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and

N x [11,32(1)]"—><W * [hﬂ(l)]) * [, 2]

l€]| lEI] 1612

(B) If I = {1 el|t, = 1} then there is an isomorphism

.//;(JV*(* :2(1))) * [1,200)]
1€l el \I

intertwining the canonical embedding N < 4 with the composition of the

embedding
NS N ( * Q(z))
1511

arising from the free product construction and the canonical embedding

N ( * Q(z)) < (A/* < * Q(t))) *  [t,,2(01)].
el el el \I

© Ir

2) = N0 = 5,200 (D)
JES:

for a family (J,),o; of pairwise disjoint sets, 11,-factors N "(1) and von Neumann

algebras 2(j), then letting J = J,.; J, and r; = s;t, whenever j € J,, there is an
isomorphism

%;(m ; [zl,mon) . 1,20

1€l

jeJ

intertwining the canonical embedding N < 4 with the composition of the
canonical embeddings

NN w [, V()]
el

and

N % [ZI,JV(I)]C—><J1/ * [ZI,JV(z)]> * [, 2()].

1€l 1€l jeJ
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(D) If 4 (i) is a 11 -factor, (i € N), if
MG+ 1) = M) * (1, 20)]

JeJi
with (J;),en @ family of pairwise disjoint sets and if n;: M (i) M (i + 1) is the
canonical embedding then letting

M = Tim (M (i), )

1

be the inductive limit, we have

M= M)+ 8, 20)]
jeJ

PRrROPOSITION 3.6. Let

M= N = [t,20)]
el

be any free subproduct. Then 4 is a 11,-factor.

Proof. By the results of [3], the free product of a II;-factor with any von
Neumann algebra is a factor. Hence if |I| =1 then .# is a factor. By
induction, it follows that .# is a factor whenever I is finite.

For I infinite, factoriality of .# can be proved by transfinite induction on
the cardinality of 7. Let < be a well-ordering of I with the order structure
of the least ordinal having the same cardinality as /. Given k€1, let
I(k)y={1el]i <k} v ik} and let .4 (k) = W*(A © U, B))- Then

k) = N« [4,20)].
1el(k)

By the induction hypothesis, each .#Z(k) is a II;-factor. As

M=) k),

kel

it follows that .# is a factor. 1

The following lemma prepares us to consider the case of a free subproduct
N 1, 2(1)] where Q(1) € # for all 1 € I. Although we are concerned in
this paper only with von Neumann algebra free products with traces, it
seems expedient for possible future use to prove the lemma for free products
with respect to states.
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LEmMMA 3.7. Let (M,P) = (N, y)=(F,p) be a free product of
von Neumann algebras, where \y and p are normal states. Suppose that
in the centralizer Ny of W in N, there are projections py (k € K) such

that Y .k Pk = 1. For every k € K let n(k) e N and suppose (egjl-{))lgi%n(k)

is a system of matrix units in A"y, such that Zf’(kl) e(k) =pr. Letq=7 ¢ e(ﬁ)

Let

P — W*({é’” ke K, 1<i,j<n(k)} U F) c .

Let D = spanw{e(ll? |k € K}. Then qPq and gV q are free over D, with respect
to the ¢-preserving conditional expectation E :q.#Mq — D.

Proof. In order to prove freeness over D of g?q and ¢./"q, it will suffice
to show

A°(qPq n ker E, gV q n ker E) < ker ¢, (15)

where for subsets X and Y of an algebra, A°(X, Y) is the set of all words
which are products aja; .. .a,, of elements g; € X U Y, satisfying g e X =
ajy1 € Y.

Let #° =2 nker¢p, /° = N nkery and F° = F n ker p. Then 2° is
the weak™ closure of the linear span of @, where

0 =A°({e}) |k e K, 1<i,j<n(k), i#]}
U e — ()1 |k e K, 1<i<n(k)}, FP).

