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This paper deals with nonparametric regression estimation under arbitrary
sampling with an unknown distribution. The effect of the distribution of the design,
which is a nuisance parameter, can be eliminated by conditioning. An upper bound
for the conditional mean squared error of k&NN estimates leads us to consider an
optimal number of neighbors, which is a random function of the sampling. The
corresponding estimate can be used for nonasymptotic inference and is also consis-
tent under a minimal recurrence condition. Some deterministic equivalents are
found for the random rate of convergence of this optimal estimate, for deterministic
and random designs with vanishing or diverging densities. The proposed estimate
is rate optimal for standard designs. � 2000 Academic Press
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1. INTRODUCTION

Consider n observations (Xi , Yi) following the regression model

Yi=m(X i)+_=i , (1.1)

where the Yi 's are real variable and the Xi 's are in a space X with a
distance d and are independent from the independent and identically dis-
tributed (i.i.d.) real variables =i 's, with E=i=0, Var(=i)=1. This paper deals
with nonparametric estimation of the regression function m( } ) under
arbitrary sampling with unknown distribution and investigates the effect of
the design on a nearest neighbor (k&NN) estimate. We assume that the
regression function from X to R is Lipschitz with constant L>0, i.e., in the
set of functions

C(L)=[m( } ) : X [ R; |m(x)&m(x$)|�Ld(x, x$), \x, x$ # X]. (1.2)

Most existing work generally consider the case where the Xi 's are i.i.d.
variables. Gyo� rfi (1981) and Devroye (1982) studied k&NN estimates
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under an arbitrary marginal distribution for these variables. When the i.i.d.
Xi 's have a common continuous density fX ( } ), Fan (1993) established that
the optimal minimax rate to estimate m(x) is

\ fX (x)
L_2 +

1�3

n1�3, fX (x)>0. (1.3)

The dependence of this rate with respect to the density illustrates the effect
of sampling in estimation: higher rates can be expected if the density is
large, which is intuitively clear because it should be easier to estimate m(x)
when many Xi 's are close to x. Motivated by nonparametric dimension
reduction methods, Hall et al. (1997) relaxed the condition fX (x)>0 and
studied the case of low designs fX (x)=0.

But such assumptions on the process [Xn]n�1 are difficult to check in
practice and do not hold in many applications. The Xi 's may not be identi-
cally distributed or the independence assumption may not hold, as in the
case of an estimated percentage. The rise of the unit root in econometrics
suggests that many variables [Xn]n�1 of practical interest should be non-
stationary or have seasonalities which do not fit in the standard i.i.d.
framework. More generally, design-free nonparametric methods are inter-
esting because the distribution PX of the sampling [Xn]n�1 is a nuisance
parameter in the regression model (1.1) which usually is not specified.
Important steps in this direction can be found in Kulkarni and Posner
(1995), who introduced a k&NN estimate for arbitrary design. When the
Xi 's are valued in a compact subset of R, they showed that the order of the
time average risk of their estimate is n&1�3, independent of the design
distribution PX , the order corresponding to the i.i.d. case. However, their
approach is somehow unsatisfactory because their results depend upon the
support of the unknown sampling distribution.

We propose instead to eliminate the design distribution by conditioning
with respect to the ancillary statistic (X1 , ..., Xn). This leads us, in difference
to the aforementioned authors, to consider a random choice of the number
of nearest neighbors which we introduce now. Assume for the moment that
the Xi 's are deterministic and that there is not tie among the d(Xi , x)'s.
Denote by (X x

j , Y x
j , =x

j ) (1� j�n) the ordering of (Xi , Yi , =i) according to
the increasing values of d(Xi , x). The k&NN estimate is

mk, n(x)=
1
k

:
k

j=1

Y x
j .

Because the Xi 's are deterministic variables, [=x
i ]1�i�n and [=i]1�i�n have

the same distribution. Then the mean squared error of mk, n(x) admits the
simple upper bound
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Em[mk, n(x)&m(x)]2=Em _1
k

:
k

j=1

(m(X x
j )&m(x))+

_
k

:
k

j=1

=x
j &

2

=_1
k

:
k

j=1

(m(X x
j )&m(x))&

2

+
_
k

�2 max(L2d(X x
k , x)2, _2�k),

for any m( } ) in C(L). This suggests that we should consider the following
number of neighbors:

Kn(x)=arg min
1�k�n

max(L2d(X x
k , x)2, _2�k).

Define

m̂n(x)=mKn(x), n(x), R� n(x)=min \ 1
L2d(X x

k , x)2 ,
Kn(x)1�2

_ + .

This gives the bound for the mean squared error of m̂n(x),

Em[R� n(x)2 (m̂n(x)&m(x))2]�2, (1.4)

which holds independent of the deterministic Xi 's and is therefore design-
free. In this approach, the weight function R� n( } ) takes into account the
repartition of X1 , ..., Xn over X. Indeed, R� n(x) is large if x is close to many
Xi 's and small if x is far from X1 , ..., Xn .

The remainder of the paper is organized as follows. In Section 2 we
introduce an extension of the regression model (1.1) and precisely define
the k&NN estimates mk, n( } ). We provide some design-free nonasymptotic
bounds for the mean integrated squared error of m̂n( } ) weighted by R� n( } ).
As is shown by (1.4), the random variable R� n(x) is an upper bound for the
convergence rate of m̂n(x), which converges to m(x) if R� n(x) diverges with
the sample size. We show in Section 3 that m̂n(x) converges to m(x) if and
only if consistent estimation is possible with the design at hand. In
Section 4 we compare our conditional approach with standard ones by
studying the behavior of R� n(x) under some examples of designs. For some
i.i.d. Xi 's with density fX ( } ) our estimate m̂n(x) converges to m(x) with the
optimal rate (1.3) given by Fan (1993). This suggests that our estimation
procedure automatically adapts to the design at hand. We also explain how
to improve k&NN estimates by selecting a linear smoother via our
conditional approach. Final comments and our conclusion are given in
Section 5, and the proofs are gathered in the appendixes.
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2. NONASYMPTOTIC BOUNDS FOR CONDITIONAL
MEAN SQUARED ERRORS

