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A simple but important special case of the hidden surface removal problem is one in which 
the scene consists of n rectangles with sides parallel to the x- and y-axes, with viewpoint at 
z = cc (that is, an orthographic projection). This special case has application to overlapping 
windows in computer displays. An algorithm with running time O(n log n + k log n) is given 
for static scenes, where k is the number of line segments in the output. Algorithms are given 
for a dynamic setting (that is, rectangles may be inserted and deleted) that take time 
O(log2 n log log n + k log2 n) per insert or delete, where k is now the number of visible line 
segments that change (appear or disappear). Algorithms for point location in the visible scene 
are also given. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Imagine we are given a set of n opaque rectangles in 3-space, such that each rec- 
tangle has sides parallel to the x- and y-axes and a constant z-coordinate. No pair 
of rectangles intersects in a 2-dimensional region, though pairs may intersect along 
an edge. We would like to report the regions of the input rectangles visible from a 
point at z = cc (that is, lines of sight are parallel to the z-axis), or, equivalently, 
remove the hidden regions. Figure 1 shows a scene formed by eight rectangles; there 
are nine visible regions, the polygonal shapes bounded by solid lines. We consider 
two different settings: static, that is, all rectangles are known in advance, and 
dynamic, that is, rectangles may be inserted and deleted, and the visible scene must 
be updated after each change. 

In this paper, we consider input rectangles to be featureless. Windows in com- 
puter displays, however, usually include contents, which may be either graphics or 
text. For this application, the output of our algorithms (that is, the coordinates of 
the visible regions) could be used to extract only the visible bits from back-up 
buffers in memory. It is sometimes desirable to subdivide visible regions into 
rectangles, for example, if the hardware supports a block transfer or bitblt; our 
algorithms can be easily adapted to do this. (See [M] for more on windows.) 
Though our work is theoretical, we believe that it offers practical improvements for 
hypothetical displays with a great many (hundreds of) windows. 

Our algorithms are output-sensitive, that is, the running times depend on the size 
of the output and are much faster than the worst case of O(n*) for simple scenes 
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FIG. 1. A scene with hidden lines shown broken. 

or changes. For general (static) scenes, already known are a worst-case optimal 
O(n’) algorithm [McK] and an “intersection-sensitive” algorithm with running 
time O(n log n + i), where i is the number of intersection in a projection plane [G]. 
For static rectangle scenes, there is also an output-sensitive algorithm, due to 
Gtiting and Ottmann [GO], with running time O(n log2 n + k log’ n). Our static 
algorithm is faster than the algorithm of [GO], and in its simpler incarnation, also 
easier to program. The algorithm of [GO] is more general, handling “c-oriented” 
rectangles (rectangles aligned with a fixed number of orientations, not just horizon- 
tal and vertical). Recently, Preparata, Vitter, and Yvinec have independently 
improved on [GO], giving an algorithm with running time O(n log’ n + k log n) 
[PVY]. Atallah and Goodrich have given an algorithm with running time 
O(n3’2 + k) [AG]. So far as we know, our paper includes the first theoretical 
treatment of the dynamic problem. 

Sections 2 and 3 of this paper describe the static algorithm, which is a 
straightforward sweep algorithm using Bentley’s segment tree as the primary data 
structure [PSI. Sections 4-7 develop the algorithms for the dynamic setting. These 
algorithms rely on higher dimensional data structures such as priority search trees 
[McC] and dynamic segment trees [EM, WL]. Finally, Section 8 discusses the 
problem of determining which rectangle is stabbed by a given line of sight 
(equivalently, which window contains a mouse-click), giving a method as fast as, 
and more space efficient than, general polygonal subdivision methods. 

2. THE STATIC SETTING 

In the static setting, each rectangle is given at the outset-by five real numbers. In 
the pseudocode to follow, the live numbers specifying rectangle R, where 
R = [x,, xz] x [y,, y2] x [z, z], are denoted by the Pascal notation of R.xl, R.x2, 
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R.yl, R.y2, and R.z. We shall refer to the line segment with endpoints at (R.xl, 
R.yl, R.z) and (R.xl, R.y2, R.z) as the left edge of R. Right, bottom, and top 
edges are defined similarly. Line segments parallel to the x-axis (y-axis) will 
be called horizontal (vertical). The z-coordinate will be called height, that is, if 
R.z > R’.z, we say that R is higher than R’. As usual in computational geometry, 
the comparison of two real numbers is assumed to take unit time. 

Our algorithm conceptually sweeps a plane normal to the x-axis across the 
rectangles, maintaining the cross sections of rectangles currently cut by the sweep- 
plane in a segment tree whose skeleton has been precomputed. The skeleton of the 
segment tree is computed by sorting all R. yl and R. y2 fields and then building a 
complete binary tree in which each leaf represents an atomic segment between two 
successive y-coordinates. Segment tree node v corresponds to a basic segment 
segment(v), which is the union of the atomic segments of the leaves in the subtree 
rooted at v. Atomic and basic segments are half-open, that is, they contain their left 
endpoints, but not their right endpoints. 

To compute an “event schedule” for the sweep algorithm, we sort all R.xl and 
R.x2 fields. As usual (see [PS] for similar sweep algorithms), when the sweep 
reaches the left edge of rectangle R, R is entered into the rectangle list of each node 
v such that [R.yl, R.y2] spans segment(v) but does not span segment(parent(v)). 
R is removed from these lists when the sweep reaches the right edge of R. 