The set ¢2q N ker E is the weak™ closure of the linear span of

k k (k)
< U ( (C)ye() ) U elll)g el
keK kl /QEK

ki #ka

and (e(k) J?e(lk)) respectively, e“‘)ﬂe1 , (ki #k»), is the weak™ closure of the
linear span of 611)@k,k6’11, respectively, e(lli‘ @kl,kze(lkf), where for k, k' e K,
Oy is the set of words in O

whose first letter either belongs to F° or is 3(1 ) some j>1

and whose last letter either belongs to F° or is ¢ some j> 1L

j1 >
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Note that every element of @ has at least one letter from F°. We have
that ¢./"g n ker E is the weak™ closure of the linear span of

k k k k>
P — ( U (eﬁlweﬁﬁ)") vl U eirael
keK k],szK

ky #ka

Thus, in order to prove (15), it will suffice to show

A"(‘I’, U @k,k,> < ker ¢. (16)

kk'eK

However, beginning with a word x from the left-hand side of (16), one can
erase parentheses and regroup to show that x is equal to a word from
A°(AN°, F°). Then ¢(x) = 0 follows by freeness. I

LeEMMmA 3.8. Let M = N «[t, 2] where 2 € F has a generating set of free
dimension y. Then there is an isomorphism M = N x L(Fp,) which intertwines
the canonical embedding N < M with the canonical embedding N < N
L(Fp,).

Proof. M is generated by a unital copy of A" < .# and a subalgebra
peBcpdp B= 2 wherepe I isa projection of trace t and where p./p
and B are free in p.#p. Let F € # have generating set of free dimension #%y.
Recall that the canonical embedding A" A"« L(F;,) is the embedding
N & N % F arising from the free product construction.

Let g,r € A" be projections such that g+r=1, let m,ne N and let
(€)1 <ij<m a0d (fi)1<;j<, be systems of matrix units in ./ such that

m n
Zeii:q, Zﬁ,-:r and p=-ej +r
i=1 i=1

We may and do choose m and »n so large that if
A = spanfe; | <i,j<m} v {fy| <i,j<n}

is equipped with the trace inherited from 4" then A*F is a factor and
(pAp)*=2 is a factor.

Let o = 74(eq1) and 8 = t-(f11), where 7 4 is the tracial state on ./". We
have

W*(pAp U B) = (pAp)*2 = L(Fy),
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where
w2 (B 2
s=r+1-(5) (7) ~
Thus,
(e11 +i)(W*(pAp L B))(en + f11) = L(F,,),
where
B lzy . 2 ﬁ 2
ST (a+ﬁ) _<a+ﬁ> '
We have

M = W*({€[/| <i,j<m} u {f,/| 1<i,j<n}
U (e + i) A (e + fir) v (enn + fi)(W*(pAp U B))(en + f11))  (17)

and, by Lemma 3.7, (e;; + f11)A4 (er1 + /1) and (e + fi))(W*(pAp U B))
(e11 +f11) are free over Cej; + Cf;; with respect to the trace-preserving
conditional expectation (ey; + f11)-#(e11 + f11) — Cei1 + Cf11.

On the other hand, letting 2 = A"+ F, we have

P = W*(en +fi) AN (en + i) u WA U F))

and W*(A U F) = L(F,) where s3 =1+ %) — o> — B*. Therefore, (e +
SiDW*H(A v F)(er + f11) = L(Fy,). Furthermore,

P =W*({e; | 1<i,j<m} U {fy | 1<i,j<n}
U (enn + /i) (enr + fi1) v (err + fi(W*(A U F))en +fi1))  (18)

while by Lemma 3.7, (e +/fi1)-A(en1 + /1) and (en +/i)(W*(4 L F))
(e11 + f11) are free over Cej; + Cfi; with respect to the trace-preserving
conditional expectation (ej; + f11)?(e11 + f11) — Cen + Cf11.

The von Neumann algebras (ey; + f11) W*(A U F)(e11 + f11) and (ey; +
fi)W*(pAp U B)(er) + f11) are isomorphic, and we can choose an
isomorphism so that ej; — e;; and fj; — fi;. Using this isomorphism,
sending (e1; + f11).4"(e11 + f11) identically to itself and sending e; — ¢; and
fii — fii, from (17) and (18) we get an isomorphism .# = % which
is the identity on the embedded copies of 4. By [7, Proposition 4(ix)],
P = N« L(Fp,).
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THEOREM 3.9. Let

M= N x [t(1), 20)],
1€l

where I is finite or countably infinite and where for all 1€ 1, 2(1) € #. Let

2(1) have a generating set of free dimension y,. Then 4 is isomorphic to
N« L(F,), where

r=> 1),

el

by an isomorphism intertwining the canonical embedding N < M with the
canonical embedding N < N = L(F,).

Proof. Iterating Lemma 3.8, we see that the image of the canonical
embedding A" <& 4 is freely complemented by an algebra isomorphic to
F =« _, F, where F, € 7 has generating set of free dimension 1(1)*y,. By the
results of [1], (see Section 1) we have F € & and F has a generating set of
free dimension r.