We describe now a general nonparametric regression model which allows
for both arbitrary design and general disturbance terms. Denote by P the
distribution of [(Xn , Yn)]n�1 and by EP the associated expectation. We
consider n�2 observations (Xi , Yi) with, for any 1�i{ j�n,

(a) EP [Yi | X1 , ..., Xn]=EP [Yi | Xi]=mP (Xi)

(b) mP ( } ) # C(L),

(c) VarP [Yi | X1 , ..., Xn]�_2, _�0,

(d) CovP [Yi , Yj | X1 , ..., Xn]=0,

where the set of Lipschitz regression functions C(L) is defined in (1.2). The
conditional noncorrelation condition (2.1.d) slightly weakens Kulkarni and
Posner (1995), who assumed that the distribution of Yi given X1 , ..., Xn ,
Y1 , ..., Yi&1 , Yi+1 , ..., Yn is the distribution of Yi given Xi . From now on,
we denote Cn(L, _) the family of distributions P such that the four
conditions in (2.1) hold and by

C(L, _)= ,
n�2

Cn(L, _)

the class of P such that (2.1) holds for all n�2.
We now introduce some suitable definitions related to the k&NN

estimates. For any x in X and h>0, let Nn(x, h) be the number of Xi 's with
d(x, Xi)�h, i.e.,

Nn(x, h)= :
n

i=1

1(d(x, Xi)�h).

Definition 1. For each x in X and each integer number k, 1�k�n,
define

Hk(x)=Hk : n(x)=min[h; Nn(x, h)�k].

Consider the subset of integers in [0, n],

Kn(x)=[Nn(x, h); h�0].

222 EMMANUEL GUERRE



For k�1 in Kn(x), the k-nearest neighbor estimate of m(x) is

mk, n(x)=
1
k

:
n

i=1

Y11(d(x, Xi)�Hk(x))=
1
k

:
n

j=1

Y x
j ,

with, for the second equality, an appropriate ordering in the case of ties.

The set Kn(x) has been introduced to average over all groups of ties
among the Xi 's, when necessary, without introducing any ordering. The
Hk(x)'s are the successive ordered distances of [X1 , ..., Xn] to x, that is,

Hk(x) # [d(x, X i), 1�i�n], H1(x)�H2(x)� } } } �Hn(x).

Definition 1 shows that the k&NN estimate may be viewed as a kernel
nonparametric regression estimate with a random bandwidth Hk(x).

As explained above, our approach is based on a simple bound for
the conditional means squared error of mk, n(x) under the regression
model (2.1) we introduce now. From now on, denote

Xn=(X1 , ..., Xn).

Under (2.1.a) and because the Hk( } )'s only depend upon Xn , the condi-
tional mean squared error of the k&NN estimate admits the standard bias
variance decomposition

EP [(mk, n(x)&mP (x))2 | Xn]

=EP _{1
k

:
n

i=1

(Yi&mP (Xi)+mP (Xi)&mP (x))

_1[d(x, Xi)�Hk(x)]=
2

} Xn&
=\1

k
:
n

i=1

(mP (Xi)&mP (x)) 1[d(x, X i)�Hk(x)]+
2

(2.2)

+VarP _1
k

:
n

i=1

Yi1[d(x, Xi)�Hk(x)] } Xn& . (2.3)

The first term (2.2) has the interpretation of a (conditional) squared bias
term, and the second (2.3) corresponds to a variance one. Note that
Nn(x, } ) is a ca� dla� g function, and then

:
n

i=1

1[d(x, Xi)�Hk(x)]=Nn[x, Hk(x)]=k, k # Kn(x).
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Because m( } ) is in the set of Lipschitz functions C(L) defined in (1.2) under
(2.1.b), the bias term (2.2) is bounded by

\1
k

:
n

i=1

Ld(x, Xi) 1[d(x, Xi)�Hk(x)]+
2

�L2H 2
k(x)

Nn[Hk(x)]
k

=L2H 2
k(x).

For the variance term (2.3), note that the Yi 's are uncorrelated given by
Xi 's under (2.1.d). This gives, since Hk(x) only depends upon Xn ,

VarP _1
k

:
n

i=1

Yi 1[d(x, Xi)�Hk(x)] } Xn&
=

1
k2 :

1�i, j�n

1[d(x, Xi)�Hk(x)] 1[d(x, Xj)�Hk(x)]

_Cov[Yi , yj | Xn]

=
1
k2 :

n

i=1

1[d(x, X i)�Hk(x)] VarP [Yi | Xn].

Condition (2.1.c), the fact that Nn[x, Hk(x)]=k for k in Kn(x), yields that
the variance (2.3) term is smaller than

_2

k2 :
n

i=1

1[d(x, Xi)�Hk(x)]=
_2Nn[x, Hk(x)]

k2 =
_2

k
.

Therefore, under (2.1), we have for the conditional mean squared error of
the k&NN estimate

EP [(mk, n(x)&mP (x))2 | Xn]�L2H 2
k(x)+

_2

k

�2 max \L2H 2
k(x),

_2

k + . (2.4)

This bound is the basis of our random choice of the number of neighbors
k. Note that 1�k is strictly decreasing and H 2

k(x) is strictly increasing with
respect to k in Kn(x). The optimal number of neighbors Kn(x) considered
here is the smallest k in Kn(x) with

224 EMMANUEL GUERRE



max \L2H 2
Kn(x)(x),

_2

Kn(x)+= min
k # Kn(x)

max \L2H 2
k(x),

_2

k +
= min

1�k�n
max \L2H 2

k(x),
_2

k + . (2.5)

The set Kn(x) can be replaced by [1, ..., n] in the equation above because,
for any 1�k$�n which is not in Kn(x), there is a k in Kn(x) with k�k$
and Hk$(x)=Hk(x).