How do we build z-coordinate information into this data structure? The first 
modification of the standard segment tree is to order the rectangle lists by decreas- 
ing height. For now we may assume these lists are heaps, implemented as implicit 
binary or 4-ary trees [T]. The second modification is to use the segment tree itself 
as a sort of heap. We attach additional fields, called H and L, to each node u in 

: A; 
I 

FIG. 2. End-on rectangles and modified segment tree. 
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the segment tree. The H field of node v stores the z-coordinate of the highest cross 
section listed at some node in the subtree rooted at v. The L field stores the z-coor- 
dinate of the lowest visible cross section, where visible means visible within the 
“subscene” at v; that is, some point is not obscured by the other cross sections listed 
within the subtree rooted at v. Figure 2 shows the segment tree for the scene of 
Figure 1 at a point in the sweep just after the left edge of D has been encountered. 
Below the segment tree the rectangles currently cut by the sweep-plane are shown 
end-on, that is, along lines of sight parallel to the x-axis. For each node, the rec- 
tangle list is represented by a stack of boxes, and the H field (L field) appears at 
the lower left (right). An H field of -co indicates that the subscene is empty; an 
L field of - co indicates some line of sight (parallel to the z-axis) continues forever. 

The H and L fields for node v can be determined in O(1) time, knowing the H 
and L fields for the children of v and the z-coordinate of the highest rectangle in 
v’s list. As in the pseudocode below, v. L is equal to either the z-coordinate of the 
highest rectangle (since a rectangle listed at v covers all lower rectangles listed at 
descendants of v) or the smaller of the two L fields of v’s children. 

In the pseudocode below, LChild(v) (resp. RChild(v)) returns the left (right) 
child of node v. Each node u has, along with H and L, the usual fields yl and ~2, 
containing the endpoints of segment(v), and ymid, which is such that 
segment(LChild)(v))= [u.yl, u.ymid). The rectangle list for v is called v.heup, and 
Top(u. heap).z is assumed to be - 00 if v. heap is empty. If a rectangle R is contained 
in v.heap, we say v lists R. The procedure call LeftEdge(R, true, root) inserts rec- 
tangle R into the segment tree rooted at root, calls LeftReport to report output line 
segments, and then updates the H and L fields for all nodes visited in inserting R. 
Similarly, RightEdge(R, true, background, root) deletes rectangle R from the seg- 
ment tree, calls RightReport to report output, and then updates the H and L fields 
for all nodes visited in deleting R. In this call, background is a fictitious rectangle 
with height --oo. 
procedure LeftEdge (R: rectangle, visible: boolean, v: segment tree node) 

if R.z<v.L then visible:=false fi 
if R.yl<v.yl and v.y2<R.y2 then 

insert R into v. heap 
if visible then LeftReport (R, v) fi 

else 
if R.yl < v.ymid then LeftEdge (R, visible, LChild(v)) Ii 
if v.ymid < R.y2 then LeftEdge (R, visible, RChild(v)) Ii 

ti 
v.H :=max{LChild(v).H, RChild(v).H, Top(v.heap).z} 
v.L :==max{min{LChild(v).L, RChild(v).L}, Top(v.heap).z} 

procedure RightEdge (R: rectangle, visible: boolean, R’: rectangle, v: segment tree node) 
if R.z<v.L then visible:=fal.w fi 
if R.yl<v.yl and v.y2<R.y2 then 

delete R from v. heap 
v.H :=max{LChild(v).H, RChild(v).H, Top(v.heap).z} 
if R’.z<Top(v.heap).z then R’ :=Top(v.heap) ti 
if visible then RightReport (R, R’, true, v) fi 
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else 
if R’.z<Top(v.heap).z then R’:=Top(v.heap) fi 
if R.yl < v.ymid then RightEdge (R, visible, R’, LChild(v)) ti 
if v.ymid < R.y2 then RightEdge (R, visible, R’, RChild(v)) IT 

li 
v.H := max{LChild(v).H, RChild(v).H, Top(v.heap).z} 
v.L :=max{min{LChild(v).L, RChild(v).L},Top(v.heap).z} 

Viewed segments-that is, the solid segments in Fig. l-are reported in the 
following manner: a vertical segment is reported in O(log n) disjoint pieces when 
the sweep plane reaches its x-coordinate, and a horizontal segment is reported in 
one piece when the sweep plane reaches the x-coordinate of its right endpoint. For 
example, segment ab in Fig. 1 is reported in two pieces, corresponding to the two 
basic segments composing the y-extent of ab. Segment bc is reported in a single 
piece. 

At a given point in the algorithm, a visible horizontal segment is active if it is 
currently cut by the sweep plane. A data structure, called the active list, stores 
active horizontal segments in y-coordinate order, so that segments with y-coor- 
dinates within a certain range can be reported together at the left edge of a higher 
rectangle. In LeftReport(R, u) below, active segments are reported at each u that 
corresponds to a basic segment of a visible piece of R’s left edge. One could save 
up and combine the range queries induced by the basic segments into a single range 
query per visible piece. Then the k horizontal segments with right endpoints along 
a single visible piece can be reported in time O(log n + k) using a balanced binary 
tree such as a red-black tree [T] as the active list. 

Alternatively, to avoid the programming difficulties of combining range queries 
and rebalancing a balanced tree, one can use the segment tree itself as the active 
list. Each segment tree node u is augmented with a field u.A. Field u.A is an unor- 
dered set of all active segments with y-coordinate within segment(u). Set u.A can be 
implemented as a linked list. Reporting k active segments with right endpoints 
along a single basic segment then takes time O(k + I), and reporting all segments 
for an entire visible piece takes time O(log n + k). Storing or deleting an active 
segment takes time O(log n) using either method. 