Henceforth in this section, we will concentrate on free subproducts
N o [t, 2(1)] where every 2(1) is a IIj-factor and where / is finite or
countably infinite.

TaEOREM 3.10. Let
M= N % i), 230)),
i=1

where n € N. If 2(1), ..., 2(n) are 11 -factors then

M= N D) g % x2n) | % L(F,),
1(1) t(n)

where
r=—n+ Y (i) (19)
=1

Proof. Use induction on n. When n = 1 then by construction,

N=[t(1), 2(1)] = (JV,(])*,Q(I))ﬁ = Q/V*Q(l)ﬁ*L(Ft(l)zfl). (20)
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For n>=2,

AR [0, 20)] = (m"*‘
i=1 =

i=1

[4(D), 2(!')]) *[1(n), 2(n)]

>~ (Q/V*,@(l)ﬁ* % 9(n — l)ﬁ*L(Fw)) *[t(n), 2(n)]

= N 2(1) g * - x2(n) 1+ L(F,),
0] )

where ¥ = —n+ 1 + Z;’: 1(i)* and r is as in (19). The isomorphisms above
are from the nesting result of Proposition 3.5(A), the induction hypothesis
and, respectively, (20) combined with [7, Proposition 4(vii)].

THEOREM 3.11. Let

M= N E [, 20)], 1)

where every 2(1) is a Il -factor. If /" = N« L(Fy) or if 2(k) = 2(k)* L(F)
for some k € N, then

/%gm*( ¥ .32(1')1). (22)

Furthermore, regarding N as contained in M via the canonical embedding for
the construction of the free subproduct (21), A" is freely complemented in M
by an algebra isomorphic to

i*‘ i) . (23)

Proof. Suppose N =~ N «L(Fy). We will perform a variant of the
construction in the proof of Proposition 3.1 for

M = (N % L(Fy)) A‘?f [t,, 2(1)].

i=1

We may rewrite & as

P = (A/*( ¥ D,-)>*<3k°< C @2(1'))),
i=1 =1\ 1= 1)

where D; = L(Fy). Let Ay N S22, i CO 20)S 2 and k;: D; P be
the embeddings arising from the free product construction. We may
choose, for each i, v; € W*(x;(D;) U A,(C @ C) so that vvf = 2;(0 @ 1) and
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U?U,‘ € K,’(D,‘). Then,

M= W* </1,V(/V ) [OJ (1i(Dy) v V720 @ Q(i))vi)>~

=1
But the family
2 (A7), (WH(i(Dy) © 07240 @ 2(i))vi));2,
is free with respect to the free product trace on 2, while
W*(ki(Dy) L v 2:(0 @ 2(i))vi) = Di*[t(i), 2(1)]

= L(F)*2(i) 1,
10

SO

M~ m*( ¥ (L(Fm)*,@(i)L>>
1(7)
~ m*( ,Q(i)L) # L(Fo)
1 1(i)

~ N ( ¥ 32(l')¢>,

i=1 (i)

I %g

where the third isomorphism above is because by [6, Theorem 1.5], every
free product of infinitely many II;-factors is stable under taking the free
product with L(F.). This proves isomorphism (22) and that ./ is freely
complemented in .# by an algebra isomorphic to (23).

Now suppose 2(k) = 2(k)* L(F.,), for some k € N. We may without loss
of generality take k = 1. Let 2(1) be generated by free subalgebras D and F,
where D ~ 2(1) and F =~ L(F,). Then using the nesting result of
Proposition 3.5(A),

A= (N[, 20D F (1D, 200)

= (N *[u(1), F]) ¥ [1(0), 20)].

i=1
By Theorem 3.9, A" «[t(1), F] =~ A % L(F) via an isomorphism intertwin-
ing the canonical embedding A" < A7 %[t(1), F] and the embedding A4 <

N # L(F ) coming from the free product construction. Therefore, there is an
isomorphism

M SN L)) * (1), 2]

i=1
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intertwining the canonical embedding /"< .# and the composition of the
embedding A" & A% L(Fo) coming from the free product construction and
the canonical embedding

N L(Foo) s (N x L(F)) * [1(7), 2(i)].

i=1

Now applying the part of the theorem already proved shows isomorphism
(22) and that /" is freely complemented in .# by an algebra isomorphic to

LEmMA 3.12. Let

=N % [l‘(l) 2(3i)] 24)

i=

be a free subproduct of countably infinitely many 11-factors. If there is ¢ > 0
such that (i) > ¢ for infinitely many 7 € N, then