This leads us to introduce the following optimal k&NN estimate:

m̂n(x)=mKn(x), n(x). (2.6)

We denote by 1�R� 2
n(x) the bound (2.4) of the conditional mean squared

error associated with the optimal number of neighbors Kn(x), that is,

R� n(x)=min \ 1
LHKn(x)(x)

,
K 1�2

n (x)
_ +

= max
1�k�n

min \ 1
LHk(x)

,
k1�2

_ + . (2.7)

The variables Kn(x), HKn(x) , R� n(x), x in X depend only upon X1 , ..., Xn and
then the upper bound (2.4) yields

EP [R� n(x)2 (m̂n(x)&mP (x))2 | Xn]�2, (2.8)

for any x in X. The next theorem extends this result to the integrated mean
squared error.

Theorem 1. Consider the regression model (2.1), and let + be any prob-
ability measure over X ( possibly depending upon X1 , ..., Xn). Then we have

EP {| [R� n(x)(m̂n(x)&mP (x))]2 +(dx) } Xn =�2 (2.9)

and

EP {| [R� n(x)(m̂n(x)&mP (x))]2 +(dx)=�2, (2.10)

for any P in Cn(L, _).
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Proof of Theorem 1. We have, since R� n( } ) is a function of Xn and by the
Fubini theorem,

EP {| [R� n(x)(m̂n(x)&mP (x))]2 +(dx)=
=E | EP [[R� n(x)(m̂n(x)&mP (x))]2 | Xn] +(dx).

The bound (2.8) for the conditional mean squared error at x yields

| EP [R� n(x)(m̂n(x)&mP (x))2 | Xn] +(dx)�2 | +(dx)=2,

which shows that (2.9) holds. Taking expectation with respect to Xn shows
that the inequality (2.10) is proved. K

Kulkarni and Posner (1995) suggested various choices for the distribu-
tion +. They considered the case of independent Xi 's drawn according to a
fixed known distribution +. If the distribution of the process [Xi] i�1 is
unknown, it is possible to consider the empirical measure associated with
X1 , ..., Xn . In this case, Theorem 1 gives bounds for expectations of the
averaged errors

1
n

:
n

i=1

R� n(Xi)
2 [m̂n(Xi)&mP (Xi)]2.

Bounds can also be obtained for the time-average risk considered in
Kulkarni and Posner (1995).Taking a Dirac mass for + in Theorem 1 yields
the upper bound for the mean squared error,

EP [R� n(x)2 (m̂n(x)&mP (x))2]�2, (2.11)

for any x in X.
Theorem 1 deals with sampling process [Xn]n�1 with arbitrary distribu-

tion, as in Kulkarni and Posner (1995). The bounds given by these authors
depend upon the Lipschitz constant L, the variance bound _2, and the sup-
port of the unknown distribution of [Xn]n�1 . Our conditional approach
avoids the introduction of such unknown sets, but the price to be paid is
the introduction of the weight function R� n( } ) when computing the
integrated error with respect to +. However, doing this takes into account
the fact that the repartition of the sample X1 , ..., Xn can be non-
homogeneous over the space X, leading to erratic behavior of m̂n( } )&
mP ( } ). If x is far from X1 , ..., Xn , all the estimates mk, n(x) suffer from a
large bias, as m̂n(x). On the other side, the bias and variance of the optimal
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k&NN estimate are small if x is close to many Xi 's: if, for instance, Xi=x
for all i then the optimal k&NN estimate averages over all the Xi 's and
R� n(x)=- n�_.

A byproduct of this conditional approach is that Theorem 1 gives some
nonasymptotic bound for the risk of the optimal k&NN estimate. This
agrees with the general message in Barndorff-Nielsen and Cox (1994)
which argues that ancillary statistics like Xn are useful for computing exact
or accurate approximations for distributions of estimation errors. For
instance, the mean squared error bound (2.11) can be used to propose a
nonasymptotic confidence interval when the constants L and _ are
available. The Tschebyscheff inequality gives

P( |R� n(x)(m̂n(x)&mP (x))|�t)�
2
t2 , t>0,

and

In=_m̂n(x)&
1

R� n(x) \
2

:+
1�2

, m̂n(x)+
1

R� n(x) \
2

:+
1�2

& , : # ]0, 1[,

is then a conservative confidence interval of level 1&: for mP (x).

3. CONSISTENT ESTIMATION

The preceding section dealt with a nonasymptotic point of view. We
study now the consistency of the optimal k&NN estimate m̂n( } ) when the
distribution of the process [Xn]n�1 is arbitrary. For the sake of simplicity,
we limit ourselves to the estimation of mP (x) for a given x. This leads to
introduce the following definition.

Definition 2. Let P be a family of distribution for the process
[(Xn , Yn)]n�1 such that, for any n,

EP [Yn | Xn=x]=mP (x).

The estimate m~ n(x) is P-consistent if and only if

P& lim
n � +�

m~ n(x)=mP (x),

for any distribution P in P.

Let us now briefly recall some results when the (Xn , Yn)'s are independent
and identically drawn random variables. Devroye (1982) has obtained a
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necessary and sufficient condition on the number of neighbors kn ensuring
that the estimate mkn , n(x) is consistent for PX almost all x: the deter-
ministic sequence kn must diverge with kn �n going to 0.

The case of arbitrary sampling differs considerably. Indeed, for any given
deterministic sequence [kn]n�1 of number of neighbors as above, it may
now be possible to find a sampling [Xn]n�1 such that mkn , n(x) does not
converge to mP (x). Let us now shortly illustrate this fact, with
X=[0, +�] and mP (x)=Lx, under the condition of the regression
model (2.1). We want to estimate mP (0) with mkn , n(0), kn diverging with
n and kn �n going to 0. For such kn , it is easily shown that it is possible to
find a deterministic sequence [Xn]n�1 , with, for an infinite number of
sample sizes n

X 0
j =0, 1� j�kn&1, X 0

j =+�, kn� j�n,

where the X 0
j 's are the X i 's ordered with respect to d(0, Xi). The gives

mkn , n(0)=+� and mkn , n(0) cannot converge to mP (0)=0. For estimation
in stochastic processes, similar examples, where a deterministic choice of
smoothing parameters fails to give consistent estimates, can be found in
Gyo� rfi and Lugosi (1992), Morvai et al. (1996), and Adams and Nobel
(1998).