In the pseudocode below, each active segment s has two fields: the x-coordinate 
s.xl of its left endpoints, and its y-coordinate s.y. In order to report visible regions 
rectangle by rectangle, one would add two more fields to store the names of the 
rectangles visible on either side of s. 

procedure LeftReport (R: rectangle, v: segment tree node) 
if R.zcv.L then return ti 
if v.H < R.z then 

Output and remove from the active list each horizontal segment s with v.yl Q s.y < v.y2 
Output vertical segment [(R.xl, v.yl), (R.xl, v.y2)] 
if v.yl = R.yl then Store a horizontal segment s with s.xl := R.xl and s.y := v.yl fi 
if v.y2 = R.y2 then Store a horizontal segment s with s.xl := R.xl and s.y := v.y2 fi 



54 MARSHALL BERN 

else 
LeftReport (R, LChild(v)) 
LeftReport (R, RChild(v)) 

fi 

procedure RightReport (R: rectangle, R’: rectangle, atR: boolean, v: segment tree node) 
if R. <v.L then return fi 
if v.H <‘R.z and atR then 

Output vertical segment [(R.x2, v.yl), (R.x2, v.y2)] 
if v.yl = R.yl then Output a horizontal segment s with s.y := v.yl fi 
if v.y2 = R.y2 then Output a horiozontal segment s with s.y := v.y2 fi 
atR := false fi 

if R’.ziTop(v.heap).z 
then R’ := Top(v. heap) Ii 

if v.H < R’.z then 
if v.yl =R’.yl then Store a horizontal segment s with s.xl :=R.x2 and s.y :=v.yl fi 
if v.y2= R’.y2 then Store a horizontal segment s with s.xl := R.x2 and s.y :=v.y2 IT 

else 
RightReport (R, R’, atR, LChild(v)) 
RightReport (R, R’, atR, RChild(v)) 

ii 

3. ANALYSIS 

We first give a brief correctness argument, consisting of an explanation of the 
pseudocode above; we then give two theorems, “practical” and “theoretical.” 

Procedures LeftEdge and RightEdge are fairly straightforward adaptations of 
pseudocode from [PSI. In addition to inserting a new rectangle cross section in the 
usual manner, LeftEdge updates the H and L fields as discussed above and main- 
tains a flag visible. The flag visible is meant to be true at node v if and only if some 
point on R within segment(v) is visible. That this is indeed the case follows from 
the correctness of the L fields along the path from the root to v. Similarly, it is not 
hard to confirm that procedure RightEdge correctly deletes a rectangle, updates H 
and L fields, and maintains visible. In addition, RightEdge also passes R’, the 
highest rectangle found along the path from the root to a node listing R, to 
RightReport. 

Now assume that the left edge of R is at least partially visible and let it 
be divided into alternating visible and invisible pieces. Imagine decomposing all 
visible pieces into basic segments, yielding the segments segment( v I ), 
segment(v,), . . . . segment(v,); where each vi is a node in the segment tree. Similarly, 
invisible pieces can be decomposed into basic segments segment(w,), 
segment(w,), . . . . segment(w,). Figure 3a shows an end-on view of rectangle R (not 
from the scene depicted in Figs. 1 and 2) with its division into basic segments. The 
crucial observation is that LeftReport stops its recursive search whenever it reaches 
one of the vi or wj nodes; thus, each piece of the left edge of R, even a piece hidden 
behind a complicated part of the scene, costs only O(log n) to discover. In the 
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FIG. 3. (a) R's left edge divided into basic segments, (b) R’s right edge and revealed rectangles 
beneath R. 

proofs below, we call a node v maximal with respect to some property if v is the 
first vertex on the path from the root to v that satisfies that property. 

LEMMA 1. LeftReport explores a forest of subtrees of the segment tree. The roots 
of these subtrees are nodes that list R, the nodes vI, v2, . . . . vl are leaves of these sub- 
trees, and the remaining leaves are members of ( wl, w2, . . . . w, >. Output is reported 
and the active region list is appropriately updated during this exploration. 

Proof First notice that LeftReport is initially called at exactly those nodes that 
list R at which visible is true. Next notice that LeftReport visits each of the nodes 
vi for 1 < i 6 1. This statement follows from the observations: each vi lies in a subtree 
rooted at a node v that lists R at which visible is true, and vi is a maximal node 
with segment(v,)E [R.yl, R.y2) and vi. H< R.z both true (otherwise v, would not 
be a basic segment of a visible piece). The recursive search stops at each node vi. 
Then horizontal segments with endpoints along segment(v,) are reported, a visible 
portion of the left edge R is reported along segment(v,), and if necessary horizontal 
segments along the top or bottom of R are stored. Finally, if the recursive search 
does not find a node vi, it will stop at a node wj, because each W, is a maximal 
node with L field greater than R.z. In this case, the active region list requires no 
modification, as R lies below the visible regions along segment(w,). l 

Figure 3b shows the situation handled by RightReport. Now the nodes vi, 
1 < i < p, and wj, 1 < j < q, correspond to visible and invisible basic segments along 
the right edge of R. In addition, the visible pieces of rectangles along and below the 
right edge of R are divided into basic segments segment(v;), segment(v;), . . . . 
segment(v:). 

LEMMA 2. RightReport explores a forest of subtrees of the segment tree. The 
roots of these subtrees are nodes that list R, each vi is contained in some subtree, the 
nodes vi, v;, . . . . v: are leaves of these subtrees, and the remaining leaves are members 
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of {WI, w2, ..‘, w,}. Output is reported and the active region list is appropriately 
updated during this exploration. 

Proof RightReport is analogous to LeftReport except that it continues 
exploring below the “visible nodes” vi. First observe that throughout the recursion, 
RightReport maintains R’ to be the highest rectangle (besides R) listed on the path 
from the root to the current node u. Next notice that each u,’ is a maximal descen- 
dant of a visible node vi such that vj.H is smaller than the z-coordinate of the 
highest rectangle along the path from the root to u;. Thus, at each vj, v,‘. H < R’.z, 
and horizontal segments for the revealed rectangle R’ are appropriately stored. 1 

THEOREM 1. Hidden surface removal for a static set of n rectangles can be com- 
puted in time O(n log2 n + k log n), where k is the length of the output, and space 
O(n log n), using “elementary” data structures (segment trees and heaps). 

Proof: The factor of O(n log’n) in the time bound is the time to insert and 
delete rectangles from heaps. The factor of O(k log n) follows from Lemmas 1 and 
2 and the observation that the total processing time of LeftReport and RightReport 
is within a constant factor of the total number of basic segments in all visible and 
invisible pieces of left and right edges. The space bound follows from the fact that 
each rectangle is listed at O(log n) segment tree nodes. If the segment tree itself is 
used as the active list, then also observe that no more than O(n) horizontal 
segments are active at any one time. 1 

The running time may be improved to O(n log n log log n + k log n) by using van 
Emde Boas’s O(log log n) priority queues [VKZ] as the v.heap data structures, but 
an even better theoretical result can be obtained by taking advantage of the off-line 
nature of the problem. For each node v in the segment tree, we consider the entire 
sequence of insertions and deletions of rectangles at v in order to determine 
Top(v. heap), v. H, and v. L at each x-coordinate. 

