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Abstract

We introduce a-analog of the multiple harmonic series commonly referred to as multiple zeta
values. The multiplg-zeta values satisfy g stuffle multiplicaion rule analogous to the stuffle mul-
tiplication rule arising from the series representation of ordinary multiple zeta values. Additionally,
multiple g-zeta values can be viewed as special values of the mudtiptaylogarithm, which admits
a multiple Jacksop-integral representation whose limiting case is the Drinfel'd simplex integral for
the ordinary multiple polylogarithm wheq = 1. The multiple Jacksog-integral representation
for multiple ¢-zeta values leads to a second multiplication rule satisfied by them, referred to as a
g-shuffle. Despite this, it appears that many numerical relations satisfied by ordinary multiple zeta
values have no interestigextension. For example, a suital@nalog of Broadhurst’s formula for
({3, 1}"), if one exists, is likely to be rather complicated. Nevertheless, we show that a number of
infinite classes of relations, ihaing Hoffman’s patition identities, Ohno’s yclic sum identities,
Granville’s sum formula, Euler'sonvolution formula, Ohno’s gemalized duality relation, and the
derivation relations of Ihara and Kaneko extend to multipleeta values.
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1. Introduction

Throughout, we assumegis real and O< ¢ < 1. Theg-analog of a non-negative integer
nis

n—1
1-4g"
nly =2 q" =3
k=0 4

Definition 1. Let m be a positive integer and lef, so, .. ., s, be real numbers witky > 1
ands; > 1 for 2< j <m. The multipleg-zeta function is the nested infinite series

g6~k
(snsnli= Y [[ L

—, (1.1)
[kj]q]

k1>->ku>0 j=1

where the sum is over all positive integéssatisfying the indicated inequalities Af = 0,
the argument list in (1.1) is empty, and we defirid := 1. If the arguments in (1.1) are
positive integers (witk; > 1 for convergence), we refer to (1.1) asaltipleg-zeta value.

Clearly, limy1¢[s1, ..., 5m1=2¢(s1, ..., 5m), Where

C(s1, ..y 8m) 1= Z l_[k;s'/, (12)

k1>>kn>0 j=1

is the ordinary multife zeta function [2—-9,13,16]. In this paper, we make a detailed study
of the multipleg-zeta function and its values at positive integer arguments gt$teiffle

rule and some of its implications are worked out in Section 2. Among other things, we
derive ag-analog of the Newton recurrence [6, Eq. (4.5)] §dfs}"), ag-analog of Hoff-
man'’s partition identity [16, Theorem 2.2], [9], andgaanalog of the parity reduction
theorem [3, Theorem 3.1]. In Section 3, we provg-analog of Ohno'’s generalized du-
ality relation [25]. Consequences of our generaligediuality relation include g-analog

of ordinary duality for multiple zeta values, andjaanalog of the sum formula [15]. In
Section 4, we prove that the derivation theorem of Ihara and Kaneko [20] also extends to
multiple g-zeta values. As we shall see, #@nalog of the Ihara—Kaneko derivation theo-
rem is in fact equivalent to generalizgeduality. A special casex(= 1) yields ag-analog

of Hoffman’s derivation relation [16, Theare5.1], [19, Theorem 2.1]. In Section 5, we de-
rive ag-analog of Ohno’s cyclic sum formula [19]. In Section 6, we introduce the multiple
g-polylogarithm, derive a Jacksgnintegral analog of the Drinfel'd integral representation
for ordinary multiple polylogarithms, and provezaanalog of a formula [3, Theorem 9.1]

for the colored multiple polylogarithm. Finally, in Section 7 we employ Heine’s summa-
tion formula for the basic hypergeometric function to derive a bivariate generating function
identity for the multipleg-zeta valueg [m + 2, {1}"] (0< m, n € Z). These are the values

of the multipleg-zeta function evaluated at the indegposable sequences [16] consisting
of a positive integer greater than 1 followed by a string:aines. Consequences of our



754 D.M. Bradley / Journal of Algebra 283 (2005) 752—-798

generating function identity include the special cage + 2, {1}"] = ¢[n + 2, {1}"] of
g-duality, and ag-analog of Euler’s evaluation expressingn + 2, 1) as a convolution of
ordinary Riemann zeta values. More generally, we will see that for all integer® and

n >0, ¢[m, {1}"] can be expressed in termsgp¥eta values of a single argument. Euler's
formulais but a special case, as is Markett’s formula [23)fo#, 1, 1).

Whereas the structure of our arguments in many cases derives from the corresponding
arguments in the classical= 1 case, the reader should not be surprised to learn that, as
is often the case with those afflicted withyavirus, much of the difficulty in establishing
an appropriatg-theory is determining “where to put tle” In this light, it may be worth
remarking that alternative definitions of the multiglezeta value are possible, and lead to
other results. For example, in [10] we study the relationship between certain sums involving
g-binomial coefficients with the finite sums

m t]ki
Zuls1, ..., sm] = Z — (13)

k1y
n2ki >k 21 j=1171q

special cases of which have occurred in cotieaovith some problems in sorting theory.
Another model,

L gRisi
k o—
G s = > ] A—a

ky>-->kp>0 j=1

is suggested by Zudilin [30]. See also [28]. lakeko et al. [21], analytic properties of the
g-analog

s—1)k

2

q
¢lsl= E .
k=1 [k]q

of the Riemann zeta function are studiedisl immediately suggested Definition 1 to

the present author. However, as we were subsequently informed, Zhao [29] had already
been studying (1.1) and its polylogarithmic extension, albeit primarily from the view-
point of analytic continuation and the-shuffles of [6]. After a preliminary version
(http://arXiv.org/abs/math.QA/0402093], February 6, 2004) of the present paper was
circulated, Okuda and Yodtiro [27] re-outlined prodf of our Theorems 5 and 9 and
gave a generalization of Theorem 15. For arithmetical results on sjngéga values, see
Zudilin [31-35].

Notation and terminology. As customary the boldface symbds Q, andC denote the

sets of integers, rational numbers, and complex numbers, respectively. We vilt (fse

the set of positive integers; the subgkt2, . . ., n} consisting of the first positive integers

will be denoted by{n). We denote the cardinality of a sétby | A|, and whem is finite, the

group of|A|! permutations of|A|) by &(A). If A = (n), we writeS,, instead ofS((n)).
Boolean expressions such@ss A) take the value 1 ik € A and 0 ifk ¢ A. To avoid the
potential for ambiguity in expressing complicated argument sequences without recourse
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to ellipses, we make occasional use of the abbreviatiorls ¢fat} for the concatenated
argument sequencs, ..., s, and{s}" = Cat]’.;l{s} for m > 0 consecutive copies of,
which may itself be a sequence of arguments. Throughowutill denote the set0, 1}

and /™ the Cartesian produdt x --- x I of m copies ofl whenm is a positive integer.
This will cause no confusion with the notation for concatenation, since we will never have
occasion to discuss the periodic sequenck 0., 0, 1. As in [3], we define th&epthof

the multipleg-zeta function (1.1) to be the numberof arguments.

2. q-Stuffles

The stuffle multiplication rule [3,6,9] for the multiple zeta function (also referred to as
the harmonic product ot-product in [17,19]) arises when one expands the product of two
nested series of the form (1.2), and is invariably given a recursive description. We begin
with an explicit formula for the -stuffle multiplication rule satisfied by the multipjezeta
function; an explicit formula for the stuffle rule can then be derived by taking the limit as
qg— 1.

Let m andn be positive integers. Definestuffleon (m, n) as a pair(¢, ) of order-
preserving injective mappings: (m) — (m +n), ¥ : (n) — (m + n) such that the union
of their images is equal t¢) for some positive integer with max(m,n) <r <m + n.

In what follows we will abuse notation by writing (for examplg) (k) for the pre-image
¢~ 1({k}) of the singletor{k}. Sinceg is injective,¢p~1(k) is either empty(} or a singleton
{;j} for some positive integef, and we make the conventions

sjy=sj>  up=tj,  syp=13=0.
The stuffle multiplication rule for the multiple zeta function can now be written in the form
C(s1, o vsm)(tr, oo ty) = Z C(E:alﬁsqs—l(k) + fw—l(k)}), (2.1)
(@.¥)
where the sum is over all stufflgg, ¢) on (m,n), andr = r(¢, ¥) is the cardinality
(equivalently, the largest member) of the unipim)) U v ((n)) of the images op andyr.
More generally, expanding the product
(sj—Dk;

Clsy, . osmllte, ... th]l = Z Hq = Z l—[q

k1>->kn>0 j=1 ./ 9 I1>->,>0 j=1 [l]

(=1,

yields sums of products of terms of the form

q (s—Dk+(t—1)
k13 111,

’
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which, if k =, reduces to

q(s+t—2)k q(s+t—2)k q(s+t—1)k
T 1-9) P s+
[k]y (k14 [k1g

It follows that

sty -, smlClta, ... tal

= Z 2(1 — Al [kcialt{s(bl(k) +ty-14y— (ke A)}}, (2.2)
@) A -

where the outer sum is over all stuffles, ) on (m, n), the inner sum is over all subsets
A of the intersection of the images ¢fandv, r = |¢p ((m)) U ¢ ({n))| as in (2.1), and the
Boolean expressiotk € A) takes the value 1 if € A and 0 ifk ¢ A. We refer to (2.2) as
the g-stuffle multiplication rule. Note that (2.1) is the limiting cage> 1 of (2.2). For an
alternativey -deformation of the stuffle algebra, see [18].