However, it is easily seen that our optimal k&NN estimate m̂n(0) con-
verges in probability to mP (0) for the example o sampling above, due to the
design-dependent choice of the optimal number of neighbors Kn(0). More
generally, the bound (2.11) of the mean squared error of m̂n(x) yields that

m̂n(x)&mP (x)=OP \ 1

R� n(x)+ , (3.1)

and m̂n(x) converges in probability to mP (x) if R� n(x) goes to infinity. The
next lemma implies that R� n(x) diverges or stays bounded away from
infinity.

Lemma 1. For any distribution of the process [Xn]n�1 and any x in X,
the random sequence [R� n(x)]n�1 increases with the sample size n.

Proof of Lemma 1. Note that Hk: n(x)�Hk: n+1(x), 1�k�n. The
definition (2.7) of R� n(x) gives

R� n(x)= max
1�k�n

min \ 1
LHk: n(x)

,
k1�2

_ +� max
1�k�n

min \ 1
LHk: n+1(x)

,
k1�2

_ +
� max

1�k�n+1
min \ 1

LHk: n+1(x)
,

k1�2

_ +=R� n+1(x). K
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Lemma 1 and (3.1) show that a natural question deals with the
estimation of mP (x) when R� n(x) is bounded. The next theorem shows that
it is impossible to find a consistent estimate of mP (x) when R� n(x) does not
go to infinity. Therefore, the estimate m̂n(x) converges to mP (x) if and only
if consistent estimation is feasible with the design at hand and is then
sampling adaptive in this sense. This illustrates the superiority of our
design-dependent choice of the number of nearest neighbors compared to
deterministic ones in the context of arbitrary sampling.

Theorem 2. Let PX be a family of distributions PX for [Xi] i�1 . Denote
by

P=[P # C(_, L), PX # PX]

the regression model (2.1) with design distribution in PX . Consider a given x
in X. Then the following propositions are equivalent:

1. For any distribution P in P, there exists, PX -almost surely, a
subsequence of [Xi] i�1 which converges to x.

2. For any distribution P in P, limn � +� R� n(x)=+�, PX-almost
surely.

3. The estimate m̂n(x) is a P-consistent estimate of mP (x).

4. There exists a P-consistent estimate of mP (x).

Proof of Theorem 2. See Appendix A.

Theorem 2 gives two necessary and sufficient conditions under which
consistent estimation of mP (x) is feasible or, equivalently, such that m̂n(x)
converges to mP (x) in probability. The most interesting condition is the
recurrence condition (1). Condition (2) involves the variable R� n(x) which is
specific to our Lipschitz regularity assumption in model (2.1), an assump-
tion that can be weakened to continuity or to the approximation
hypothesis of Gyo� rfi (1981); see Section 4.2 below. Our optimal k&NN
estimate is still consistent under such weaker regularity assumptions.

The recurrence condition (1) in Theorem 2 is intuitively clear because it
should not be possible to estimate mP (x) if there are not enough Xi 's close
to x. Theorem 2 shows the limits of the nonparametric approach under
arbitrary sampling. For instance, it is impossible to find a consistent
estimate of mP (x) if the Xi 's are trended variables. Stronger versions of the
recurrence condition (1) have been used previously in the literature. For
the regression model with real deterministic designs Li (1984) has used a
stronger recurrence condition, assuming that the number of Xi , 1�i�n, in
the intervals [x&h, x+h] is asymptotically larger than }ns, }>0.
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A similar condition also holds for i.i.d. designs with continuous density
bounded away from 0 and infinity, as in Fan (1993).

The importance of recurrence assumptions was also noted in non-
parametric inference for stochastic processes. For Markov autoregression
models

Yi=m(Y i&1)+_= i ,

Yakowitz (1993) used a Harris null recurrence condition and studied the
consistency of a k&NN estimate. For deterministic dynamical systems

Yi=m(Y i&1), m( } ): [0, 1] [ [0, 1],

Guerre and Mae� s (1999) showed the rate optimality of the closest neighbor
estimate with a rate function similar to R� n(x), assuming that the sequence
[Yn]n�1 is dense in [0, 1].

4. EXAMPLES OF DESIGNS AND BETTER ADAPTATION

Theorem 2 illustrates the design adaptation of our conditional non-
parametric estimation procedure from a consistency point of view. This sec-
tion is devoted to the rate adaptation of m̂n( } ), showing that its con-
vergence rate is optimal for two standard examples of designs. As shown by
Theorem 1, (2.11), and (3.1), the weight function R� n( } ) is an upper bound
for the rate of convergence of m̂n( } ) to mP ( } ). In this section the order of
R� n( } ) is given for two simple families of deterministic and i.i.d. designs on
[0, 1]. In each case, we consider nonhomogeneous sampling over [0, 1]
and investigate the effect on R� n( } ) of the repartitioning of the Xi 's. The
examples studied here include as a special case some low designs con-
sidered in Hall et al., but also designs with diverging density. The simple
definition (2.7) of R� n(x) yields that the order of this variable is easily
derived from the study of Nn(x, } ); see Appendix B. It is easily seen that
Propositions 1 and 2 stated below extend to a large class of deterministic
and random samplings. After the examples, we briefly explain how to
improve the k&NN estimate m̂n( } ) by implementing our conditional
approach to a local linear smoother.

4.1. Deterministic Designs

Define Xi in [0, %] as

Xi=Xi, n=% \i&1
n +

:

, 1�i�n, :, %>0. (4.1)
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The parameters % and : describe the concentration of the Xi 's in the
vicinity of 0. For simple designs like (4.1), it is easily shown that R� n(x) is
the rate of convergence of m̂n(x) to mP (x). The next proposition gives the
asymptotic behavior of R� n(x), for each x in [0, %], as a function of the
sample size n, the regression model parameters L, _, and the design
parameters :, %.

Proposition 1. Assume _>0, and let [Xi]1�i�n be as in (4.1). Define

1
L \L2

_2

1
%1�:+

:�(2:+1)

n:�(2:+1), x=0,

rn(x)={ 1
L {2L2

_2 \x
%+

1�:&1 1
:%=

1�3

n1�3, 0<x<%,

1
L \L2

_2

1
:%+

1�2

n1�3, x=%.