In this version of the algorithm, each v keeps a list of values for each of 
Top(v. heap), v. H, and v. L. Each entry in the list is a pair: the value of the field 
(either a rectangle or a single number) along with a range of x for which that value 
is valid. Lists are sorted so that ranges-which in each case form a partition of the 
entire range of x-coordinates-are increasing. These lists are computed in a second 
preprocessing phase-after computing the skeleton of the segment tree and the 
event schedule-by the method described below. Then the algorithm proceeds as 
before, only now no action need be taken to insert or delete a rectangle R from a 
data structure v.heap. A pointer into each list is maintained, and as the sweep 
proceeds these pointers are advanced in order to obtain current values of each of 
the three fields. The active region list remains unchanged. 

The first step in the second preprocessing phase is to determine for each v a 
sorted list of R.z values for all R ever stored at v. This can be accomplished in time 
O(n log n) by sorting all rectangles by R.z, then computing a list of relevant v’s for 
each rectangle, and finally filling in the sorted lists for each v with a single pass 
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through the rectangle list. Similarly, we compute a sorted list of R.xl and R. x2 
values, corresponding to insertions and deletions (labeled so we can tell them 
apart), for each u. 

Let us now focus on a single O. Since a sorted list of relevant R.z values is known, 
we can represent these values by their ranks, that is integers between 1 and m (ties 
are broken arbitrarily), where m is the number of rectangles ever stored at u. 
Computing the list of Top(u.heap) values now amounts to an off-line “extract 
maximum” problem: given a sequence of insert operations-the R.xl values, delete 
operations-the R. x2 values, and findmax operations-performed say after each 
insert or delete, report the output of the findmax operations. This problem is 
slightly more general than a problem solved by Hopcroft and Ullman [AHU] and 
improved by Gabow and Tarjan [GT]. The same solution method using Union- 
Find works; we sketch it below. 

LEMMA 3. The output of a sequence o of O(m) insert, delete, andfindmax opera- 
tions on integers between 1 and m can be computed off-line in linear time. 

ProoJ: Assume for simplicity that each integer is inserted and deleted 
exactly once and that there are 2m findmax operations. We can write r~ as 
aIF1a*F*...arnFzrnazrn+,, where each a, consists only of insert and delete 
operations and each Fj stands forfindmax. In an initial linear-time pass through a, 
we compute for each integer J’ the index ij such that j is inserted in ai, and the index 
dj such that j is deleted in a4. We also create 2m disjoint sets, one for each F,. Each 
set is named by a “canonical index”; initially the set containing F, is named i. We 
then execute the following code, where Find(i) returns the canonical index of the 
set containing Fi, and Union combines two sets (specified by canonical indices) and 
chooses the larger canonical index to be the canonical index of the combined set. 
(See [T] for more on Union-Find.) 

A := array for storing output 
for j=m,m- 1, . . . . 1 do 

i := Find(i,) 
while i < d, do 
A[i] := j 
Union( i, Find(i + 1)) 
i:=Find(i+l) 

od 
od 

Because the Union pattern is constrained, a linear-time version of Union-Find 
suffices [GT]. 1 

The final step of the preprocessing is to compute the lists of u. H and u. L values 
for each node u. These lists are computed in a postorder traversal of the segment 
tree. If u is a leaf then both lists are identical to the Top(v.heup) list. If u is not a 
leaf, then computing the v. H list amounts to a kind of merging of the H lists for 
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the children of u and the list of Top(v.heap) values. A similar linear-time merge 
serves to compute the u.L list. 

The total length, over all v, of Top(u.heup), v. H, and v. L lists is O(n log n) as 
each rectangle is stored at O(log n) nodes. The computation of each list requires 
only linear time, thus we may conclude that the running time of the entire 
algorithm is now O(n log n + k log n). 

THEOREM 2. Hidden surface removal for a static set of n rectangles can be 
computed in time O(n log n + k log n), where k is the length of the output. 

In the algebraic decision tree model of computation, hidden surface removal for 
static rectangles must take at least Q(n log n + k) time as one can easily reduce 
element uniqueness to this problem. (See [PSI for background on this type of 
lower bound.) 

4. THE DYNAMIC SETTING 

The static algorithm above uses a data structure designed to hold l-dimensional 
objects to solve a 3-dimensional (or, perhaps, 25dimensional) problem. In order 
to give output-sensitive dynamic algorithms, ,we resort to a mixture of higher 
dimensional data structures. There are two primary data structures, each com- 
prising a number of substructures, used by the algorithms given in Sections 5 and 6. 
In this section, we describe the structures from a functional point of view, deferring 
their design until Section 7. 

The first data structure, denoted V, stores the visible scene. What it actually 
stores are the line segments bounding visible regions (called visible line segments 
below). Regions, even “background” regions of height - 00, are considered 
separately, and each segment along a region boundary is stored once, along with 
the name of the rectangle visible within that region. (Thus a line segment in V is 
really a segment-region pair.) Endpoints are ordered so that the bounded region is 
on the right as the segment is traversed from the first endpoint to the second. Thus, 
viewed pieces of edges are split into two oppositely oriented sides at different 
heights (the z-coordinate of a segment is inherited from the rectangle visible within 
the bounded region), as in Fig. 4. 