2.1. Period-1 sums completely reduce

As an application of thg-stuffle multiplication rule (2.2), we show that for any- 1
and positive integet, the multipleg-zeta function; [{s}"] can be expressed polynomially
in terms ofg-zeta functions of depth 1. See [5] for a discussion of the period-2 case for
ordinary multiple zeta values and related alternating Euler sums.

Theorem 1. If n is a positive integer ansl > 1, then

k=1

k—1 . ,
Z( ; )(1—q)"§[ks—J].

Jj=0

n¢[{s)"] =D (=D e [{s) ]
k=1

Proof. Let R denote the right-hand side of the equation in Theorem 1.gFaeiffle mul-
tiplication rule (2.2) implies that

n k—1 n—k
R=) (-DF1Y" (k R 1)(1 - q)-’{ > ltsy ks — g {sy ]
k=1 j=0 J m=0
n—1—k
+ Y [ty k+ Ds — g gsy R
m=0
n—1-—k
+d—q) Y ¢[sy" k+Ds—j—1, {s}"—l—k""],. (2.3)
m=0

Now expand (2.3) into three triple sums. We re-index the first and third of these, replacing
k by k + 1 in the first, andj by j — 1 in the third. Then



D.M. Bradley / Journal of Algebra 283 (2005) 752—798 757

n—1—k

n—1 k
k ;
R = Z(—l)k Z <]) Q-gq)’ Z §[{S}'", (k+1)s—j, {S}n—l—k—m]
k=0 0

j= m=0
n—1—k

n—1 k—1
k—1 .
+ E (_1)k+l E < i )(1_(])] E {:[{S}m, (k+1)s — j, {s}n—l—k—m]
k=1 j=0 m=0

n—1—k

n—1 k
k—1 :
+Z(—1>k+12<j_1)(1—q)-' > e[lsym e+ Ds — j sy
k=1 j=1

m=0

(2.4)

In the second and third triple sums (2.4), we have omitted the terms corresponding to
k = n, because these vanish. In the second triple sum (2.4), the rangeasorbe extended

to include the terny = k because the binomial coefficieranishes in that case. Similarly,

the range ory in the third sum (2.4) can be extended to include the tgem0. If we now
combine the extended second and third triple sums (2.4) using the Pascal formula

(57)+G=3)-G)

we see that

n—1—k

n—1 k
k .
R=>"(-D*Y" (}.)(1 —q) Y c[is)" e+ Ds — i, gs) R
k=0 0

j= m=0
n—1-—k

n—1 k
k .
+ Y (=D <J_)(1— f D e[l k+Ds — j sy (25)
k=1 j=0 m=0

The two triple sums (2)cancel except for the = 0 term in the first. Thus, we find that

n—1
R=>"¢[{s)™ s As)" 1" =n¢[{s)"].
m=0

asrequired. O

For reference, we note that lettigg— 1 in Theorem 1 yields the Newton recurrence
[6, Eq. (4.5)] for multiple zeta values of period 1.

Corollary 1. If n is a positive integer and > 1, then

ng (s)") =D (=D ({s)"F) ¢ (ks).

k=1
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2.2. Partition identities

Additional ¢-stuffle relations can be most easily stated using the concept of a set parti-
tion. As in [9], it is helpful to distinguish beveen set partitions that are ordered and those
that are unordered.

Definition 2 (Unordered set partition Let S be a finite non-empty set. Atnorderedset
partition of S is a finite non-empty s whose elements are disjoint hon-empty subsets
of S with union S. That is, there exists a positive integer= |P| and non-empty subsets
Py, ..., Py of Ssuchthatt ={Py,..., Py}, S =Jj_q Px, andP; N Py is empty if j # k.

Definition 3 (Ordered set partitioh Let S be a finite non-empty set. Aorderedset par-
tition of S is a finite ordered tuple? of disjoint non-empty subsets ¢f such that the
union of the components at is equal toS. That is, there exists a positive integerand

non-empty subsetBy, ..., P, of S such thatP can be identified with the ordered-tuple

(P1, ..., Pn), i1 Pc =S, andP; N Py is empty if j # k.

We next introduce the shift operatafg ands; defined as follows.

Definition 4. Let m andk be positive integers with £ k£ < m, and letsy, ..., s,, be real
numbers withsy > 1, sx > 2, ands; > 1 for 2< j # k < m. The shift operatoiEy is
defined by means of

k—1 m
E =¢| Cats;, sy —1, Cat s;|.
k¢ ls1 Sm ] {[j:l s Sk j:k+1s,}

Leté; :=8x(¢) =1+ (1 — ¢g) Ex and abbreviaté := §;.
The ¢-stuffle multiplication rule (2.2) can now be re-written in the form
— 673 4
Clst . smlCltn, .t = ) (]‘[ak );[g::alt{s(,)_l(k) +t1/,_1(k)}i|, (2.6)
(@.¥) \k=1
wherer = |¢((m)) Uy ((n))| anday is equal to 1 or 0 according as to whetlerespec-
tively is or is not a member of the intersectigi(m)) Ny ((n)) of the images op and.

Given (2.6), the following result is self-evident, but it can also be readily proved by math-
ematical induction.

Theorem 2. Letn be a positive integer, and let > 1 for 1 < k <n. Then

[Tetsd= > ( 5 l>¢[cat2s,}
k=1 =1 j=1

PE@m) \J ieP;



D.M. Bradley / Journal of Algebra 283 (2005) 752—798 759
|Pl‘ 1 ‘Pml 1

_Z Z Z Z g[Cat{l;:s,—v,H

mlp|: v1=0 vm=0
|P|=m

m
|Pjl—1 vj
x 1‘[( M [CEORR
=1
where the sum is over all ordered set part|t|om)f (n) having component&Ps, ..., Py),
withl<m= |P| <n.

If in Theorem 2 we abbreviatgiepi s; by p; and sum instead over unordered set
partitions, we see that '

n P
[etsed= ) (Hép’l l) > K[C_alltpom} (2.7)
k=1 PHin ces(P) LT

where theP; C (n) are the distinct disjoint members Bf Inverting (2.7) and expanding
the delta operators yields the following partition identity.

Theorem 3. Letn be a positive integer, and lef > 1 for 1< j <n. Then

> §[Cat¥a<;>} >

0ceS, PH(n)
[P | Px|—1
1P| — 1
Py —1)! 1—g)™ —_—_k
x]!_[l(l % | )ZO( b A @ elpe— vl
_ -

where the sum on the right is over all unordered set partiti®ns {P1, ..., P,} of (n),

1<m=|PI<n,andpr=3_,cp,5j

Letting ¢ — 1 in Theorem 3, we obtain the following result of Hoffman [16, Theo-
rem 2.2], which he proved using a counting argument.

Corollary 2 (Hoffman’s partition identity)Letn be a positive integer, and I8} > 1 for
1< j<n. Then

Zc(Caua(,)) Z( TP -2) (Z )

ceS, Pe® JEP

where the sum on the right is over all unordered set partiti®rof (n).
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Proof of Theorem 3. Itis enough to show that

Z §[Catsa(1)} Z( 1) 171 ]_[ |P|—1)18F172 [Zs,}. (2.8)
oe®, Pe? jepP
Whenn = 1 this is trivial. Suppose the result (2.8) holds fior 1. Then
n—1
> g[}czaltsf,(j)}: > <—1>"—1—'f”1‘[(|P|—1)!5'P—1¢[Zsj] (2.9)

0eB,_1 PH(n—1) PeP jeP

After multiplying Eq. (2.9) through by s, 1, applying theg-stuffle multiplication rule (2.6)
to the left-hand side, and moving the stuffed terms to the right, we obtain

5 [dama]= e [ 0- 987 S

oce6, PH(n—1) Pe?® jEP
n—1
-y Zakg[c:am(,(]) So(j) s, Cat so(])i| (2.10)
€S, _1 k=1

Letu") =s; if j # k andug” = s, +s,. With the aid of the inductive hypothesis (2.9),
the double sum on the right-hand side of (2.10) can now be expressed in the form

)IPITIIL NED SiD DTy

k=10e6, k=1 PH(n—1)
|P|—1+(keP) (k)
x ]_[(|P|—1)!5 ! € {[Zuj }
Pe? JEP

From (2.10), it now follows that

> ;[Cars(,(,)} Y o Pl [T (21— 1)18171- 1§[Zs,}

eSS, PH(n—1) Pe?® JEP
+Z Z ( 1)n |P| 1_[ IPI |5\P| 1+(keP)
k=1P+(n—1) Pe?®
x g[zuﬂ. (2.11)
jerP

Note that in the second sum on the right-hand side of (2.1X)rass from 1 to: — 1, there
is a contribution ofl Pp| copies of the inner sum Py € P is such thak € Py. Therefore,
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if to each partition? of (n — 1) in the first sum on the right-hand side of (2.11), we let
R=PU{{n}}, then

Z CI:Cats(,(]):| Z (=1~ 1RI l_[ R| —1)15/k1- [ZS-/}

ceS, ReR JER
{n}efR

n Z (_1)11—?||P0|!5|P0|§|:Sn + Z S./:|

PH(n—1) Jj€Po
Poe?

< [T (1P1=1)rs"1~ 14[2},}. (2.12)

Pec?P jeP
P#Pg

Clearly, the second sum on the right-hand side of (2.12) can be re-written more succinctly

if we simply tossn into Py and thus view eacl? as an unordered set partition @f) in
which no part in the partition is equal to the singletah. Thus,

> C[Cat‘om} Z (D" TT(RI=1)18'R172 [Zs/}

eSS, ReR JER
{n}eﬂ?
+ Z( D" T (1P - 1)18'71-2 [Zs.,}
Pe? JjeP
{ﬂ}¢fP

The result (2.8) now follows, since any partition 6f) is either of the formR or P
above. O

Remark 1. The proof shows that Theorem 3 (and hence also its limiting case, Corollary 2)
relies on only they-stuffle multiplication property. Loosely speaking, we refer to results
such as Theorems 2 and 3 and Corollary Dadition identitiesbecause they are easily
stated using the language of set partitions. fh&on is defined precisely in [9], where
among other things it is shown thall partition identities are a consequence of the stuffle
multiplication rule, and hence a decision procedure exists for verifying them.