M= /V*( ¥ ,@(i)l). (25)

Furthermore, regarding N as contained in M via the canonical embedding for
the free subproduct construction (24), A" is freely complemented in 4 by an
algebra isomorphic to

¥ 23 . (26)
Proof. Let I} be an infinite set of i € N such that #(i) > ¢ and such that
Iy .= N\7, is also infinite. By the nesting result of Proposition 3.5(A),

M= M) = [t(), 20)],

iEIO
where

() = N % 1), 200)].

iEIl

If we can show

M) = N % ( * Q(Dl)»

iel t(i)
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then, since |Ij| =00, by [6, Theorem 1.5] .#(1) =~ .#(1)*L(F,) and
isomorphism (25) will follow from Theorem 3.11. Hence we may, without
loss of generality, assume #(i) > ¢ for all i € N.

Let
M= W*(A U U B,) cCP=Nx (Zf <C @ Q(z’)))
=1 i=1 1(i)

with trace 7 be as in the proof of Proposition 3.1. Recall B; = v¥*4,(0 ®
2(i))v; where the projection v¥v; € 4 is arbitrary subject to its trace being #(7).
Let us fix a projection p € 4 of trace ¢, and let us take p; >p for all i € N. Let
C; = W*(4 v B;) and recall from Remark 3.2 that the family (C;);”, is free
over A with respect to the canonical trace-preserving conditional expecta-
tion £ : 2 — A. Using partial isometries from A to bring everything under
p, we see that

00

o0
pAp = W*( U pCip>

i=1

and that the family (pCip)2, is free over pAp with respect to EZ | pop- NOW
piCipi = W*(piAp; L B;) and, moreover, p;Ap; and B; are free by Proposi-
tion 3.1. It follows from Theorem 2.1 that pAp is freely complemented in
pCip by an algebra, let us call it D;, isomorphic to

Q(i)ﬁ,) * L(Fy ),

where y(i) = (‘2)* — 1. Thus,

[0.¢]
pAllp=W* (pAp uy D,~>

i=1

and the family pAp, (D;)%, is free with respect to ¢ '] poups Yielding

plp = (pMp)*( ??1 ’@(i),f—,-)) *L(F),

with p.A"p freely complemented in p.#p by an algebra isomorphic to

% 9(i) e+ L(Fo).
i=1 (i)

I

Application of Corollary 2.3 gives isomorphism (25), and that A" is freely
complemented in .# by an algebra isomorphic to the one displayed
at (26). 1



166 KEN DYKEMA
4. RESCALINGS OF FREE SUBPRODUCTS

The notation introduced below, though perhaps awkward to define,
permits an elegent formulation of rescalings of free subproducts of II;-
factors.

DErFINITION 4.1.  Let A" be a I1;-factor, let 1 be a set and for every 1 € [
let 2(1) be a I -factor and let 0<#(1)<oo. Then the free scaled product of
II,-factors

M= N [1(1), 21)]
1€l
is the free subproduct

A1)+ [1(n), 2(0)],

1€l
where Iy = {1 e | (1)< 1} and where

M) = N < * (Q(z)%*L(F,(l)zl)))
1€l (1
with I} = I'\I,.

Remark 4.2. Clearly the free scaled product .# is always a II;-factor.
Let 7 be the tracial state on .#. Then,

M= W*(AuUB,)

1€l

for =-subalgebras 4 and B, of .#, where

(i) A=,

(ii) for all 1€ I, p, € B, < p,.#4p, for a projection p, € 4;
(ii") for all 1 € I, ©(p,) = min(1,1,);

(ii"”) for all 1 e 1,

,@(1) if 1€,

B =\ 20 +L(Fp ) if 1€
(1)

(iii) for all 1 € I, B, and

p| W 4u U B | |p
jel\{1}

are free with respect to 7, 'z}, ,, .
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DErFINITION 4.3.  The inclusion A & . is called the canonical embedding

NS AN = 1, 20)]
1€l

of free scaled products.

Clearly, the analogues of the properties spelled out in Proposition 3.5
hold for free scaled products as well.