Data structure V supports the operations VZnsert and VDelete that insert and 
delete segments, and three types of queries, called Below, LeftmostOn, and Locate. 
Below takes a rectangle R as its argument and returns all line segments in V that 
intersect the semi-infinite box B(R) = [R.xl, R.x2] x [R.yl, R.y2] x [ - 00, R.z]. 
LeftmostOn(R, s), where s is a vertical line segment, returns the leftmost vertical 
line segment in V that has x-coordinate at least s.x (where the fields of s are defined 
in the obvious way), has y-extent intersecting [s.yl, s.y2], and bounds a visible 
region of R. (For us, visible segments are oriented, but intervals are not, thus 
[s.yl, s.y2] = [s.yZ, s.yl].) Locate takes an (x, y) coordinate pair as argument 
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FIG. 4. A scene stored in V as 18 directed segments. 

and returns the name of the highest rectangle along the line of sight through that 
coordinate pair. 

The second data structure, denoted W, stores all rectangles, whatever their 
visibility. W supports the operations WInsert and WDelete, and the queries 
MaxinStrip and LeftmostAbove. MaxInStrip(s), where s is a vertical segment, 
returns the highest rectangle intersecting the infinite strip [s.x, s.x] x [s.yl, s.y2] 
x [ - co, co]. LeftmostAbove( where s is a vertical segment, returns the rectangle 
R with minimum R.xl such that the left edge of R intersects the semi-infinite box 
[s.x, G3-j x [s.yl,s.y2] x [S.Z, co]. 

5. INSERTING A RECTANGLE 

Inserting a rectangle into the visible scene relies on data structure V. Roughly 
speaking, Insert(R) first performs the query Below(R) to find all affected line 
segments, deletes these, and then reinserts the pieces of segments that bound 
regions of R in the updated scene. Pseudocode for the dynamic algorithms is 
written at a higher level then pseudocode above: 

procedure Insert (R: rectangle) 
s> c, c,, c,,,, B,,,, B,,,: Set of segments; R’: rectangle 
S := Below(R) 
if S = @ then 

R’ :=Locate(R.xl, R.yl) 
if R.z > R’.z then VInsert boundary segments of R (appropriately split) ti 

else 
VDelete members of S 
C := members of S that stab B(R) 
Cut members of C at the boundaries of B(R), producing C,, and C,,,, 
Discard doubled segments from C, and S\C 
Merge segments of C,, and S\C if necessary 
Compute B,,, and B,,,, boundary segments of R induced by C,, and C,,, 
Update z and RName fields of segments in S\C, C,,, C,,,, B ,“,, B,,, 
VInsert members of S\C, C,,, C,,,, B,,,, B,,, 

i i 
Output changes to visible scene 
WInsert(R) 
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Figure 5 shows a top view of the insertion of a rectangle R, shown by broken 
lines. The scene above R is shown by gray shading and by thin black lines; these 
lines are unaffected by the insertion. R will prove to be visible in two regions, lower 
left and upper right. The first line of Insert retrieves the set S of visible segments 
intersecting B(R). If S is empty, then either R is completely visible, floating in the 
middle of some visible region, or R is completely hidden; Locate discriminates 
between these two cases. If S is nonempty, then all members of S are deleted from 
V and processed. In Fig. 5a, the bold black lines show members of S; those that 
cross broken segments are also members of C, the set of visible segments that lie 
only partially in B(R). Bold line segments that appear doubled are those with both 
sides below R. 

Figure 5b illustrates the step in Znsert in which members of C are cut; C, (C,,,) 
consists of the portions of segments in C that lie inside (outside) B(R). Figure 5c 
illustrates the next step, discarding doubled segments. In Figure 5d the two bold 
vertical segments in the lower left have been merged as these are pieces of the same 
border of a region of R. Figure 5d also shows the boundary of R divided into visible 
segments: Bin,, the set of segments that bound visible regions of R, and B,,,, the set 
of segments that bound regions lying outside of B(R). B,, and B,,, are computed 
by sorting C,,, in order around the perimeter of R. The RNume fields (the name of 
the rectangle seen to the right) of B,,, segments are determined using this sorted 
order and the RName fields of the C,,, segments. Surviving segments of S\C, C,, 
and B,, all receive an RNume field of R. In all cases, the z field of a segment gives 
the z-coordinate of the rectangle named in the RName field. Finally, output is 
reported, and R is inserted into W. 

We say that a visible line segment s changes with an update if it is added or 
removed from V, or if any field of s changes. Thus, s is considered changed if it 
borders a newly visible region, even if a segment with identical x- and y-coordinate 
fields existed before the update. Referring to the pseudocode above, the set of 
changed line segments is precisely S u T, where T is the set of segments inserted 
into V in the last line of the else clause in Insert. 

Let k = ISI; so long as k > 0, k is within a constant factor of the number of visible 

FIG. 5. (a) S is shown in bold. (b) Cutting C. (c) Doubled C,, lines removed. (d) Bin, and B,,, 
added. 
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line segments that change. It is not hard to confirm that no step of Insert is slower 
than O(k log k), the time needed to sort S (to find doubled segments or compute 
B,, and B,,,). In Section 7, we give the times for Below, Vlnsert, VDelete, and 
Wlnsert; these determine the overall running time of Insert. 

6. DELETING A RECTANGLE 

Deleting a rectangle seems to be necessarily more complicated than inserting a 
rectangle. The call Delete(R) sweeps a frontier from left to right across R, main- 
taining the invariant that the scene to the left of the frontier is already computed. 
It advances the frontier with repeated LeftmostOn, LeftmostAbove, and MaxInStrip 
queries. 