We conclude this section with one further result, namejyamalog of [3, Theorem 3.1].
Results which go beyond stuffles will be discussed in the subsequent sections.

Theorem 4 (Parity reduction)Letm be a positive integer, and let, ... ., s, be real num-
bers withs; > 1,5, > 1, ands; > 1for 1< j <m. Then

§[lialt9k} + (=D"¢ |:](€::alt~9mk+1:|
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can be expressed asZq]-linear combination of multiple;-zeta values of depth less
thanm. Thatis, the coefficients in the linear combination are polynomiajswith integer
coefficients.

Proof. Let N denote the Cartesian product:efcopies of the positive integers. Define an
additive weight-function on subsets &fby

m q(Sk*]-)nk

w(Ad):=>"T]

neA k=1

3

[y

where the sum is over all= (n1, ..., n,) € A. For eachk € (m — 1), define the subse;
of N by P, = {ii € N: n; <ny11}. The Inclusion—Exclusion Principle states that

m—1
w< N\ Pk) = > (—1)|T|w( N Pk>. (2.13)
k=1 keT

T<(m—1)

The term on the right-hand side of (2.13) arising from the empty subset{} is

[Tiz1 ¢[sk] by the usual convention for intersection over an empty set. The left-hand side
of (2.13) is simply¢[s1, . .., s ]. In light of the identity

(s—2)n —n (s—2)n

Ay
= +(1— ,
I T

q

it follows that the right-hand side of (2.13) isZdq]-linear combination of multiplg-zeta
values of depth strictly less than, except for the term corresponding To= (m — 1),
which contributes

mo o (sg—Lng

(_1)m—1 Z l_[ q :

[l
I<n e <nm. k=1

1 m
= (=17 Catsu—s1

+ (Z [¢]-linear combination of lower depth multiplezeta value)s O

3. Generalized g-duality

In this section, we prove a-analog of Ohno’s generalized duality relation [25]. As a
consequence, we deriveanalogs of the duality relation [2,3,6,16,17] and the sum for-
mula [15]. An additional consequence isgaanalog of lhara and Kaneko’s derivation
theorem [20], which we prove in Section 4.
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Definition 5. Letn andss, .. ., s, be positive integers witky > 1. Letm be a non-negative
integer. Define

Z[s1,...,5p;m] = Z Cls1+c1, ... 8+l

C1,.--,Cn 20
c1+t-tcp=m

where the sum is over all non-negative integgrsvith >_; c¢; = m. As in [2], for non-
negative integers; andb;, define the dual argument lists

p= (5alt{a it+2 {1}”1'}), p'= (c"alt{bn_ i+1+2, {1}“"-1“}).
Jj= Jj=

Theorem 5 (Generalized;-duality). For any pair of dual argument listp, p’ and any
non-negative integer., we have the equalit¢[p; m] = Z[p’; m].

Them = 0 case of Theorem 5 is worth stating separately. It is a diyeantalog of the
duality relation for multiple zeta values. A related, but distinct duality result for (1.3) is
proved in [10].

Corallary 3 (¢-Duality). For any pair of dual argument lisgs andp’, we have the equality
¢[pl=¢Ip']l. In other words, for all non-negative integets, b, 1 < j < n, we have the
equality

4[5alt{aj +2. 1" }} =¢ [c,:nalt{bn 1t2, {1}%#1}]
J= j=

As noted by Ohno [25], the sum formula [15] is an easy consequence of his generalized
duality relation. Likewise, the following-analog of the sum formula is a consequence of
our generalized-duality relation (Theorem 5).

Corollary 4 (¢-Sum formula) For any integer® < k < n, we have

Y I+ Llosa .. sal=¢lk+ 10,

s1+s2+-+sn =k

where the sum is over all positive integefsso, . .., s, with sum equal td.

Proof. If we take the dual argument lists in the fopr= (n + 1) andp’ = (2, {1}*~1) and
putm =k — n, then Theorem 5 states that

n n
(lk+1= ) §[2+c-2,c_z112t{1+c-,~}}: > g[s1+1,c_azts,}. O
C1,.ecn 20 7= 81508 =1 7=
c1ttep=k—n s1+-+sp=k
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Remark 2. The g-sum formula (Corollary 4) is also easily seen to be equivalent to the
identity

n 1 o nm

Z 1 , neZt, zeC,
[mly(Imlg —zq™)

> -~
1 ki T
k> k>0 [k1lq -1 lkily —zq"i

m=1
which is given an independent proof in [11].
3.1. Proof of generalizeg-duality

To prove Theorem 5, we need to employ some algebraic machinery first introduced by
Hoffman [17]. The argumentitself extends ideas of Okuda and Ueno [26] tp-tlase. Let
h = Q(x, y) denote the non-commutative polynomial algebra over the rational numbers in
two indeterminates andy, and leth® denote the subalgeb€il & xhy. TheQ-linear map
z:h° - Ris defined byc[1]:= ¢[]=1 and

s
| [Tx%»" =§|:Csat{aj+1,{1}bf_1}}, aj.bj ezt
j=1 = o

For each positive integer, let D,, be the derivation oy that mapsc — 0 andy — x"y,
and let6 be a formal parameter. Then >, D,6"/n is a derivation orh[6] andoy =
exp(}_ o2, D,6"/n) is an automorphism of[¢]. Let  be the anti-automorphism of
that switchest andy. For any wordw € h°, define f[w; 6] := f[ag(w)] andglw; 0] :=
E[crg(t(w))]. By definition ofD,,, .~ D,6" /n sendst — 0 andy — {log(1—x6)"1}y.
Thus,os sendsx — x andy — (1 — x6)~1y. Therefore,

f[nxajybj;e] zg[nxa’{(l—xe)ly}bj]

j=1 j=1

Ziem > C[éalﬂkiﬂ-i}}, (3.1)

where(ky, ..., k,) = (Cat_y{a; + 1, {1}»/~1)) andn = }"5_; b;. Theorem 5 can now be
restated in the equivalent form given below.

Theorem 6 (Generalized;-duality, reformulated)For all w € 60, flw; 6] = glw;6]. In
other words¢ o oy is invariant under ordinary duality .

The following difference equation is a key result in the proof of Theorem 6.
Theorem 7. Leta;, b; be positive integers with ;_; (a; + b;) > 2. Make the abbreviation

0’ :=q0 — 1, and recall the notatiod” = {0, 1} x --- x {0, 1} for the m-fold Cartesian
product from Sectiod. The generating functiong andg satisfy the difference equation
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> oa- q)‘“f[l_[x%’ s 9}
i=1

e,el’
81<ai, €s<by

_ K
— Z (_9/)5'6—1(1_ q)svef[l_[xai_siybi_éiﬁ—l; 9/:|
i=1

5,ectl
ds+1=€1=0
d1<ai, €541<bs

Here, we useé to denote the ordered tuple whoit component id — §;, and of course
§ - € denotes the dot product; 5;¢;. Similarly, ¢ denotes the ordered tuple whosé
componentid — ¢, ands - € =Y ;(1—8;)(1— ).

We also require the following lemma, which shows that the generating fungfiond]
can be analytically continued to a meromorphic functiof efith at worst simple poles at
6 = g~"[v], for positive integers.

Lemmal. Letw =[[;_; x%ybi wherea; andb; are positive integers. Lekg := 0 and set
Bi:=3_1bjfor1<i <s.Then

Cylw]
flw; 0] = DL —6g"
v=1 q 4
where
By
Cylw] I=Z Z Eilw;ma, ..., mg_1,v,mgy1,...,mp.l,
k=1 mM1>->mg_1>V
v>mpqq>-->mpg >0
and
Ek[w; my,...,mg—-1,v, mk+lv ceey mBS]

s qa,-m(1+8,-_1) Bs mi—v
= — l_[ ([mj]q —q [v]q).
j=1

i1 lmavs olg' |/
J#

In the expression foEy, we have placed the compound subsctipt B;_1 in parentheses
to emphasize that the entire expression B;_1 occurs in the subscript of.