Theorems 3.10, 3.11 and Lemma 3.12 imply their analogues for free scaled
products:

THEOREM 4.4. If

M= N (1), 200)]
i=1

is a free scaled product where n € N, then

M= N xD(1) 1 % %2n) | % L(F,),
() 1(n)

where

r=-n+ Z 1(i)*.
i=1

THEOREM 4.5. Suppose

M= N %
i=1

[1,, 2(1)] (27)

is a free scaled product of countably infinitely many 11, factors and that either
N = N L(Fy) or 2(i)) =~ 2(i)* L(Fy) for some i € N. Then,

M= /V'*( ¥ :2(1')1)
i=1 ()

and regarding N~ < M by the canonical embedding for construction (27), N is
freely complemented in M by an algebra isomorphic to

¥ 201 .
i=1 (i)

LEMMA 4.6. Let

M= N % [t,20)]
i=1
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be a free scaled product. If there is ¢ > 0 such that t(i) > ¢ for infinitely many
i € N then the conclusions of Theorem 4.5 hold.
We now begin proving the rescaling formula for free scaled products.

LemMA 4.7. Consider a free subproduct

M= N % i), 200)),
i=1

neN U oo, of N with finitely or countably infinitely many 11-factors 2(i),
where either n € N or lim;_,, t(i) = 0. Consider N < .M/ via the canonical
embedding. Let p € N be a projection of trace s. Then there is an isomorphism

pllp S(pNp) * 2, 2(i)]

i=1

intertwining the inclusion p A 'p < p.#p with the canonical embedding

PN P (pAD) * 2, 2(3)].
i=1

Proof. Write
M= W* <A vl B,~>
=1

as in Proposition 3.1 with for every i, p, € B, < p,.#p, for projections p, € A
satisfying either p, =p or p,<p. If t(i)<sfor all i € N then

n
pAp = W*<pAp U B;)
i=1

and the conclusions of the lemma are clear.
Assume #(i)=t(i + 1) for all i and, for some m € N, #(m) > s and ecither

m=nor t(m+ 1)<s. For every ke {1,...,m}, let
N (k) = W*(Au U BJ-).
1<j<k

Then, pi AN (K)pr = W*(prAN'(k — Dpr U By) and ppA"(k — 1)py and By are
free. By Theorem 2.1, p.A"(k — 1)p is freely complemented in p.4"(k)p by an
algebra isomorphic to

k L|F .
«A )%* < (%k))zl>
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Combining these embeddings, one obtains
pAN(mp = (pAN p)*a@(l)ﬁ* e *Q(m)ﬁ*L(F "
I t(m

m

where r = —m+ "7, 1(i)>, and that the algebra p./"(0)p = pAp is freely

complemented in p.A/"(n)p by an algebra, call it D, isomorphic to

2(1)_s s -+ % 2m)_s_xL(F,).
(1) t(m)

Then,

pAlp = W*(pApuDu U Bl>.
i=m+1
Now the conclusions of the lemma are clear. 1
ProrosiTiON 4.8.  Let M = N+ L(F,) for a li-factor N and for some

r>0. Regard N < M via the canonical embedding. If p € N is a projection of
trace s, then there is an isomorphism

pAlp >(pNp)xL(F, ) (28)

intertwining the inclusion p N "p < p.# p with the canonical embedding p.V'p <
(pJVp) * L(Fr/sz)

Proof. By Theorem 3.9, we have isomorphisms

MS N« {\/:;, L(Fr+1)},

~ 1
(pN'p)=L(F,/2) >(pNp)* L g L(Fr+1)}

that intertwine the corresponding canonical embeddings. These combined
with the isomorphism

p( [y ) e [ e

obtained from Lemma 4.7 give the desired isomorphism (28). 1
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THEOREM 4.9. Let

M= N *1 [1(1), 2(1)]

be a free scaled product of 11 -factors 2(1) with I finite or countably infinite. If
0<s<o00 then

t(1)

>
S

My = N *[
1€l

:2(,)] . (29)

Furthermore, if s<1 and if p € A" is a projection of trace s, then regarding
N < M via the canonical embedding, there is an isomorphism

{@ ,@(z)} (30)

pAp >(pANp) * =

1€l

intertwining the inclusion p V' p < p Hp and the canonical embedding

(1)

5
S

pN'p(pAp) = { 9(1)}

1€l
Proof. In order to prove isomorphism (29) for all s € (0, 00), it will suffice
to show it for all s€(0,1). So assume O<s<1. If there is £¢>0 such
that #(1) > ¢ for infinitely many 1 € I, then the existance of isomorphism (30)
with the required properties follows from Lemma 4.6 and Theorem 2.1.
Hence, we may assume either 7/ = {1,...,n} for some ne N or I = N and
lim;_, o, #(i) = 0 (in which case we let n = 00). Assume also #(1)=t2)> ---. If
t(1)<1 then the conclusion of the theorem follows from Lemma 4.7. So
assume there is m € I such that 7(m) > | and either m+ 1 ¢ I or t(m + 1)< 1.
Letting
m