The frontier is a sequence of vertical line segments, sl, sz, . . . . sI, oriented so that 
si.yl < sj,y2 and such that the y-extents of the segments exactly cover the y-extent 
of R, that is, s,.yl =R.yl, s,.y2=R.y2, and si.y2=si+,.yl for each i from 1 to 
1- 1. A frontier segment si also has a field s;. RName; if this field contains the name 
of a rectangle R’, then lines of sight passing just to the right of si intersect a visible 
region of R’ and no other visible regions. We say that R’ is visible along si. The 
RName field can also contain a marker AboveR which indicates that whatever is 
visible along si, maybe more than one region, has z-coordinate greater than R.z. 
procedure Delete (R: rectangle) 

F, S: List of segments; s, s’, s”: segment; R’: rectangle 
WDelete(R) 
F := Initial Frontier (R) 
while 3s in F such that s.x < R.x2 do 

s := Bottom leftmost segment of F 
if s. RName = AboveR then 

s’ := LeftmostOn (R, s) 
s” := part of s’ within y-extent of s 
S := DivideUp( possibly along with portions of s translated to s’.x 
Advance F to S 
Store active horizontal segments 
VDelete old visible segments, VInsert new segments, and report output 

else 
R’ := LeftmostAbove 
if R’.xl <s.RName.xZ then 

S := s translated to left edge of R’ and broken into pieces bordering R and R’ 
Advance F to S 
Store active horizontal segments 
VDelete old visible segments, VInsert new segments, and report output 

else 
S := DivideUp( where s’ is translation of s to right edge of s.RName 
Advance F to S 
Store active horizontal segments 
VDelete old visible segments, VInsert new segments, and report output 

Ii 
od 
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Delete starts by removing R from data structure W. It then calls a function 
InitialFrontier (pseudocode omitted) to set up an initial frontier sl, s2, . . . . sI, where 
each sj.x = R.xl. That is, the initial frontier lies entirely along the left edge of R, 
though it may be divided into a number of segments with different z and RNume 
fields. InitialFrontier would use LeftmostOn queries to find the visible portions of 
R’s left edge; these portions are then subdivided by DivideUp according to what is 
about to become visible beneath R. The remaining invisible portions of the left edge 
of R, if any, are added to the frontier with RName field set to AboveR. 

function DivideUp (s: frontier segment): list of frontier segments 
S,S’: List of segments; s, s’: segment; R’: rectangle 

Create empty segment lists S and S’ 
Insert s into S 
while S is nonempty do 

s := any segment in S 
Delete s from S 
R := MaxInStrip(s) 
s’ := portion of s above R 
s’.RName := R 
s’z := R.z 
Insert s’ into S’ and remaining parts of s into S 

od 
return 

Once the initial frontier is computed, the sweep begins. The bottom leftmost (that 
is, the (x, y)-lexicographically first) segment s of the frontier is selected, and we 
advance F to the right along S, that is, replace s by a sequence of segments lying 
to its right. There are three ways we can advance. 

Figure 6a illustrates the first way, handled in the four lines after the first then in 
Delete, in which the scene visible along s is above R. LeftmostOn discovers the 
visible segment s’ bounding a region of R that would be first touched by a trans- 
lation of s to the right; s’ is then trimmed, if necessary, to lit within the y-extent of 
s, yielding s”. DivideUp is called to discover the scene below s”. The portion of the 
frontier segment s with the same y-extent as s“ is then replaced by the sequence S 
of frontier segments computed by DivideUp. The remaining portions of s, if any, are 

a b 

FIG. 6. (a) s.RNume = AboueR. (b) Encountering R’. (c) Right edge of s.RName. 
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simply advanced in x-coordinate, with RName fields still set to AboveR. In Fig. 6a, 
S contains two segments, the RName fields of which are background and R’, respec- 
tively. A horizontal visible segment along the top of the rectangle above R is now 
inserted into I/ with RName field set to background. The two vertical visible 
segments of S are also inserted into V; moreover, the one with the smaller y-coor- 
dinate is also merged with an existing segment in V. 

In both the second and third ways to advance, the region visible along s lies 
below R. Figure 6b illustrates the second way, in which another rectangle R’, either 
above or below R, with left edge to the right of s, partially covers the region visible 
along s. R’ is discovered by LeftmostAbove. In this case, s is advanced and broken 
into pieces bounding s. RName and R’. 

In the third way, shown in Figure 6c, the right edge of s. RName is encountered 
before a higher rectangle. DivideUp is used to discover the rectangles lying below 
this right edge. In the case illustrated, DivideUp would return a list S, containing 
only a single segment with an RName field of background. 

We must be able to insert and delete frontier segments and also find bottom 
leftmost frontier segments efficiently. To avoid excessive fragmentation, we also 
need to merge adjacent segments si and si+ i if these two segments have identical 
x, z, and RName fields. A balanced binary tree such as a red-black tree supports 
insertion, deletion, and merging in logarithmic time. We use such a tree for each list 
of segments in the pseudocode above. In addition if each node of the tree stores the 
bottom leftmost segment within its subtree, we can find the overall bottom leftmost 
segment in O(1) time. The key observation needed to give an output sensitive 
bound on the running time of Delete is the following. 

LEMMA 4. The total number of calls to LeftmostOn, LeftmostAbove, and 
MaxInStrip in an execution of Delete is linear in the number of visible line segments 
that change. 

ProoJ: First we assert that the bottom leftmost frontier segment s is always at 
least half-maximal, that is, lengthening s in one direction or the other either makes 
two regions visible along s or extends s beyond the top or bottom edge of R. Every 
segment is half-maximal (in fact, maximal) in the initial frontier. When a segment 
s is replaced by more than one segment to the right of s, each new frontier segment 
is maximal, except for the top and bottom new segments which may be only half- 
maximal. When s is replaced by exactly one segment s’ to its right, then s’ is either 
half-maximal or it is a proper subsegment of a visible segment, in which case, s’ will 
merge with another segment (either immediately or after a neighboring segment 
advances) before it becomes bottom leftmost. Second, we assert that every half- 
maximal frontier segment shares an endpoint with a visible line segment that 
changes. This assertion holds for each segment in the initial frontier. It also holds 
for each half-maximal segment that results from advancing and merging operations, 
as each advancing operation moves to a line segment that changes. For example, 
in Fig. 6b, the upper segment of S will sometime serve as the bottom, leftmost seg- 

571/40/l-5 
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ment; its lower endpoint is coincident with the upper left corner of R’. Notice that 
the AboueR marker is crucial to this second assertion, as it allows the frontier to 
skip over unchanged parts of the scene. Together our two assertions imply that the 
number of segments that ever serve as s in the main while loop is linear in the 
number of visible line segments that change. 