We defer the proofs of Theorem 7 and Lemma 1 in order to proceed directly to the proof
of Theorem 6.
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Proof of Theorem 6. We use induction on the total degree of the Wﬂﬁzlx“fyb". The
base case is clearly satisfied, since the words self-dual. Now apply Theorem 7 t6
andg. Subtracting the two equations gives

Z (_9)5%(1_ q)ﬁvé{f[nxai—éiybi—éi; 9j| _ g|:l_[xai—5iybi—6i;9:|}
i=1 i=1

S, ecl’®
Sd1<ay, €s<bg

— Z (_9/)S-€—1(1_q)5-6

s,eelstl
35+1=€1=0
81<ai, €541<by

S s
s s ]|
i=1 i=1

But the terms whose words have total degree less Yian (a; + b;) are cancelled by the
induction hypothesis. This leaves us with

(—9)S{f[]_[x“"y""; 9} - g[]_[xa"y”"; 9”
i=1 i=1
= (—9/)S{f[]_[xa"yb’; 9’] - g[nxa"yb’; 9/] ,
i=1 i=1

Thus, the function

H(®):= (—Q)S:f|:l_[x“"yb’; 9} — g|:l_[x“"yb’; 9]}
i=1 i=1

satisfies the functional equatiéi(9) = H(0'), wheref’ = g6 — 1. Butby Lemma 1H (9)
is a meromorphic function af of the form

6 i M
= [U]q — qu )

with at worst simple poles & = p, := ¢~"[v], for positive integers). Note that 0=
po<pi<p2<---andp), =qp, — 1= p,_1 forall v > 1. The functional equation thus
implies that if H has a pole ap,, then H must also have a pole at,_;. Since H has
no pole atpo, it follows that eachk, = 0. Thus,H vanishes identically and the proof is
complete. O

Letl+#w= ]_[‘l?zlx“"yb" € h°. Henceforth, we assume thigitf < 1/¢. To prove that
f and g satisfy the difference equation as stipulated by Theorem 7, first observe that
from (3.1),
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S q(k +cj—Dm;
s v
=y Y Y [ e
v=0 c;j=0 my>-->my>0 j=1 [mj
Z);=1C]':U
(kj+c;j—Dm;
- Y X! 6
k,+c,
m1>-->my>0 j=1lc;=0 [mj
O | P
mi>-->my,>0 j= l[mj j]q _quj)
RN | [CR gy § QR S
= X _ ’n]7 .
my>->mp,>0 i= l[m(l+B 1)](1 j=1+B;_ [m/]q Oq

whereBg := 0 andB; := 2321 b; for 1<i <s asin the statement of Lemma 1.

Definition 6. If d = (d1, ...,d;) € I* issuch thatl, =0 if by =1, let

flwidiol:= > ]_[ 1

_.7% I mj "
my>-->mp>0 i=1 [ma+50) —dilg j=1+B;_1 lmjlg —0q

ai(m+p;_q)—di) B; 1

The extra requirement afy ensures that no division by zero occurs whign= 1. Note
that we now havef[w; 6] = f[w; {0}*; 6]. For the proof of Theorem 7, we require the
following sequence of lemmata.

Lemma2. If (s >1orb1 > 1) anday > 1, then

Z (_9)85(1 _ q)5€f|:xa15yb1€ Hxaiybi; {O}S, 9:|

S,e€l i=2
_ N
=) (0f [x“i“sy”l [Ty (00 e].
sel i=2
Lemma3.If s > 1or b1 > 1, then
N

Y (0 f[xybl ‘ l_IX"ly {0y ] = (—9’)f[xy’“ [ [x“y™: 1008 % e].

eel i=2
Lemmad.If 1< j <sor(j=sandbs; > 1), then

B j—1 s
Z (_9)5€(1_ q)5€f|:< Hxaiybi)anSybjé l_[ xa,‘yb,‘; {1}j71’ {O}Sfj+l; 9]
i=1

S.eel i=j+1
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= Y (=) A-g)*

§,eel

|:<l_[xa,yb,> aj_ 1 bj_1—€ x%i= -8 b, l_[ xa,yb, {1}] {0}s j. 9j|

i=j+1
Lemmab. If by > 1, then
K s—1
f|:l_[-xa’yb’v {1}5’ 9:| — Z(_e/)€f|:<l_[xalyb,)xasyb_y€, {O}S, 9/}
i=1 eel i=1
Lemmaé. If s > 1, then

B s—1
Z(—@%{(]‘[x“iy’”)x“”y; ko e]
i=1

sel

- s—2
— Z (_9/)5€(1 _ q)5€f|:<l_[xaiyb,‘>xaslybsléxasSy; {O}S, 9/} .
i=1

§,eel

Lemma?.If a > 1, then

3 =0 fx 7y 0] = > (=6 f[x 0 y: 0]

sel sel

For completeness, we also record the following result, although it is not needed for the
proof of Theorem 7.

Lemma8.0f[xy; 01+ (1—q)=06'f[xy;0']1—1/6".

We shall prove Lemmas 1-8 in Section 3.2 below. Assuming their validity for now, we
proceed with the proof of Theorem 7.

Proof of Theorem 7. Let L denote the left-hand side. First, consider the case whenl
andb,; > 1. Then

. N
L= Z (_9)56(1 _ q)8~€f|:l_[xai5,‘yb,‘€i; 9:|
S,ecl’ i=1

In the sum over orderedtupless ande, renamel = (d2, ..., ;) ande = (e, ..., €5) SO
that
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L= Y ofa-g > (—9)51@1(1—q)‘“ﬂf[l_[x“f“”y”f‘ﬂ;{0}5;9]

S,eels—1 d1,€1€l i=1

— Z (_e)gg(l_ q)tsvé Z(_el)glf[xal—(slybl l_lxa,'—tsiybi—s,'; 1, {O}S_l; 9:|,

S,eels—1 81el i=2

by Lemma 2. Ifs > 1, we again renam&= (83, ..., 8;) ande = (e3, ..., ;) and write

L=Y (=6 3 (=) 1-q)¢

81l 8,ecls—2

s
x (—9)52%2(1—q>52€2f[x“1Sly”ll_[x“f‘Sfybfﬁ'; 1oy e}.
82.€2€! i=2
We now apply Lemma 4, first withi = 2, and again witljy = 3, and so on up tg = s. The
result is that

s—1

L= 2 (—9/)5'6(1—q)“f[<1_[x“"Sfybf€f+l)x“SSSy”s;{1}";e]. (3:3)

i=1

On the other hand, if = 1, we have (3.3) with no application of Lemma 4. In any case,
applying Lemma 5 to (3.3) yields

I = Z (_el)g.g(l_q)ﬁ»e Z (_9/)55+1—1f|:l_[xai—ﬁiybi—si+1; {O}S; 9/j|.

8,eel’® €sy1€l i=1
€1=0

If we now extends ande by adjoining an extra component to each, iz,; = 0 and
€s+1 € I respectively, we find that

S
L= Z (_9/)8?(1_q)ﬁ»éf[l_[xai—ﬁiybi—s,‘+1; {0}5’9/}’
s, ecrstl i=1
ds+1=€1=0

as required.

The proof in the case; = 1, by > 1 is similar. The main difference is thé = 0 and
we begin by applying Lemma 3 instead of Lemma 2. For purposes of brevity, we suppress
the details.

It is convenient to split the casa > 1, b; = 1 into the two subcases> 1 ands =1,
since in the former we end by applying Lemma 6, while in the latter we instead use
Lemma 7. Suppose first that- 1. We have
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L = Z (_9)5%(1_q)8-6f|:1_[xai—5iybi—6i; {O}S; 9:|
i=1

8,eel®
;=0
s
— Z (_9)55(1_ q)S-G Z f[xal—(slybl—sl l_lxa,'—(s,'yb,'—s,'; {O}S, 9j|
s,eerst 81,616l i=2
€;=0

Now apply Lemma 2, and then Lemma 4 successively, wigh2, 3, ..., s — 1. The result
is

L= > 077 A-9" Y (-o)
n,vels_l §sel
v1=0 vs=0

s—1
x f|:<1_[ x“i’?iybiui+l)xds55y; {1}s—17 0; 9:|’

i=1

Lemma 6 now gives

s—1
[ = Z (_9/)77-17(1_ q)ﬂ-vf|:l_[xai—n,-yb,-—v,‘_,_lxa.‘—nsy; {O}S; 9/j|
n,vel’® i=1
v1=0

N
— Z (_9/);717—1(1_ q)l’]vl)f[l_[xa,‘—r],'ybi—v,‘+1; 9/}’
i=1

n,vels+l
Ns+1=V1=Vs41=0

as required. On the other hands = 1 note that in this case Theorem 7 is just a restatement
of Lemma 7.

The final case, witla; = by = 1 ands > 1, is proved in much the same way as the other
cases withy > 1. Observe that now; = ¢; = 0 in the sum on the left, andl = ¢;,1 =0
on the right. The result is established by applying Lemma 3, then Lemma 4 successively
as necessary for=2,3,...,s — 1, and finally Lemma 6.

Thus, f satisfies the difference equation as claimed. This and the facgthat] =
flz(w); 0] readily implies thag satisfies the same difference equatiom

3.2. Proofs of Lemmas 1-8
We begin with the proof of Lemma 1.

Proof of Lemma 1. From the penultimate step in (3.2), noting that B;, we have
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q(k-—l)mj

flwsol= > ﬂ

my>=mp =0 j=1[ ([mj] —0q"))

_ Z ZEk[w mls"'smBS]
= [mk]q _equ )

my>-->mp;>0 k=1

where the partial fraction decomposition

iEh[w'ml,..., —l_[ q(k'—l)m]-
it Il =0 “m 1y~ 0g™)
implies that
B B
s s s (kj*l)mj
ZEh[UJ;n’ll,...,mBS]l_[([mj]q_gqmj): qﬁ
= =1 j=1lmjlg

J#h

Letting® — ¢~ [my], now gives that

q(k 1)mj .
Exlwimy,...,mp]= 1_[ ]_[ — """ [mgg).-
j=1 [m]]q
Hék
The general formula foEx[ma1, ..., mk—1, v, miy1, ..., mp,] now follows immediately

on replacingn by v and noting thak; = a; + 1 precisely whery =1+ B;_3; otherwise
k; = 1. The lemma itself now follows on interchanging order of summatian.