A = A% 110, 20

by definition 4" is freely complemented in .# by an algebra isomorphic to

2(1) 1 *---%2(m) 1 *=L(F,),
t(1) t(m)
where r = —m+ Y7 | 1(i)*. By Theorem 2.1, p./"p is freely complemented in
pA(m)p by an algebra isomorphic to

(Q(l)l* *Q(m)l*L(Fr)> *L(Fy 2 1)
(1) t(m) s

= (1) s -  2m) s % L ) (1)
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If I ={1,...,m} then we are done. Otherwise, by Proposition 3.5(A), there
is an isomorphism

M M (m) [0, 2]
i=m+

intertwining the inclusion .#(m)< .# and the canonical embedding

M)y H(m) * 1), 230)].

i=m+1
Now Lemma 4.7 shows that there is an isomorphism

potlp S(pMm)p) {@ »@(0}

b
i=m+1 s

intertwining the inclusion p.#(m)p < p.#p and the canonical embedding

ptmps(patonp) & 10200
i=m+

This together with the fact that p.4"p is freely complemented in p.#(m)p by
an algebra isomorphic to (31) finishes the proof. 1

The following corollary is simply Theorem 4.9 in reverse, and
can be proved using Lemma 2.2 similarly to how Corollary 2.3 was
proved.

COROLLARY 4.10. Let A" be a I1|-factor which is a unital subalgebra of a
tracial von Neumann algebra 4. If p € N is a projection of trace s > 0 and if
there is an isomorphism

pAp >(pAp) *I[Z(l), 2],

where the RHS is a free scaled product, intertwining the inclusion p.N'p <
pAp and the canonical embedding

pN P (pANp) *I[t(l), 2(1)],

then there is an isomorphism

M N % [t(1)s, 200)]

1€l
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intertwining the inclusion N < 4 and the canonical embedding

NS A% [1(1)s, 201)].

1€l

5. FREE TRADE IN FREE SUBPRODUCTS AND FREE
SCALED PRODUCTS

In this section we will be concerned with free scaled products

(N =+ L(F))) . 7., 2(1)], (32)

where r>0, and with results allowing one to increase or decrease the f,,
compensating by rescaling 2(1) and, if necessary, by changing r. This sort of
exchange we call free trade in free scaled products.

DErFINITION 5.1.  Let .4 be the free scaled product (32) above. Then the
canonical embedding N < M is the composition of the canonical embedding
N N« L(F,) and the canonical embedding

N L(F,) & (A« L(F,)) * [t,, 20)].
1€l

Proposition 4.8 and Theorem 4.9 combine to give the following
result.

THEOREM 5.2. Let # be the free scaled product (32) above and
let 0<s<00. Then,
(1
arx ot « 0|
1€l s
Furthermore, regarding N as contained in M by the canonical

embedding, if s<1 and if p € N is a projection of trace s, then there is an
isomorphism

pAp >(pANpL(F2,)) *

1€l s

[t(l) Q(z)}

intertwining the inclusion p V' p < p dp and the canonical embedding

[l(l)

)
N

pN P (pNpxL(Fy2,)) *

el

:2(1)} .
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LEMMA 5.3. Let A and 2 be 1li-factors, let 0<t<oo, let max(0,
1 — ) <r<oo and let

M= (N5 L(Fy))[t, 2].
Then there is an isomorphism

M SN #(21 % L(F,_ 1, 2)) (33)
t

intertwining the canonical embedding N < M and the embedding

N S N (2% L(F,_1,p))
t

arising from the free product construction.

Proof. 1If t>=1 then this is immediate from the definition of free scaled
products, (Definition 4.1).