LeftmostOn and LeftmostAbove are each called at most once per execution of the 
main while loop, thus we need only bound the number of calls to MuxZnStrip. Max- 
InStrip is repeatedly called by DivideUp to break a vertical segment s’ into frontier 
segments. Each of these frontier segments will, at some time, become bottom 
leftmost, except for the top and bottom pieces of s’ which may merge with other 
frontier segments. We charge each MaxInStrip call to the discovered frontier seg- 
ment, except for the two calls that discover top and bottom pieces, which we charge 
to the current bottom leftmost frontier segment. Altogether, each bottom leftmost 
segment s is charged for at most three MaxlnStrip calls. 1 

7. DATA STRUCTURES 

In this section we discuss the substructures of V and W that handle each of the 
five queries. Of course, VZnsert and VDelete ( WInsert and WDelete) must update 
each of the substructures of V (W). All the substructures use a multilevel tree 
scheme; that is, there is an outer tree in which each node includes an inner tree, and 
so on. A difficulty with these schemes is that a rebalancing operation, such as a 
rotation, on the outer tree may require that inner trees be completely rebuilt. 
Willard and Lueker show how to use weight-balanced binary trees (BB(cr) trees) to 
ensure that rebalancing d-level trees is not too expensive, giving insertion and dele- 
tion times of O(logdn) [WL]. We use two and three-level BB(a) tree structures (as 
in [EM]), and also two-level structures in which the outer level is a BB(a) tree and 
the inner trees are McCreight’s priority search trees (as in [McC, El). For the best 
asymptotics, the innermost tree in a multilevel BB(a) structure will be the priority 
queue used in dynamic fractional cascading [FMN, CG]. Below we call a BB(a) tree 
a dynamic segment tree, a slight misnomer when the ultimate data objects are points 
rather than segments. By list, we mean a balanced binary search tree, supporting 
insertion, deletion, and look-up by key in logarithmic time. 

Below query. The Below query must return each segment intersecting the semi- 
infinite box B(R) below R. We show how to build a data structure for horizontal 
segments; vertical segments are handled analogously. If a horizontal segement s 
intersects B(R), either (1) the endpoint (s.xl, s.y, s.z) lies inside B(R), or (2) s 
stabs a face of B(R) normai to the x-axis, To handle case (I), we build a dynamic 
segment tree by x-coordinate in which each node u has an associated priority search 
tree by y and z-coordinates. That is, node u corresponds to segment(u) and has a 
field u. tree that is a priority search tree holding all endpoints with xl field within 
segment(u). A priority search tree answers queries of the form “return all points 
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with y-coordinate within the range [R.yl, R.y2] that have z-coordinate less than 
R.z” in time O(log n + k), where k is the length of the output [McC]. A given 
Below query generates a priority search tree query at each of the O(log n) node 
corresponding to basic segments of [R.xl, R.x2]. 

Case (2), that is, s stabs a face of B(R), is handled in a dual manner. We build 
a dynamic segment tree by x-coordinate in which each node has an associated 
priority search tree. Each line segment s is stored at nodes u in the outer tree that 
correspond to basic segments of s; at v, s is stored in u. tree according to its y- and 
z-coordinates. A query follows a path from the root to a leaf in the outer tree, 
exploring each node u such that segment(u) contains the x-coordinate of the query 
face; at each u, u. tree answers a semi-infinite range query as in case (1). Altogether, 
in each case, we have insert and delete times of O(log* n) and query times of 
O(log* n + k), as priority search trees support insert and delete in O(log n) time 
[McC]. 

LeftmostOn query. LeftMostOn(R, s) returns the leftmost segment s’ bounding 
a visible region of R such that s.x<s’.x and the y-extents of s and s’ intersect. 
Since LeftmostOn queries for different rectangles are entirely separate, we create a 
separate data structure for each rectangle R, and a dictionary (another balanced 
binary tree) for the “names” of rectangles. After O(log n) time for the dictionary 
look-up, we find the data structure for R. 

The data structure for R will again be divided into two cases. In case (1 ), an 
endpoint of segment s’ has y-coordinate within the y-extent of s. Thus, the query 
object is a line segment and the data are points. We use a dynamic segment tree by 
y-coordinate, in which each node v stores all endpoints with y-coordinate within 
segment(v) in a list sorted by x-coordinate. This gives time O(log* n) for insert and 
delete, and O(log’n) query time. All times are improvable to O(log n log log n) 
with dynamic fractional cascading, as both updates and queries lit the pattern of 
repeatedly searching sorted lists, which are connected in a tree, using the same key. 

In case (2), s’ spans the y-extent of s. We can now use either endpoint of s as the 
query object and let the data be vertical line segments. Again, a dynamic segment 
tree by y-coordinate, in which each segment list is sorted by x-coordinate, will 
handle this case with O(log2 n) insert, delete, and query time. Once again, all times 
are improvable to O(log n log log n). 

Locate query. Locate returns the visible rectangle stabbed by a given line of 
sight. To do this, we find the leftmost visible line segment with y-extent containing 
the y-coordinate of the line of sight, and with x-coordinate at least the x-coordinate 
of the line of sight. The RName field of the appropriately oriented segment 
answering this query gives the name of the desired rectangle. This query is handled 
by the same type of data structure as case (2) of LeftmostOn, only for the Locate 
query all visible segments, not just those bordering regions from a single rectangle 
must be included. 

Altogether, the slowest steps of Vhsert and VDelete are the insertions and dele- 
tions to the data structures for Below which take time O(log* n). The Below query 
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runs in time O(log’ n + k), while Locate and LeftmostOn take O(log n log log n) in 
their fast and O(log2 n) in their slow incarnations. Space requirements are 
O(n +q log n), where n (resp. q) is the number of rectangles (visible segments) 
present. 