Then,

lim
n � +�

R� n(x)
rn(x)

=1,

for any x in [0, %].

Proof of Proposition 1. See Appendix B.

Korostelev and Tsybakov (1993) have shown, under arbitrary deter-
ministic designs on [0, %], that the minimax optimal rate for estimating
mP ( } ) with respect to the mean integrated squared error is n1�3, and
Kulkarni and Posner (1995) gave a k&NN estimate which achieves this
optimal rate. Proposition 1 described the nonhomogeneous asymptotic
behavior of R� n( } ). Theorem 1 suggests that the use of a rate independent of
x is misleading: the rate function rn(x) is not constant with respect to x.
Moreover, Proposition 1 shows that R� n(0) is of order n:�(2:+1) which
diverges faster than n1�3 if :>1 and slower if :<1. Taking :=+� in (4.1)
gives Xi=0, 1�i�n. The k&NN estimate m̂n(0) averages over all the Y i 's
and then achieves the parametric optimal rate - n. It is worth mentioning
that the effect of the concentration parameter : can be compared with the
effect of the smoothness of the regression function. Indeed, if mP ( } ) has :
bounded derivatives, the optimal minimax rate to estimate mP (0) under
the regular design Xi=(i&1)�n is n:�(2:+1) (see Korostelev and Tsybakov,
1993), which is also the order of R� n(0) given by Proposition 1.

When :=1, Theorem 1 and Proposition 1 yield that the optimal k&NN
estimate m̂n( } ) adapts to the design in the sense that the optimal rate n1�3
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is achieved. But the estimate m̂n( } ) suffers from a standard side effect (see
e.g. Fan and Gijbels, 1996), that is,

rn(0)=rn(%)<rn(x), 0<x<%,

and estimation is slower at the extremities 0 and %.

4.2. The Case of Independent and Identically Distributed Random Variables

Consider now the case of independent and identically distributed Xi 's
with a common density fX ( } ). Recently attention has been paid to the effect
of the design density on nonparametric regression estimation. Gyo� rfi
(1981) studied k&NN estimates under an approximation condition of the
regression function, under arbitrary distribution of the i.i.d. Xi 's. Hall et al.
(1997) considered low designs, that is, vanishing densities fX ( } ) at some x,
say 0, with fX (x)t0 cxa, c>0, for some known a>0. Fan (1993) gave
bounds for the minimax mean squared error depending upon fX ( } ); see
also Fan and Gijbels (1996). In this section we consider random i.i.d.
designs and compare our results with Gyo� rfi (1981), Hall et al. (1997), and
Fan (1993).

Define now

Xi=%U :
i , :�0, %�0, (4.2)

where the Ui 's are i.i.d. uniform random variables over [0, 1], which is the
random counterpart of the deterministic designs (4.1). The density of the
Xi 's is

f (x)=
1

:% \
x
%+

1�:&1

1[0, %](x).

This example of density slightly enlarges the framework of Hall et al.
(1997). Indeed, taking :<1 gives the low design case with fX (0)=0
studied by these authors, but considering :>1 yields a diverging density at
0. The next proposition shows that the asymptotic behavior of R� n( } ) for
random designs (4.2) is similar to the one given in Proposition 1 for
deterministic designs (4.1).

Proposition 2. Assume _>0 and let [Xi] i�1 be as in (4.2). Then, for
the rate function rn( } ) introduced in Proposition 1, we have

P& lim
n � +�

R� n(x)
rn(x)

=1,

for any x in [0, %].
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The comments following Proposition 1 also apply to Proposition 2, and
we first compare our results with Gyo� rfi (1981). This author considered n
i.i.d. observations (Xi , Yi) and a k&NN estimate of the regression
function, assuming that the variables Xi 's have a common unknown
distribution PX . Arguing that local PX -means of mP ( } ) should be close to
the regression function, he introduced an approximation assumption

1
P(X # [x&h, x+h]) |

x+h

x&h
mP (u) PX (du)&mP (x)

=O(h;), ;>0, h>0. (4.3)

for x in the support of the distribution PX , i.e., such that

lim inf
h � 0

P(X # [x&h, x+h])
h

>0 (4.4)

(see also Eq. (8) in Gyo� rfi, 1981). Assuming that ; is known, he proposed
a k&NN estimate achieving at least the rate n;�(2;+1). Consider now
X=R, d(x, y)=|x& y|, and the simple regression function mP (x)=Lx
which is in C(L). For the particular Xi distribution defined in (4.2), we
have, for x=0 and h�%,

1
P(X # [&h, h]) |

h

&h
mP (u) fX (u) du=

1
(h�%)1�: |

h

0
Lu

1
:% \

u
%+

1�:&1

du

=
1

(h�%)1�:

L
:%1�:

1
1+1�:

h1+1�:

=O(h),

and we get ;=1 for x=0 in (4.3), as for any x in [0, %]. If x=0,
Condition (4.4) holds for designs (4.2) with a strictly positive density at 0,
that is, :�1. The convergence rate for ;=1 in Gyo� rfi (1981) is n1�3.
Proposition 2 gives the rate n:�(2:+1) with :�(2:+1)>1�3 when :>1.

Hall et al. (1997) studied the case of vanishing densities fX (x)t0 cxa,
c>0 for some known a>0. For random designs (4.2), Proposition 2 gives,
for R� n(0), the order

n1�(3+a), a=
1
:

&1>0.

This shows that there is a loss in the convergence rate for low designs, the
exponent 1�3 of uniform designs being replaced by 1�(3+a). Our results
cannot be compared directly to those of Hall et al. (1997), who studied
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estimation of twice continuously differentiable regression functions.
However, they reached a similar conclusion, obtaining the order n2�(5+a),
which is slower than the usual rate n2�5 for estimation of these smoother
regression functions under regular sampling.