Proofs of several of the remaining lemmata make use of the partial fraction identity

qum qm
[mlg(Imlg —0g™)  [m)4~ (Imly — 6g™)
B e/qsza quaJrl
[m — 114 (Imlg —0g™)  [m — L&~ 2(Iml, — 6g™)
m—a-+1 m
2 9 (3.4)
[m—115  [m]g
valid fora > 0 andm > 1.
Proof of Lemma 2. Let
n (ki—Lym;
q J J
B = 1_[ T—1 . (35)

ja [m 1y (Im 1y — 0g™)
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Then by (3.4),

ef[l"[x“fybf; U 9] - f[x“llybl [Tx“y": (0 9}

i=1 i=2

0 2mq my
Z { . q _ q }q(a12)mlB

i om0 Lmlg Umaly =60 (ma ) (mal, — 6q™)

Z { G/qul—al qml—a1+1
o T o U1 = 113 (Imaly — 0™ [my — 11§ (Imaly — 6g™)

qml—al-‘rl qml

[my— 105 [ma]st

:Z{[

mi>--->my,>0

D>

mo>-->my>0 mi=mo+1

s N
= e/f[l"[x“fybf; 5 {0}"‘19} - f[x“llybl [ =y 1000 e}

i=1 i=2

>

mo>-->my>0

}q(al—Z)mlB

elqal(ml—l) q(al—l)(ml_l) }B

m1— 13 (Imaly — 0™ [my — 1% X([mal, — 6g™)

{q(all)(mll) q(drl)ml }
[m1 — 11g* [m1lg*

Bgla—Dm2

[m2]g*

But

Bq(arl)mz gtmz q(arl)mz }

Y T = X {[m]aﬁ(l—@WB

mo>->my>0 [mZ]q mo>->my>0 2lq q
s
— f [xalybl—l l_[xa,'ybl‘; {O}S’ 9}
i=2
s
+ (1 _ q)f[xal—lybl—l l_lxa,'yb,'; {O}S, 9} ,
i=2
and the result follows. O
Proof of Lemma 3. Again, let B be given by (3.5). In this case (3.4) gives

of [xybl 1_[ x“"yb" ; {0} 9:|

i=2
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= Z qum:L . q—mlB
my>--->my >0 [m1lq(Imalg —6q™)
[ml - 1]q([ml]q - 96]’"1) [m]_ — 1]q [ml]q

my>--->my>0
elqml—lB
[m1—1l4([m1] — 0g™1)

Il
N

mi>-->my>0

e 1 1
2 B ) <[m1—1]q_[m1]q)

mop>--->my>0 mi=my+1

ze/f[xybll‘[xafybf;l, {0}5‘1;9} > ([mlz] +q—1)B-
q

i=2 mo>-->my,>0

Inlight of g — 1+ 1/[m2], = q™2/[m2],, it follows that

N N
of [Xybll_[xa"yb"; {0)'; 9} - 9’f[xyb1 [ Jx“y": 10084 9}

i=2 i=2

_ Z Bg™? —f[xybl_lnxaiybi§ {O}S;9:|,

p =
mp>--->n, >0 [ Z]q i=2

as claimed. O

Proof of Lemma4. Letm = M(14B; 1) Define the quantitied and B by

4 j-1 qai(m(lwsi,l)*di) B; 1
= i a 7_ m 5
i=1 Mty —dily h=1+B;_1 il —64™
and
qaij s qaim(lﬁ—Bi,l) B; 1

[mly’ (Im]y — 0q™) [m 18, plq heisp,_, Mhlg —0q™ '

i=j

Then (3.4) gives

Of[l_[x“"y”"; O (VR e]
i=1

j—1 s
- f[(]_[x“"yb’)x“flyb’ [T x“y" = o7+ 9}
i=1

i=j+1
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2m m

0
= Z A{ aj 1 - a;i—1 d

}q(a] 2)mB
my>--->my>0 [m]q ([m]q —6q™) [m]q] ([m]q —0q™)

0’ 2m—a; m—aj+1
= Z A{ 1“./(] agamy a(,{l
My> oty >0 [m — 1], ([m]; —0q™) [m—1],/ “(Im]y —60q™)
quaﬁrl qm

_ (aj=2)m g
- - (4
[m =11 [mly }

9’ g%im=1 (aj—1)(m-1)
- ¥ A{ Kl 4 }B

o L =1 (imly —04™) [ — 1% (), — 0™

N A
+ Z aj = aj
[m — 1]q [m]q

my>--->my>0

=0 f|:l_[x“’y 7oy 9]
j-1
_f|:(l_[xaiyb,-) aj— 1 b l_[ xaly {O}S J. 9:|
i=1

i=j+1

—1+mp.
j-1 (aj—1)(m—-1) (aj—Dm
q/ q/
+ )3 aB Y - ).
mi>>mp; g m=1+m(2+b’_/_1) [m — ]q [m]q

—1-1—/7113./_1 >M Q4 B;_q)> > M By >0

It follows that

0 f[]‘[x“f U EV (VRS 9}
i=1

X

) oty T xoy®s 1, oy~ -"“;9}

i=j+1

i
fyesmr]
i

|: l_[ )ajlb l_[xaly,{l}j {0}s19:|

i=j+1

= 2

mi>--->mp.

{q(aj—l)m(2+gjl) q(d_/fl)(*l+m8j,1) }
A

a; a;
i1 [m(2+BJ,1)]q] [_1+mB/_1]q]

7l+m3171>m(2+31 p>>mpg>0
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PRACIIRY (aj=Dme+p;_y)
= Z A{i-i-(l t])—aj_l
M>>I ) S4B, q)> > B >0 [m(2+B/ 1)]11 [m(2+Bj_1)]q

qd_/(*lerBj_l) . q(d_/*l)(*lerBj_l)
e 1B
[-14+mp; ;14 [-1+mp; 14
j—1 s
=f[(l_[x“’y”f>x“-fybfl [T x“yqmy/=t oyt 9]
i=1 i=j+1

j-1 .
td=af [( l_IX“’y”")x“-"ly”-’l [T xy: @i oy =+ 9]
i=1

i=j+1

j—2 s
_ f|:< l_[xaiybi)xaj—lyb_/—l_ll_[xaiybi; {1}.1" {O}S—j; 9:|
i=1 i=j
S
-(1- q)f[( [1x4y ) atybimateai=tybi T x4y {1y, {0y 7, e},

i=j+1
as required. O

Proof of Lemma 5. Hereby > 1, and thus if we shift summation indices — 1+ m;,
then

f[]'[x“fybf; (1) e}
i=1

_ u q“'(muwl-flfl) Bi 1
= Y o= I o=

_ i
mi>-->mp,>0 i=1 m(1+B’ i) ]q j=14+B;_1

s glimats_y B; 1

= Y Iy

my>-->mp; >0 i=1

D | s

my>-->mp; >0 i=1

(X + ¥ )ﬁ;’

a;
m .
my>-->mp >0  my>-->mpe_1)>0" i=1 (1+B,_1)]q

l_[ [mj + 1]q _ quﬁ»l

mass,_plg =1t

PRI Bi 1

[ma+s_ply =14 B4

aim14-B;_q)

B; 1

e —

J=14B;-1
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s s—1
= f[l_[x‘”yb"; {0}°; 9/} - (%)f[(]_[xa"yb")xasyb‘_l; {0}’; 9’}- O
i=1 i=1

Proof of Lemma6. In this caseB; =1+ B;_1 and we have

s—1 s—1
f[(nx“fyb’)xafly; Lo 9:| — 9f|:<nx“iyb’)xafy; 1yt o 9]
i=1 i=1

- ai(ma+p;_y—1 B; 1

— m
my>--->mp; >0 Ui=1 m(l+B’ v 1]q j=1+4B; 1 /14

{ g @=Dmpg g gasmss } 1
x

[mB:]Zfl - [mp1g" ) [mp,1g —0g™5s

s—1  ai(ma+p;_p—1D Bi
= > 5
mq>--->mpg>0

1 q
i=1 [m(1+Bi—1) - 1]21’ j=1+B;_1 [ml]q - eqm_,‘ [mBs ]ZS

(as _1)mBs

Now shift the summation indices; — m; + 1 and usdm + 1], — Ogmtl= [m], —6'q™

to obtain
s—1 s—1
f|:<l_[xaiybi>xasly; {1}571’ 0; 9:| _ 9f|:<l_[xaiybi>xasy; {1}5’71, 0; 9j|
i=1 i=1
_ Z 1:[ qazm(1+/3, D) ﬁ 1 q(asfl)mHBS
1=, 50 miB,_ply i=irp,_, Milg —0'q™ [1+mp,lg

Now replacenp, by mp, — 1. Then

s—1 s—1
f[(nx”’ybi)x“sly; Lo 9:| — 9f|:<1_[x”’yb")x“5y; 1yt o 9:|
i=1 i=1

Z ﬁ qainl(l+3i—1) ﬁ 1 q(ds*l)mB:
_[ [mj]q _ G/qu as

m m
my>-->mpgs_1>2mp; >0 (A+Bi- 1)]q j=14B;_1 | Bs]q
- aj | l T
. milg —0'q"i
my>->mp,_1>mp;>0Li=1 [m(l+B,,1)]q j=1+B;_1 [ ]]q 4

(as—Dmpg [mB ]q _ Q/quS

[mp % [mp,1y —0'q"bs

q
X
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. Z 1:[ alm(1+31 D ﬁ 1 q(as—l)'"(B:—l)
ilg— 09" | [mp,—1ly

my>-->mp._1>0 [m(1+B’ 1)]q j=1+B; 1[ ]]q

— qal’"(1+8, il Bi 1
- e T e

mi>-->mp, >0 i=1 [ 115 1)](] j=1+B;_
q(a:*l)mBS

[mp,1g"~ ([mB lg —6'q™5s)

X
B;

s=1 aimayip;_,) 1
q
ooy e

my>--->mp >0 Mm(1+B; 1)]q j=1+B;_1

asmpy

q
[mp,1g (Imp,lg — 0'q™5s)