MaxZnStrip query. MuxZnStrip returns the highest rectangle intersecting a given 
strip normal to the x-axis, with edges parallel to the z-axis. Two cases: either (1) 
one of the edges of the strip stabs the highest rectangle, or (2) some edge of that 
rectangle stabs the strip. Case (1) is handled by a dynamic segment tree by y-coor- 
dinate, in which each node has a dynamic segment tree by x-coordinate, in which, 
in turn, each node has a list of rectangles sorted by decreasing z-coordinate. A 
query, defined by a line parallel to the z-axis (one of the strip’s edges), visits a root 
to leaf path in the outer tree, a root to leaf path in each of O(log n) inner trees, and, 
finally, looks at the highest rectangle in each visited node’s rectangle list. This solu- 
tion gives query time of O(log’n) and update time of O(log3 n), this second time 
improvable to O(log’ n log log n) with dynamic fractional cascading. Case (2) can 
be handled in a dual manner by a similar three-level tree. Times are the same as 
in the first case. 

LeftmostAbove query. LeftmostAbove returns the leftmost rectangle R above 
and to the right of a given vertical query segment s. Again, two cases: (1) either 
some endpoint of R’s left edge lies within the semi-infinite box above and to the 
right of s, or (2) R’s left edge stabs one of the faces of this box. The first case is 
handled with a dynamic segment tree by y, in which each node has a priority search 
tree by x and -z. An endpoint is stored at each node v in the outer tree along a 
root to leaf path; at each v it is stored in the priority search tree v. tree. A query 
segment s finds each node v such that segment(v) is a basic segment of the y-extent 
of s, and then asks for the endpoint within v. tree whose x value is minimal within 
a query box above (that is, below the limit -s.z) and to the right of the query 
point (s.x, s.z). A priority search tree can lind the point of minimum x in such a 
semi-infmite box in time O(log n). Case (2) is also handled in a dual manner. In 
both cases, query, insert, and delete times are all O(log2 n). 

Altogether then, data structure W can be implemented in space O(n log’ n) to 
support MaxZnStrip and LeftmostAbove queries in time O(log’ n). The time to 
insert or delete a rectangle is O(log3 n), improvable to O(log’n log log n) using 
dynamic fractional cascading. 

THEOREM 3. Hidden surface removal for a dynamic set of rectangles can be 
computed in time O(log3 n + k log2 n) per insertion or deletion (O(log2 n log log n + 
k log2 n) using dynamic fractional cascading) and space O(n log’ n + q log n), where 
k is the number of visible line segments that change, and n and q are, respectively, the 
number of rectangles and the number of visible line segments at the time of the update. 

Proof Insert uses a single Below query, a single WZnsert operation, and 
O(k) VZnsert and VDelete operations. These cost O(log2 n + k), O(log3 n) (or 
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O(log’ n log log n) with fractional cascading), and O(k log2 n) time, respectively. As 
we saw in Section 5, Insert also involves O(k log k) other work. Delete uses a single 
WDelete operation, O(k) LeftmostOn, LeftmostAbove, and MaxInStrip queries, and 
O(k) VZnsert, VDelete, and frontier segment merging operations (implicit in the 
advancing). Altogether we obtain the claimed time and space bounds. 1 

In windowed systems, a rectangle is typically constrained to be completely visible 
when inserted. By using a data structure such as the linger search tree in [GMPR], 
which supports “insert at front” and “report the first item” in 0( 1) time, and delete 
in O(log n) time, we obtain the following theorem. 

THEOREM 4. If each rectangle is completely visible when it is inserted, insertions 
can be handled in time O(log’ n + k log’ n) without fractional cascading. 

8. MOUSE-CLICK LOCATION 

Typically windowed systems are used on workstations equipped with a mouse. 
Mouse-clicks switch the keyboard input stream from one window to another, so a 
fundamental problem is to locate the window containing a given mouse-click, that 
is, which rectangle is the highest along a given line of sight. 

For the static case, notice that our modified segment tree, as it exists between 
successive x-coordinates xi and xi+ 1, can handle query points with x-coordinate 
between xi and x, + , in logarithmic time. Such a query considers the top rectangle 
in each heap along a root-leaf path and picks the highest top rectangle. An efficient 
solution to the problem for arbitrary x is obtained by making the segment tree 
persistent [DSST, ST]. More precisely, the correct values of Top(v.heap) should be 
accessible in 0( 1) time per node after an initial O(log n) binary search by x-coor- 
dinate. Sarnak and Tarjan show how to use “path-copying” along with a small 
number of extra pointers per node to achieve this goal without increasing the space 
complexity [ST]. Notice that only Top(v.heap), rather than all of v.heap, need be 
copied for each v. If we are using the “theoretical” version of the segment tree, in 
which lists of Top(v.heap) values are already compiled, then persistence amounts to 
providing “bridges” between the list at v and the lists at U’S children, as in (static) 
fractional cascading [CC]. Notice that in either case, we obtain a better space 
bound, namely O(n log n), than can be obtained by treating a complicated rectangle 
scene as a general polygonal subdivision. 

For the dynamic case, the query Locate, described above, gives an efficient, 
though not optimal, solution. 

THEOREM 5. Which window contains a given mouse-click can be determined in 
time O(log n) in the static and O(log’ n) (0 log n log log n) using dynamic fractional 
cascading) in the dynamic case. Adding this capability does not change other space or 
time bounds. 
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9. CONCLUSIONS 

We have given algorithms that solve window management problems efficiently in 
a theoretical sense. The number of windows in computer displays, however, is 
currently not large enough to warrant the use of these algorithms. Our algorithms 
might someday find use in cartographic applications or in VLSI design tools for 
many-layer technologies. 

We mention some avenues for further research. Naturally, it would be nice to 
give algorithms with better time or space bounds. Two questions concerning the 
static case seem particularly interesting. It is possible to reduce the k log n factor to 
k without increasing the dependence on n by more than a logarithmic factor? Does 
there exist an optimal, O(n)-space, O(log n)-query-time data structure for answer- 
ing mouse-click queries? Cleaner algorithms for the dynamic case, even with the 
same time and space bounds, would be an improvement. Finally, we would like to 
see output-sensitive algorithms for more general hidden surface removal problems. 
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