Let t denote the tracial state on .#. Suppose first t = 1/k, k e N\{1}.
Then,

N *L(F,) = (N *L(F, 1,2))* Mi(C)
and we may take
M =W AUF Ule|1<i,j<k} U B),

where A is a unital copy of A", 1 4, € F € # with F having generating set of
free dimension r — 1 + £, (€i)1<ij<k 1s a system of matrix units in .#, the
family

A F, {ej | 1<i,j<k}

is free with respect to 7, e;; € B C ey;.#¢;; with B a subalgebra of e;.Zey;
isomorphic to 2 and the pair

enW*(A U Fu{e;|1<i,j<k})er, B (34)
is free with respect to ktl, 4., - Let
P=WHAUF), S = W*({e; | 1<i,j<k} U B).
Then,

P = NeLF,_i.p), F =9
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We shall show that 2 and . are free with respect to 7. Let
. L 1 .
U° = {elj| 1<l,]<k, l;ﬁj} @) {eii—%‘ 1<l<k}

Then we have
7° =Spam A°(A°, F°),
y0:spal’1<U0U U eilBer).
1<ij<k
Hence, for freeness of 2 and &, it will suffice to show
A° <C°,F°, U° v U el-lBer) c ker. (35
I1<ij<k

After regrouping, any word x belonging to the LHS of (35) is seen to be
equal to e;;X'ey;, for some i,j € {1,...,k}, where

x' € Ao(ellAO(CO, FO, Uo)e“, BO).

But freeness of pair (34) shows 7(x’) = 0 and thus z(e;; x’e;;) = 0. This shows
the existence of isomorphism (33) in the case 1 = 1 /k.

Now suppose <1 is not a reciprocal integer. Let k € N be such that %<t
and let s =L, /"= 4| and

% = ('/V*L(szr))* [%’ Q]
By the case just proved, regarding N as contained in M via the canonical
embedding, 4" is freely complemented in .# by a copy of 2y * L(Fg, 1 -2).
Let ge A" be a projection of trace s. By Theorem 2.1, ¢A47q is freely
complemented in ¢.#q by a copy of

(a@k * L(FszrflJrk*z))s * L(Frzf l) = Ql * L(F,.,1+t2).
t

On the other hand, by Proposition 4.8 and Theorem 4.9, there is an
isomorphism

q Mg >((q N q) = L(F,))=[t, 2]

intertwining the inclusion qNq S qAlq and the canonical embedding
qN g ((qNq) = L(F,)*[t, 2. As gN'q = N, we are done. 1
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LEMMA 5.4. Let A and 2 be 1li-factors, let 0<t<s<oo, let s> —
> <r<oco and let

M= (N * L(Fy))[t, 2].
Then there is an isomorphism

M (N *LF, g 2))*[s, 2] (36)

intertwining the canonical embeddings N < .# and

N (N L(Frfszﬂz ) *[s, 2s].
t

Proof. If s=1 then this is just Lemma 5.3. Suppose s> 1. Then
by Lemma 5.3, since > 1 — 2, the image of ./ in .# under the canonical
embedding is freely complemented by an algebra isomorphic to 2y, *
L(F,_;,2). On the other hand, by the definition of free scaled
products (Definition 4.1), the image of A" in (A"« L(F,_p))*[s, 2s] under
the canonical embedding is freely complemented by an algebra isortnorphic
to

(L(Ffz(rﬂz)il *Qﬁ)l*L(Fszfl) = L(Fr,pﬁz)*,@l.
s 13

From this, we can construct isomorphism (36) in the case s > 1.
Now suppose s< 1. Denote by n: .4/ — .4 the canonical embedding, let

M = (N L(F,_p ) *[s, 2s]
t

and let #:.4" — . denote the canonical embedding. Let pe ./ be a
projection of trace s. Then using Theorem 5.2, there is an isomorphism

n(p)M7(p) >(pNpxL(F 2,))x[L, 2]

intertwining 7| and the canonical embedding

pANp
PN P (PN p* L(F 2,))x[5, 2]
Since s72r>1— 5722, Lemma 5.3 gives an isomorphism

n( p)Mr(p) = pNp (2o L(Fyory52p)) (37

intertwining 7} and the canonical embedding

pAp

[L/Vp L»p/‘/p * (,@§ * L(FrzrflJrS*ztz )) (38)
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On the other hand, by Theorem 5.2, there is an isomorphism
A p) MR p) = pN (2% L(Fyzy oy 520)) (39)

(37) and (39) together with Lemma 2.2 give the desired isomorphism
(36). 1

intertwining 7l ,,, with canonical embedding (38). Isomorphisms

THEOREM 5.5. Let

M= (N L(E) & (1), 200,

forneN v {oo}, 0<r<oo and 0 <t(i)< oo be a free scaled product of finitely
or countably infinitely many 11\-factors N~ and 2(i).