N Z s=1 qaim(lﬁ—Bi,l) ﬁ 1 q(a-‘il)mgsfl
a; A _ m;j [m Bs—l]gs

. m 0'g"i
my>-->mp_;>00i=1 [m(1+B’—1)]q j:1+B,_1[ ]]q 4q

s—1 1
=7 [(l_[xa"y”")x"s‘ly; (0}; 9’} - 9'f[<l_[x“"yb">x“5y; (oy’; 9’]
i=1 i1

+(1_q)f[<nxaly ) oy Ty, {O}S;O} -

Proof of Lemma7?. If a > 1, then

q(afl)m Qqam 1
gt Imlg ) [m]g — 64"

FIxtys 0] —of[xy: 6] = i (

m=1
B Z q(a Dm 3 i q(afl)m [ml, —0'q
a a _p/
m=1 m] m=1 [m] [m] 4 4
q(afl)m am

’ q
= —6
m=1 [m]g_l([m]q —0'q™) I;. [m]la]([m]‘l - G/qm)

:f[xa_ly;e/] —O’f[x“y;e/]. O
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Proof of Lemma 8. Letn be a positive integer. Then

n t]m , n qm
0 -0
mX:: [m]q([m]q —0q™) 1;_ [M]q([m]q —6g™)
. [mly — - 1
Z < Tl € [m]q T 2 [mly — 6'g"
. [m]q " 1
Z [l (il — eqm) + 2 Gl 6
_ 2”: 1 B i 1
m=1 [m]q - qu m=1 [m]q - 9’qm
n—1 n

. Z 1 _ Z 1
[m + 1]q - qu+l oy [m]q —0'qg™

m=0
o 0 [m]q 9/ m ’n:l [m]q — Q/qn'l
1 1

= Y [n]q _ 9/(,]” :

The result now follows on letting — co. O

4, Derivations

We continue to employ the algebraic notation of the previous section, and yrite
for theg = 1 case of theQ-linear mapz[-] defined there. Thug; (x2 1y ... x*»~1y) =
£(s1,...,8,) gives the ordinary multiple zeta value. Note tl@atuality (Corollary 3)
simply says that[tw] = ¢[w] for all wordsw € K°, while ordinary duality reduces to
Z(tw) = Z(w). In contrast [10], for (1.3) the relevant algebra is H8t but hy, with the
automorphismw — (Jw)x~1y (whereJ switchesx andy but preserves the order of the
word) replacing the anti-automorphism

If D is a derivation of), let D denote the conjugate derivatio® <. As in [19], we refer
to D as symmetric (respectively antisymmetric\df= D (D = — D), and note that any
symmetric or antisymmetric derivation is completely determined by where it sedidara
and Kaneko [20] defined a family of antisymmetric derivationfor positive integera by
declaring tha®, (x) = x(x + y)"~1y. They conjectured—and subsequently proved—that
for all positive integers and wordsw € Ko, E’(a,,(w)) = 0. Here, we shall prove that this
result extends to the multiple-zeta function.

Theorem 8. For all positive integers: and wordsw € h°, [0, (w)] = 0.
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Proof. Again, for positive integet let D,, be the derivation mapping— 0 andy — x"y.
Fix a formal power series parameteaind set

[e%e) D o8] 3
D:=) """, o :=expD), 9:=> 1"
n n
n=1 n=1

The reformulated version of the generalizgdiuality theorem (Theorem 6) states that
Zlow) = ¢[orw] for all w € hO. In view of the special case,-duality (Corollary 3), this

is equivalent talc — &)w € ker¢ for all w € h%. We show that in fact(c — &)h° = ap°,
from which it follows that Theorem 8 is equivalent to generaligeduality. To prove the
equivalence, we require the following identity of Ihara and Kaneko [20].

Proposition 1[19, Theorem 5.9]We have the following equality §f¢] automorphisms
1

expld) =o60"".
To complete the proof of Theorem 8, observe as in [20,30] that since

0= |Og(c_rcr_1) = |Og(1 — (o — c?)cr_l) =—(0—0) E }((cr - c_r)cr_l)nflcr_l,
n
n=1

and

anfl
7

n:

o—0= (1— c?cr*l)cr = (1— eXp(a))cr =—0 Z
n=1

we see thadh® < (o — 5)h° and (o — 7)h° < 9h°. Thus for the kernel of , we have the
equivalences

(c —d)wekerf <= odwekerf < VneZ', {[3,w]=0. m|

Remark 3. The proof of Proposition 1 that is given in [19] involves imposing a Hopf
algebra structure ofpand defining an action on it. Zudilin [30, Lemma 7] presents an alter-
native proof in the case= 1 along the lines originally indicated by Ihara and Kaneko [20].
It is possible to extend Zudilin’s presentation [30] to arbitraripy defining a family
{os: s € R} of automorphisms oR({(x, y)) defined on the generators=x + y andy

by

1—(1-— N -1
¢s(2) =z, (ps()))z(l—tz)sy(]__%y) )

Routine calculations on the generators verify the equalities

d

Ps1 © Pso = Psq+525 »o = id, _S(Ps

=9, =50 L
p p1=00

s=0
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The first three results imply that, = exp(sd), and the substitutiom = 1 gives Proposi-
tion 1.

Remark 4. In view of the identityd; = D; — D1, the case: = 1 of Theorem 8 yields the
following ¢-analog of Hoffman’s derivation theorem [16, Theorem 5.1], [19, Theorem 2.1]:

Corollary 5. For any wordw € h°, Z[Diw] = {[D1w]. Equivalently, ifsi, ..., s, are
positive integers witk; > 1, then

moorg-1 m mosk=2 g q m
Cats;,1+s;, Cat s; | = Cats;, sy — j,j+1, Cat s; |.

By the usual convention on empty sums, the sum on the right is zgre R&.

5. Cyclic sums

In this section, we state and provegeanalog of the cyclic sum theorem [19], origi-
nally conjectured by Hoffman and subsequently proved by Ohno using a partial fractions
argument. As a corollary, we give another proof of #aeum formula (Corollary 4).

Theorem 9 (¢-Cyclic sum formula)Letn andsy, s2, ..., s, be positive integers such that
s; > 1for somej. Then

n n j-1 n $i=2 n j-1
Z;[Sj—i—l, Cat sm,Catsm}=ZZ§[sj—k, Cat sm,Catsm,k—i—lj|.
= m=j+1 m=1 im1k=0 m=j+1 m=1

Note that the inner sum on the right vanishes;it= 1. We refer to Theorem 9 as the
g-cyclic sum formula because, as with the limiting case in [19], it has an elegant reformu-
lation in terms of cyclic permutations of dual argument lists.

Definition 7. If 5§ = (s1, ..., s,) is a vector ofz positive integers, let

G(E) = {(s11 .. '1sn)7 (SZ, . "7sn7sl)7 cee (snsslv . ~7sn71)}

denote the set of cyclic permutations ©f Also, for notational convenience, define
g*[slv . ~7sn] = {[sl—i_ 11 SZ, . "7sn]'

We can now restate Theorem 9 as follows.

Theorem 10 (¢-Analog of [19, Eq. (2)])Letsands be dual argument lists. Then

> flpl= ) ¢fIpl.

peC(s) peC(s)
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To prove the implication Theorem-2 Theorem 10, we borrow an argument of Ohno
fortheq = 1 case. Let

S= <éna1t{a] + 21 {1}bj}) = (sls ey sn)7
J=

wherea; andb; are non-negative integers ford j <m andn =m + by +--- +b,,. The
right-hand side of Theorem 9 is

e p1—2
[C(9)] Z Z;[pl_k,pz,...,pn:k"i_l]

n
peC(s) k=0

1CO)| g M d;
- S 2k (1%, Catfe; + 2, (%) k+1],
" (cd)k:Og ar W j:az{c’+ W)kt

where the outer sum on the right is over all cyclic permutations
(Cs d) = ((C17 dl)s L] (Cnls dm))

of the ordered sequence of ordered pdi@:, b1), ..., (am, bm)). INVoking g-duality
(Corollary 3), we find that the right-hand side of Theorem 9 can now be expressed as

s { )3 g[gglt{cj L2, 1), 1}
s

" Lo

‘1 m
+> Z;[cl +2—k, {1}%, g;zazt{c,- +2, {14k + 1“

(c,d) k=1

C(s m
= | r(l )| { Z g[dm + 37 {1}6'": Caét{dmfj+l + 27 {1}Cm_'/+1}j|
cd) =

c1 1
+3 3¢ [2, (UL Catfd— 1 + 2 (12 dr + 2, {1}C1k} }
(c,d) k=1 J=

= > Ipl.

peC(s)

But the left-hand side of Theorem 9 is

n » 1_1
2o [t o] ¥ <1

peC(s)
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We now proceed with the proof of Theorem 9. As we shall see, much of the proof of the
limiting case in [19] can be adapted to the present situation with only minor modifications.
To this end, we introduce two auxiliagyseries.

Definition 8. For positive integersy, so, . .., s, and non-negative integef 1, let

Tls1,...,8:]:= Z

ky>-o>ky 10

qkrknﬂ n q(t"j*l)kj

Si
1 [k, ]qj

9

[k1— kn+l]q j=

P! n+l g©i—Dk;

S[s1, ..., 11l i = Z (k1 — knt1] l_[

5;
k1>-->ky41>0 7 j=1 [k-/]q

(5.1)

For the convergence of theseries (5.1), we have the following generalization of [19,
Theorem 3.1].

Theorem 11. T'[sy, ..., s,] is finite if there is an indey with s; > 1; S[s1, ..., s,41] IS
finite if one ofsq, ..., s, exceedd orif 5,11 > O.