Fan (1993) studied asymptotic minimax efficiency for designs with con-
tinuous density bounded away from 0 and infinity. He showed that, for any
estimate m~ n(x),

31�3 \ fX (x)
L_ +

2�3

n2�3 sup
P

EP [m~ n(x)&mP (x)]2�0.922+o(1), (4.5)

where the supremum is taken over the distribution P in Cn(L, _) corre-
sponding to i.i.d. (Xi , Yi)'s, fX ( } ) being the common marginal continuous
density of the Xi 's. Fan (1993) gives an asymptotic optimal kernel estimate

m� n(x)=
�n

i=1 (1&|(x&X i)�hn | )+ Yi

1+�n
i=1 (1&|(x&Xi)�hn | )+

,

where ( } )+ is the positive part and hn is an appropriate bandwidth such
that

31�3 \ fX (x)
L_2 +

2�3

n2�3 sup
P

EP [m� n(x)&mP (x)]2=1+o(1). (4.6)

From (2.8) and Proposition 2 it is expected that the mean squared error of
our optimal k&NN estimate is such that

1
2rn(x)2 sup

P

EP[m̂n(x)&mP (x)]2�1+o(1), (4.7)

for the design (4.2). For x in ]0, %[, we have

1
2

rn(x)2=2&1�3 1
L2�3_4�3 _ 1

:% \
x
%+

1�:&1

&
2�3

n2�3

=2&1�3 \ f (x)
L_2 +

2�3

n2�3,

where f ( } ) is the design density associated with (4.2). As a consequence,
(4.5) and (4.7) yield that, for designs (4.2), our optimal k&NN estimate
recovers the optimal rate n1�3, and the dependence of the rate rn( } ) with
respect to f ( } ), L, and _2 is the expected one. The relative asymptotic
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minimax efficiency of m̂n(x) with respect to the optimal kernel estimate
m� n(x) in (4.6) is larger than

rn(x)�- 2
31�6( f (x)�(L_2))1�3 n1�3=6&1�6

r0.74,

and there is possibly some loss of asymptotic efficiency from using the
optimal k&NN estimate m̂n(x) instead of m� n(x) for the design (4.2). We
explain in the next section how to improve our optimal k&NN estimate
independent of the sampling.

4.3. Better Adaptation

The optimal estimate m̂n( } ) has some interesting theoretical features
because the order of the variables R� n( } ) can be derived easily for the
standard sampling examples considered above. This was the basis for the
comparison of our conditional approach with previous results. Better (but
less explicit) bounds can be obtained for the conditional mean squared
error by considering a larger family of estimates. Following Stone (1977),
k&NN estimates mk, n( } ) are particular case of the linear smoothers

m?, n(x)= :
n

i=1

?i Yi ,

where ?=(?1 , ..., ?n) are some weights depending upon x and X1 , ..., Xn .
From now on we denote by 6 the class of weights with �n

i=1 ?i=1. It
is possible to choose an optimal ?n(x) in 6 as we derived an optimal
number of neighbors Kn(x), by finding a simple bound for the conditional
mean squared error of m?, n(x). We have, for any P in Cn(L, _),

EP [(m?, n(x)&mP (x))2 | Xn]

=EP _\ :
n

i=1

? i[mP (Xi)&mP (x)]+ :
n

i=1

? i[Yi&mP (X i)]+
2

} Xn&
=\ :

n

i=1

?i[mP (Xi)&mP (x)]+
2

+ :
n

i=1

?2
i Var[Yi | Xn]

�\L :
n

i=1

|?i | d(Xi , x)+
2

+_2 :
n

i=1

?2
i . (4.8)

The standard Lagrange multiplier method shows that the optimal weight
vector ?n(x) is one of the ?(x, h) with

?i (x, h)=\1&
d(X i , x)

h ++

.
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For real Xi 's and d(x, y)=|x& y| , such weights give for some hn the
optimal kernel estimate m� n( } ) given in Fan (1993) up to a negligible term 1
in the denominator. An optimal (random) bandwidth 'n(x) can be found
by taking h such that the upper bound (4.8) is the smallest possible. The
random rate corresponding to this optimal linear smoother mn( } ) is

Rn(x)=max _ 1
L �n

i=1 ? i (x, 'n(x)) d(Xi , x)
,

(�n
i=1 ?2

i (x, 'n(x)))&1�2

_ & .

Because the upper bound (4.8) for the conditional mean squared error is
always smaller than (2.4), we have

R� n(x)�Rn(x)

for any x in X, which suggests that mn(x) is more efficient than m̂n(x).
However, note that finding deterministic equivalents of Rn( } ) may be more
difficult than for R� n( } ).

5. CONCLUSION AND FURTHER COMMENTS

A conditional approach for selecting an optimal k&NN estimate m̂n( } )
has been proposed. The weighted mean-integrated squared error of m̂n( } )
is bounded by 2 for any sample size n. The role of the weight function
R� n( } ) is to capture the impact of the repartition of the Xi 's without any a
priori information on the distribution of the design. The random choice
(2.5) of the number of neighbors Kn(x) defining the estimate m̂n( } ) is also
useful when the sample size n grows. Our k&NN estimate is design
adaptive, meaning that m̂n(x) is consistent if and only if consistent estima-
tion is possible for the design at hand. Moreover, m̂n(x) is rate optimal for
some standard examples of designs without using this addition a priori
information on the sampling distribution. For some nonstandard designs
clustering at x it is also shown that m̂n(x) improves on the k&NN estimate
of Gyo� rfi (1981). An improved design-adaptive estimate is also derived via
conditioning. Furthermore, it should be possible to derive, equivalent to
the random variable R� n(x), an upper bound of the convergence rate of
m̂n(x) for new examples of designs such that the behavior of Nn(x, .) is
suitable, as for random walks and ARIMA processes; see Akonom (1993)
and Appendix B.

Lots of work remain to be done. In many applications, the Lipschitz
constant L and the variance bound _2 are unknown. It is possible to
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choose an arbitrary random choice of the number K$n(x), taking for
instance L=_=1 in (2.5),

K$n(x)=arg max
k # Kn(x)

min \ 1
Hk(x)

, k1�2+ .

If

R$n(x)=min \ 1
HK$n(x)(x)

, K$n(x)1�2+ ,

a standard bias-variance decomposition similar to (2.8) gives

2R$n(x)2

L2+_2 EP [(mK$n(x), n(x)&mP (x))2 | Xn]�2.