W Iy, 1(i)* = 0o then there is an isomorphism
M N« ( ¥ Q(i)i> (40)
=1 )

intertwining the canonical embedding N < M and the embedding

arising from the free product construction.
(ii) Suppose S, t(i)* < oo, let 0<s(i)< oo and let

F=r+ Z (i)’ — s()). (4D
i=1

If ¥ =0 then there is an isomorphism

M SN LED) & (0, 2D (42)

intertwining the canonical embeddings N < M and

N S (N % L(Fp)) i [s(d), ,@(z‘)sg_,:;].

Proof. We begin by proving (i) and a special case of (ii) simultaneously.
Suppose 0<s(i) < (i) for all i. Denote by 7 the tracial state on .#Z. We may
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write

n
/%zW*(AuFuUB,),
=1

i=

where A is a unital copy of A", 1 , € F € & with F having generating set of
free dimension r, p; € B; < p;.#p; for a projection p; € A of trace min(#(i), 1),
B; is a subalgebra of p;.#p; isomorphic to 2(i) if #(i)<1 and to 2(i)=
L(F, e ) if #i)> 1, F and W*(4 v U, B:) are free with respect to 7 and,
finally, the family

(W4 v By)

if free over A with respect to the t-preserving conditional expectation
M — A (see Remark 3.2). Using Lemma 5.4, we get

W*(A ) Bl) = W*(A ) D,’ ) C,'),

where D; € 7 has generating set of free dimension r — s(/)> + #(i)*, D; and A4
are free, ¢; € C; < q;W*(A4 U B;)q; is a subalgebra, for a projection g; € 4 of
trace s(i),

2(i)s(iy if ()<,
C =~ [0
2iyx L(F ) if 1) > 1,

and, finally, ¢;W*(4 U D;)g; and C; are free with respect to s(i)” 't|
Thus,

qi M g

M = W*(AuFuO(D,-uC,-))
=1

l

and we get an isomorphism (42), with ' as in (41), intertwining the canonical
embeddings. This proves (i) in the case s(i)<#(i) for all i. For (i), if Y1,
t(i)2 = 00, then 0<s(i) <t(i) can be chosen making /' = oo. Then isomorph-
ism (40) follows by Theorem 4.5.

In order to prove the general case of (ii), let

I {1,...,n} if neN,
IN if n=00
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and let

Iy ={iell]s()> 1),

Iy =1\I,.

Using the nesting result of Proposition 3.5(A) and, twice in succession, the
case of (ii) just proved, we get isomorphisms

M 3((-4/ *L(F,)) * [l(i),»@(i)]> * [1(D), 2()]

iE]Q iel)

3<(=/V *L(Fy)) * [s(2), Q(l’)@]) * [1(D), 2()]

iely 1(i) iel

5 ((JV * [s(l),,”Z(l)M]> *L(F,w)) x [#(7), 2(5)]

iely 70) il

;((w * [s(i),,@(i)@]>*L(Fr')> * [s(), 20D
iely 1(i) iel; (i)
(AN % L(Fy)) * [s(), :2(1’)%],

where ' =r+3 ", 1(i)* — s(i)>, whose composition intertwines the cano-
nical embeddings.

We know from [9] (see also [2]) that the interpolated free group factors
(L(F)); <;<~ are either all isomorphic to each other or all mutually
nonisomorphic. Some statements equivalent to isomorphism of free group
factors were found in [7]. The following theorem gives another equivalent
statement involving free scaled products.

THEOREM 5.6. The free group factors are isomorphic if and only if the
isomorphism

NE (D), 2(0)] = ./V*( * 20 1) (43)
X =

i=

holds for every free scaled product of countably infinitely many 11,-factors.
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Proof. Suppose the free group factors are isomorphic. Then

12

A 10, 20) = (<10, 20 ¥ [, 200)

I

(JV*:QL*L(FI(I)zl)) ¥ 1, 200)
1(1) i=2

lle

(m*g *L(Fx)> ¥ 140, 20

1
(1) i=2

m*( ¥ 23) )
i=1 1G)

where the second isomorphism is from Theorem 4.4, the third isomorphism
is a consequence of isomorphism of free group factors by [7, Theorem 6] and
the last isomorphism is from Theorem 4.5.

On the other hand, suppose (43) holds in general. From Theorem 3.9 we
have

lle

L(Fy) = L(Fz>l?xf 2752, L(Fy)],
k=1

while isomorphism (43) gives

L) ¥ 2R LE) L(Fm(k‘?f L(F1+2k)> ~ LF). 1
=1 =1
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