We defer the proof of Theorem 11 to the end of the section in order to proceed more
directly with the proof of Theorem 9. The key result we need is a direct generalization of
the corresponding result in [19]:

Theorem 12 (g-Analog of [19, Theorem 3.2))If s1,...,s, are positive integers with
s; > 1for somej, then

s1—2
T[sls"'1sn]_T[s27"'7sn7sl]=§[sl+11s27"'7sn]_ Z;[sl_kss27“'vsnvk+l]v
k=0

where the sum on the right vanishes;jit= 1.

The proof of Theorem 9 now follows immediately on summing Theorem 12 over all
cyclic permutations of the argument sequenge. ., s,.

Proof. Although we provide details, the argument is quite similar to the corresponding
argument in [19]. One minor difference is that fm o 1/[Nl; =1—q #0if g # 1,
which affects the computations used to arrive at (5.5) below. First,

S[s1, ..., 52,0l = Z

k1>--->ky41>0

= X

k1> >k 3120

qkl*kn+l n q(t"j*l)kj

Sj

(k1 — kn-i—l]q =1 [kj]q

qkl_kn+1 n q(Sj—l)kj

[k1— kn+l]q j=1 [kj]f]j
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3 Z qkl ﬁ q(Sj—l)kj
-
k1>->k,>0 [kl]q j=1 [k-j]q/
=T[s1,...,8:0—Cls1+ 1, s2,...,8,] (5.2)

Next, we apply the identity

qkrkn+1 _ 1 ( 1 B 1 ) (5 3)
[k1— kn-i-l]q [kl]q [kn-i-l]q (k1 — kn+l]q [kl]q .

to S[s1, ..., sp+1]. This gives

n

q(Sj—l)kj

Z k1 — kpy1lglkily [kl]sl ! [ +1]Sn+1 =2 [kj]f]j

k1>-->k,41>0

1 1 q(Srl)kl
= 2 < - [kl]q) -

1
k1>-->ky41>0 k1 — kn+1]q [kl]él

qkl—k;1+1 q (s1—Dka q5n+1kn+1

qs)1+1k;1+1 n q(sj_l)kj

Sj ?

sl Tkl
from which it follows that
S[s1, .. Snt1]=Sls1— 1,52, ..., s, L+ spr1] — 051, .oy S, L+ sp41]. - (5.4)
Finally, applying (5.3) taS[1, s2, . . ., su, sp+1 — 1] gives

Z qkl—kn+1 q(5n+1—1)kn+1 n q(Sj—l)kj
ky = Kntalglkaly [k, aql3 0 5 k1Y

k1>->ky4+1>0 J1q

1 1 ”+1q(w*l>k/
= L ([ _[kﬂq)n

k1>--->ky4+1>0 k — kn+l]q j=2 [kj]q/
> T Y (e )
= — m —
kp> ks 150 j=2 [kj]q] N—>ook1:k2+l k1 — kny1lg [k1]y

(sj—Dk; kny1—=1 1 1
- 2 i Y (o)
[kj —00 0 mlq

ko —m
kp>-->k,41>0 j=2 [k2 ]q

n+1 (S,*l)k kpy1—1 1
= X % X (oY)

kp>-->k,41>0 j=2 m=0
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kp—m 1+l

-y e

ko —m 15
k> >k 15m >0 lka—mlq i 5 [kl

—1k;

It follows that
S[L, 52, ..., 80, Sp+1 — L =Tls2, ..., 8y, Sut1l. (5.5)

Now let 0< j < s1— 2, apply (5.4) and sum op. This yields

s1—2 s1—2
D Sls1—jus2ooosmn jl= ) (SIsi—j—Ls2,..., 50, j +1]
j=0 j=0

_g[sl_j7s25"'asnaj+1])7

which telescopes, leaving

s1—2
Ss1,52, 50, 01= S[L,s2, ..., swos1— 1 = Y ¢lsa— josz,....sm. j +11.
j=0

Now apply (5.2) and (5.5) to obtain

Tls1,...,sn] = Cls1+1,52,...,8x]1=TIs2,...,5n,51]
.8'172
= tlsi—joszsj+ 1. O
=0

As Ohno observed, the sum formula [15] is an easy consequence of [19, Theorem 3.2].
Correspondingly, we can give another proof of Corollary 4, gpuaamalog of the sum for-
mula.

Alternative proof of Corollary 4. Sum Theorem 12 over al1,...,s, with s1+
.-+ 45, = k. Since the resulting sum @f-functions vanishes, we get

.8'172
Z Clsi+ 1 s2,..., 8] = Z 25[31—1152:"'15nvj+1]
stttk sttt =k j=0
= Z Cls1+ 1,52, ..., sp41l-
s1+Fspp1=k

It follows that the sums are independentigfvhence each is equal to

> eI+ =¢lk+11,

s1=k

as required. O
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We conclude the section with a proof of Theorem 11. Again, the argument closely fol-

lows Ohno’s proof of the limiting case in [19].

Proof of Theorem 11. By (5.2),

S[s1, .-, Sny Sup1] <SIs1, -5 80, 01 < T'lisa, ..., Sal,

SOS[s1, ..., Sy+1] is finite if T[s1,...,s,]is. By (5.5),

S[17 §2, .. '1sn1sn+l] = T[s21 .. '1sn1sn+l + 1]1

so the statement about finitenessSdllows from the corresponding statement ab@ut
To prove finiteness of [s1, ..., s,] with s1 + - - - + 5, > n, it suffices to consider the case

si+--+sp=n+1, forifsg > 1, thenT[sq,...,s,] < THL*L, 2, {1)"*]. Thus, we
need only prove thaf [{1}¥1, 2, {1} %] < oo for 1 < k < n. Whenk = 1, we have

k1—k, k n
T[2, {1}n_1] _ Z q 1—kp 14k ; 1
[k1 — knt1lqlkaly 2 [kjlq

k1> >k 3120

< Z q'"+k1 n 1
[m]y[k1]2 2 [kjlq

k1>->k,>0

k1>m>0
n—1
=30 g2 @]+ Y c2 40 2
k=1
< OQ.

Arguing inductively, we now suppose that{1}*~1 2, {1}"~*¥] < oo for somek > 1.
By (5.2), (5.5) and the inductive hypothesis,

T, 2. (11 = s[F, 2, (%2, 0] + ¢ [2. (12 2, 1)1
=T[{U L 2 (] o2 (L 2, (1

< 00,

asrequired. O

6. Multiple g-polylogarithms

In analogy with [3, Eq. (1.1)], define

s s m m — 5k
kq[bi:::::b’;}: > ku_”k[zvj] : 6.1)

V1, >0 k=1 j=k q
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and set

Lisl ..... Sm [x1,...,xn] = Z l_[ (62)

nqy>--->n, >0 k=1 nk]q

The substitutiom; = Zj;k v; shows that (6.1) and (6.2) are related by

k
. 1.y Sm _ -1
L'sl ...... S m[-xlv xm]—)\q |:y1,--~,ym:|7 }’k—l_[Xj .

Theorem 13 (¢-Analog of [3, Theorem 9.1]Letby, ..., b, €C, s1,...,5, > 0and letn
be a positive integer. Then
. S1yeeesSm i|’
e1b1, ..., embm

S1yeeesSm

g |y =
r Tom g ==l =1

where the sum is over all” sequenceses, ..., &,) of complexath roots of unity, and

S =) pqSk-

Proof. In light of the identity

5= () = (0 (=5) -1
i, \1-g¢m/) \1-q ) \1-¢™) — [w]}’

we have

m m =5
m $1,---585m m —nvg
n” Agn |:b" b :| =n E | | b, E Vj
1r-e- o

Tom V1yeees U >0 k=1 Jj=k

=n" Z l_[ b "™ [n](s/ |:n Z vj]

Vi,.., V>0 k=1 Jj=k q

= [n], Z l_[nb,:"”k |:va];|
=k

Vi,..., V>0 k=1 q

V1yeees U >0 k=1 =0

—Sj n—=1
=l > ]_[b W|:Zvjj| D e Fmimu/n
q
n]s Z Z Z l_[b Yk, 2711ukuk/n|:zvj:| /_

11=0 =0 v1,..., V>0 k=1

Letting e, = e?*#/" completes the proof. O
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In contrast with our proof of Theorem 13, the proof of the limiting case in [3] made use
of the Drinfel'd simplex integral representation for multiple polylogarithms. As integral
representations for multiple polylogarithms have proved eminently useful in establishing
many of their properties, we derive herg-analog of the Drinfel'd simplex integral for the
multiple g-polylogarithm (6.1). Recall [1, p. 486], [14, p. 19], [22] the Jackgeintegral

/f(t)dqt—(l 03 ag" flag"). a>0
n=0

Theorem 14. Letss, ..., s, be positive integers. For the multipjepolylogarithm, we have
the multiple Jacksop-integral representation

Sk— l (k) dqts(k)
Aq L 6.3
|:)’l,...,)’mj| /l_[( 1 tr(k) )yk—%k ©3)

where the multiple Jacksaprintegral (6.3)is over the simplex

1>t£l)>~'>ts(1l)>~'>tim)>~'>t‘§r)>0.

Remark 5. As in [3], we may abbreviate (6.3) by

m sp—1 i
A [yl,...,ymi| =D /l_[ [01)™ @[yl w[b]:=

Corollary 6. For multipleg-zeta values, we have the multiple Jackgeintegral represen-
tation

1

m k
¢lst, - sml = (=1 / l_[(w[o])“'lw[ I1 ql"v}.
= j=1

Proof of Theorem 14. We first establish the following lemma.