Nonasymptotic bounds for weighted mean-integrated squared errors will
follow from this inequality as in Theorem 1. The recurrence condition (1)
in Theorem 2 implies that mK$n(x), n(x) is consistent if and only if there exists
a consistent estimate for the design at hand. This k&NN estimate also
achieves the rates given in Propositions 1 and 2. However, such estimates
are somehow arbitrary and may perform poorly in practice. A better choice
of the number of neighbors can be derived from the cross-validation proce-
dure given in Li (1984), who studied deterministic sampling fulfilling a
recurrence condition. Extensions of the empirical bandwidth choice in Hall
et al. (1997) for low designs can also be considered. Spokoiny (1998)
proposed, for change-point analysis, a selection method based on residual
analysis which may apply in our conditional framework.

APPENDIX A

Proof of Theorem 2. Clearly, Statement 2 implies Statement 3 by (3.1),
which gives Statement 4. Theorem 2 is true if we show that Statements 1
and 2 and Statements 1 and 4 are equivalent.

Statements 1 and 2 are equivalent. Let X1 , ..., Xn , ... be a fixed sequence
such that R� n(x) diverges. Then Kn(x) diverges and HKn(x)(x) goes to 0; see
the definition (2.7) of R� n(x). Because HKn(x)(x)=d(x, XK� n(x)) for some non-
constant sequence [K� n(x)]n�1 , XK� n(x) converges to x, and Statement 2
implies Statement 1.

Assume that Statement 2 holds and consider [Xn( p)]p�1 such that n( p)
increases to infinity with p, and d(x, Xn( p)) decreases to 0. Let q be a fixed
integer, strictly smaller than p. Because d(x, Xn( p))�d(x, Xn( p&1))� } } } �
d(x, Xn( p&q)), the number of Xi , 1�i�n( p), with d(x, Xi)�d(x, Xn( p&q))
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is larger than or equal to q. Then, by the definition of Hq : n( p) , we get that
Hq : n( p)�d(x, Xn( p&q)). This gives

R� n( p)(x)= max
1�k�n( p)

min \ 1
LHk : n( p)

,
- k

_ +�min \ 1
LHq : n( p)

,
- q
_ +

�min \ 1
Ld(x, Xn( p&q))

,
- q
_ + ,

and the lower bound can be made as large as is wanted by taking q large.
Therefore, R� n( p)(x) diverges. Because Lemma 1 shows that R� n(x) is
increasing, R� n(x) diverges.

Statements 1 and 4 are equivalent. Due to the preceding step,
Statement 1 implies 3, which yields Statement 4. Let us now prove that
Statement 4 implies Statement 1.

Consider the Gaussian regression submodel Pg of P given by

Yi=m(Xi)+_=i , =i �
iid

N(0, 1),

where the sampling (X1 , ..., Xn , ...) � PX , PX in PX , is independent of the
regression disturbance terms. If (4) is true, there is a Pg-consistent estimate
m~ n(x). The proof works by contradiction, assuming that such an estimate
m~ n(x) exists without Statement 1.

Let &n=Nn(x, 0)=�n
i=1 1(Xi=x). If Statement 1 does not hold, &n is

bounded away from infinity and the d(x, Xi)'s with Xi {x must stay
bounded away from 0. Because Xi {x gives that d(x, Xi)�H&n+1: n ,
1�i�n, this is equivalent to

&n=& for n large enough and H= lim
n � +�

H&n+1 : n(x)>0, PX-a.s.,

H&n+1: n being decreasing with n as soon as &n=&.
Let h>0 be such that P(H>h)>0. Let �( } ) be a real C� function

supported by [&1, 1] with �(0)>0, supt # R |�$(t)|�L. Define

,(x$)=
h
2

� \2d(x, x$)
h + ,

for x$ in X. For any x1 , x2 in X, we have by the triangular inequality

|,(x1)&,(x2)|�sup
t # R

|�$(t)| |d(x, x1)&d(x, x2)|�Ld(x1 , x2),

and ,( } ) is in C(L), with ,(x)=�(0)>0. Denote by P, and P0 the
distribution associated with m( } )=,( } ) and m( } )=0, respectively.
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We introduce the two simple hypotheses H0 : mP ( } )=0 against H1 :
mP ( } )=,( } ). Assume that m~ n(x) is P, and then Pg -consistent. Because
�(0)>0, this implies that

lim
n � +�

max[P0( |m~ n(x)|��(0)�2), P,( |m~ n(x)&,(x)|��(0)�2)]=0.

Define now the test

Tn=0 if and only if |m~ n(x)|<�(0)�2.

This gives

P,(Tn=0)=P( |m~ n(x)&,(x)+,(x)|��(0)�2)

�P,(�(0)&|m~ n(x)&,(x)|��(0)�2)

=P,( |m~ n(x)&,(x)|��(0)�2).

Then the limit above yields that the sum of the testing errors goes to 0, i.e.,

P0(Tn=1)+P,(Tn=0) � 0. (5.1)

Denote by P0, n and P,, n the distributions of the n first (Xi , Yi). Le Cam
and Yang (1990) showed that the sums of the two type errors of any test
of H0 against H, are bounded from below as follows:

P0(Tn=,)+P,(Tn=0)�1& 1
2 | |dP0, n&dP,, n |

�1&_1&\| - dP0, n dP,, n+
2

&
1�2

. (5.2)

We have, under Gaussian,

| - dP0, n dP,, n = | - dP0, n( } | Xn) dP,, n( } | Xn) dPX

= E _exp \&
1

8_2 :
n

i=1

,2(X i)+&
� E _exp \&

1
8_2 :

n

i=1

,2(X i)+ 1(H&n+1 : n>h)&
= E _exp \&

&n�(0)
8_2 + 1(H&n+1 : n>h)&

� E _exp \&
&�(0)
8_2 + 1(H&+1>h)&=l�1,
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because, for 1�i�n, ,(Xi)=0 if Xi {x and H&n+1 : n>h, and by the
Lebesgue dominated convergence theorem. Therefore inequality (5.2) yields

P0(Tn=1)+P,(Tn=0)�1&[1&l2]1�2+o(1),

with 1&[1&l2]1�2>0 because l>0 by the definitions of h and &. This
contradicts the limit (5.1). Then Statement 4 implies Statement 1, and
Theorem 2 is proved. K

APPENDIX B

We first give a convenient expression of R� n(x). Note that L2h2Nn(x, h) is
a ca� dla� g function with respect to h, and define

Bn(x)=min[h�0; L2h2Nn(x, h)�_2]. (5.3)

Lemma 2. Let R� n(x) be as in (2.7) and Bn(x) be as above. Then

R� n(x)=sup
h�0

min \ 1
Lh

,
N 1�2

n (x, h)
_ +=

1
LBn(x)

.

Proof of Lemma 2. For k in Kn(x), let s(k) be the smallest element of
Kn(x) strictly larger than k, with s(sup Kn(x))=+�, H+�(x)=+�.
Note that for any h in [Hk(x), Hs(k)(x)[, Nn(x, h)=k; see Definition 1.
This gives, for k in Kn(x),

sup
h # [Hk (x), Hs (k)(x)[

min \ 1
Lh

,
N 1�2

n (x, h)
_ += sup

h # [Hk (x), Hs (k)(x)[

min \ 1
Lh

,
k1�2

_ +
=min \ 1

LHk(x)
,

k1�2

_ + .

Combining this with the definitions (2.7) and (2.5) yields

R� n(x)= max
k # Kn(x)

min \ 1
LHk(x)

,
k1�2

_ +
= sup

h�H inf Kn (x)(x)

min \ 1
Lh

,
N 1�2

n (x, h)
_ +

=sup
h�0

min \ 1
Lh

,
N 1�2

n (x, h)
_ + .
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To prove the second equality, note that

Bn(x)=min[h�0; N 1�2
n (x, h)�_�1�(Lh)],

that 1�(Lh) continuously decreases with h, and that N 1�2
n (x, h)�_ is a ca� dla� g

increasing function with respect to h. This gives for h�Bn(x),

min \ 1
Lh

,
N 1�2

n (x, h)
_ +=

1
Lh

�
1

LBn(x)
,

the upper bound being achieved for h=Bn(x). For h<Bn(x), we
distinguish two cases.

1. The curves [(h, 1�(Lh)); h�0] and [(h, N 1�2
n (x, h)�_); h�0] do

not cross each other. In this case we have for h<Bn(x) that N 1�2
n (x, h)�_<

1�(Lh), by the definition of Bn(x), and then, by the continuity of 1�(Lh),
that

min \ 1
Lh

,
N 1�2

n (x, h)
_ +=

N 1�2
n (x, h)

_
�

1
LBn(x)

.

This gives that R� n(x)=1�(LBn(x)).

2. The curves [(h, 1�(Lh)); h�0] and [(h, N 1�2
n (x, h)�_); h�0] have

a unique intersection. In this case Bn(x) is such that 1�(LBn(x))=
N1�2

n (x, Bn(x))�_, and the variations of the two curves imply R� n(x)=
1�(LBn(x)). K

Proof of Proposition 1. Let [ } ] be the integer part of a real number.
We have, for the design (4.1),

Nn(x, h)= :
n

i=1

1(x&h�Xi�x+h)

_n \h
%+

1�:

+1& x=0,

={_n \\x+h
% +

1�:

&\x&h
% +

1�:

+1+& 0<x<%, (5.4)

_n \1&\1&
h
%+

1�:

++1& x=%,

for n large enough. Define now

bn(x)=
1

Lrn(x)
.

241DESIGN ADAPTIVE REGRESSION



This gives, for any *>0,

L2(*bn(x))2 Nn(x, *bn(x))

\_2

L2+
2:�(2:+1)

%2�(2:+1)n&2:�(2:+1)

__*1�:n2:�(2:+1)%&2�(2:+1) \_2

L2+
1�(2:+1)

+4& , x=0,

=L2*2 \_2:%
2L2n \

x
%+

(:&1)�:

+
2�3

_2n*
1
:% \

x
%+

(1&:)�:

_\\_2:%
2L2n \

x
%+

(:&1)�:

+
1�3

+o(n&1�3)++1& , 0<x<%,

\_2:%
L2n +

2�3

_n*
1
:% \\

_2:%
L2n +

1�3

+o(n&1�2)++1& , x=%.

� _2 {*2+1�:

*3

x=0,
0<x�%,

by the mean value for 0<x�%. This implies that, for 0<'<1 and for
some 0<'$='$(')<1,

L2((1+') bn(x))2 Nn[x, (1+') bn(x)]�_2(1+'$+o(1)),

L2((1&') bn(x))2 Nn[x, (1&') bn(x)]�_2(1&'$+o(1)).

Because L2h2Nn(x, h) increases in h, Bn(x) as defined in (5.3) is in
[(1&') bn(x), (1+') bn(x)] for n large enough. As a consequence,
Bn(x)�bn(x) goes to 1, and Lemma 2 shows that Proposition 1 is proved. K

Proof of Proposition 2. The proof follows the arguments used to estab-
lish Proposition 1 as soon as it is shown that Nn(x, *bn(x)) divided by (5.4)
taken at h=*bn(x) converges to 1, in probability.

Recall that

Nn(x, h)= :
n

i=1

1(x&h�X i�x+h)

= :
n

i=1

1 {\x&h
% +

1�:

�Ui�\x+h
% +

1�:

= .

Denote by npn(x, *) the expectation of Nn(x, *b(x)), which is the expression
in (5.4) taken at h=*bn(x), with

pn(x, *)=P {\x&h
% +

1�:

�Ui�\x+h
% +

1�:

= .
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We have

Var {Nn(x, *bn(x))
npn(x, *) ==

1& pn(x, *)
npn(x, *)

�
1

npn(x, *)
.

Recall that npn(x) is the expression (5.4) taken at h=*bn(x). Then it has
been shown in the proof of Proposition 4.1 that npn(x)=O(1�b2

n(x)), and
then the variance of Nn(x, *bn(x))�(npn(x, *)) goes to 0, and then
Nn(x, *pn(x))�(npn(x, *)) converges to 1 in probability, for any given x. K
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