Lemma 9. Lets be a positive integef < 1o < 1 andm > 0. Then

s—1
/ i_[ d‘]t” tmfld fo— t(r)n
s q*s — s "
1y [m]q

to>11>->13>0 r=1

Proof. Whens = 1, the integral reduces to the geometric series

o
_ P am=1 1-
/ i1t =1—q)0) ¢’ (¢'10)" =<—1_qcfn>t6".

to>t1>0 Jj=0
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Suppose the lemma holds for- 1. By the inductive hypothesis,

s—1 m
dqt” tm_ld fo— tl dqtl _ 1 tm_ld t
N A 7t o [mlyt 1 Gt
to>t1>->1t;>0 r=1 to>1t1>0 to>11>0

m

lo
N
[m]3

3

asrequired. O
To prove (6.3), it will suffice to establish the identity

sk—1 (k) (k)
dgt, dgt
q°'r ) q°*Sk )‘th: S$1,.-+,8m }’ (64)
Y

m (
/ l_[ l_[ (k) (ky — fo, ..., 1
bl y1/to, Ym/ o

r=1 Ir — s

where the integral (6.4) is over the simplex

[0>[£l)>--->[§3‘)>...>[£m)>...>t§)’:')>0.

Whenm =1, (6.4) reduces to
s—1

s—1 -1 [
dqtr y dqts / dqtr —y,v—1
—_— = t d,t

r=1

to>t1>-->13>0 r=1

[}
= Z y_v
v=1

to>t1>-->1;>0

s—1
djt
(H %)t;—ldqts

to>->1,>0 V=1
— DI y/to

Suppose (6.4) holds far — 1. Then the inductive hypothesis implies that the integral (6.4)

is equal to

s1—1 -1 m m —5j
dgty \ yq ~dgts
l_[ qlr \ Y1 7 4qls Z l—[ — Z ,
/ ( L s Yk b
r=1 " Y1 Ity o0 k=2 j=k g

f0>fl>“‘>f:1>0
m m —Sj 51—1d :
— -1 —Vk ) qlr ) vi4vote v, —1
= 2 at]Iw [ZW} (H — )f gty
; r
k=2 j=k 9 1o>11>-->15>0 r=1

V1, Uy >0
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m m —Sk
= 2 [lw"s [Zw}
q

V1, U >0k=1 j=k
- 1, .-, 85m )
a Yl/thuw.Vm/tO
Remark 6. Zhao [29] has outlined an alternative approach to deriving the multiple Jackson
g-integral representation of the multipjepolylogarithm. In addition, he initiates a study
of what are essentially the-shuffles, first explicated in [6, Section 7], that arise when
multiplying two such integrals. Regarding these, the approach taken in [6] is to consider

an alphabe# of g-difference formsf (r) d,t = f()(1 — g)t for various f, and define the
g-shuffle productwu, on the free monoidt* of words onA by the recursion

Yw € A*, lu,w=ww,l=w,
VYa,be A, Yu,ve A*, au Wy bv=a(uwy, bv)+b(n(au) Ly v).

Here, 7 is the Rogers;-difference operator defined on forms hyf (z) d,t) = f(qt) x

(1 — ¢g)qt and extended to an automorphism 4f in the obvious manner. Using the
g-product rule forg-differentiation [14,22] in the form(D, fg)(x) = g(x)(Dy f)(x) +
f(gx)(Dyg)(x), one readily verifies that this definition of theshuffle ensures that equa-
tion

X X X

/Mqv:(/u)(/v),

0 0 0

ag-analog of the corresponding shuffle relation for the ordinary Drinfel’d simplex integral,
holds for the multiple Jacksag+integral. However, the implications of this definition for
multiple g-polylogarithms and multiplg-zeta values have not yet been worked out.

In contrast, Zhao [29] uses the equivalent, but more symmetric form

(Dg f8)(x) = f(x)(Dgg)(x) + g(x)(Dg f)(x) + (g — Dx(Dy f)(x)(Dgg)(x)

of theg-product rule to derive the formula

(/1))

:/(l_[a,' L l_[b,>—|- Z (q—l)c
o \i=1 j=1 =1

X e4+1

X Z /l_[{((al+ik_1 ceay—1) W (biyj g bj—1)) @i b))

ISip<<icsr g k=1
1Sji<<jeSs
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where s denotes the ordinary shuffle product [3,4,668k= d,t/(t —a;), b; = dgt/(t —
Bi)io=jo=0,icx1=7r+1, jer1=5+1, (ar41,bs41) =1, and for aII 1< i <r and
1<j<s,

1 Bjdyt Y dgt e )
(@ b) tdqt ,3/-0[,’([-,3/ t—oz,')’ Ifal?éﬁ]’
ai’ i - . 5, .=
=)= By) dyt B dyt

—5 T u-p? e =pi=P.

This is essentially g-shuffle multiplication rule for the multipleg-polylogarithm, and in
principle could lead to @-shuffle relation for multiple;-zeta values if all terms could
be reduced to such. Zhao works out the case of the depth-1 proguciz, (n) for 2 <
m,n € Z, but even here the result is quite cdinpted, and in addition we get non-zeta
polylogarithmic terms

00 .
q(j+l)k

k2

O<jeZ,
k=1

appearing in the final result. Thus, at least for the present, the situation with respect to
g-shuffles for multipleg-zeta values is less satisfactory than the corresponding situation in
the case of thg-stuffles (Section 2).

7. A double generating function for ¢[m + 2, {1}"]

In this section, we derive the followingranalog of [2, Eq. (10)] and a few of its impli-
cations.

Theorem 15. The double generating function identity

Z Z um+lvn+l§. [m +2, {1}n]

m=0n=0
oo
=1—exp) > {uk+vF — (u+v+A-guv)* }:m D*elj1p (7.2)
k=2 ] =2
holds.

Noting that the generating function (7.1) is symmetrig indv, we immediately derive
the following special case of-duality.

Coroallary 7. For all non-negative integera andn, ¢[m + 2, {1}"] =¢[n + 2, {1}™].
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Of course, we have already proveetuality at full strength (Corollary 3) as a conse-
guence of generalizeg-duality (Theorem 5). The main interest for Theorem 15 may be
that it shows that [m + 2, {1}"] can be expressed in terms of sums of products of depth-1
g-zeta values. When = 1, this reduces to the following convolution identity, which pro-
vides ag-analog of Euler’s evaluation [2, Eq. (31)], [12,24]gfn + 2, 1).

Corollary 8. Letm be a non-negative integer. Then

m+1
20[m+2,1=(m+2¢lm+31+A—q)melm+2]— Y ¢lm+3—kl ¢kl
k=2

In particular, whenn = 0 we getz[2, 1] = ¢[3], which corrects an error in [30, Theo-
rem 15].

Proof. Compare coefficients af”+1v2 on each side of the double generating function
identity (7.1). Letting

k
Y @-vrel), k=2
Ck =
j=2
0, if k<2,

we find that

2¢[m+ 2,11 = (m + 2eme3 +2(1— @) (m + Demez + (L — g)?m empa
- Z cker +2(g -1 Z cker — (g — 12 Z cker, (7.2)

k+l=m+3 k+l=m+2 k+l=m+1

where convolution sums in (7.2) range over all integeland!/ satisfying the indicated
relations. Now

(m + 2)cma+2(L— q)(m + Demyz + (L — @) memya

m+3 m+2
=m+2 Y (@-D"eljl-2m+1D ) (- D" ¢[)]
j=2 j=2
m+1
+m Yy (q—1"3¢[j]
j=2
m+1
={m+2)=2m+D+m} Y (g—D"3¢[j]
j=2
m+3
+m+2) Y (=D e[j1—2m+ (g — DEim+2]
j=m+2

=m+2¢m+ 314+ A —qg)ymg[m+ 2].
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In light of (7.2), it now follows that

2em+2,11—(m+2)¢[m+31— A —g)ym¢[m+ 2]

=— Y aa+2q-1) Y aa—-@-1> ) aa.

k+l=m+3 k+l=m+2 k+l=m+1

To avoid having to deal directly with boundary cases, wezsé¢i] := ¢[n] (n > 2) and
(@ — 1% =(g—1" (n>0).Then

2em+2,11—(m+2)¢[m+3]— A —qg)ym¢[m+ 2]
=- Zcm+3—k{ck —2(q — Dek—1+ (¢ — D3cr—2)

keZ
==Y sk y (@ - D =2 - g -1
keZ jez

+(g - D2q -7l

=- Zcm+3_k{¢+[k] +{lg-D-2q-D}eilk-1]

keZ

+ > {@-D"7 -2 -1 +(q-D" }f:+[j]}
j<k=2
= emt3-k(q — DIyl — 1= cmrai {4lk].

keZ kezZ

We now re-index the latter two sums, replacihdy m + 4 — n in the first, andk by
m + 3 —n in the second. Thus,

2em+2,11—(m+2)¢[m+31— A —g)ym¢[m+ 2]
=Y ¢ lm+3-nlq—Dep1— Y t4lm+3—nley

neZ neZ
=Y tilm+3-n1) {(g-Dq -7 — (g - D el
neZ jez
= ¢ilm+3- n]{ Yo {@-0" =@ 1"}l - g - 1>ic+[n]}
neZ j<n—-1
== tlm+3=nlgn]
neZ
m+1
=—Y ¢Im+3-nlnl,
n=2

as claimed. O
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Remark 7. Similarly, one could derive an explicit identity farm + 2,1, 1] in terms
of depth-1¢-zeta values by comparing coefficients:8f*v2 in Theorem 15. The re-

sulting identity would be aj-analog of Markett's double convolution identity [23] for
tm+2,1,1).

Alternatively, Corollary 8 can be proved as a simple consequence gfheffle mul-
tiplication rule (2.2) and the depth-2 case of theum formula (Corollary 4). Thus,

m+1 m+1
Y elm+3—klglkl= ) {¢lm+31+ 1 —g)¢lm+2]
k=2 k=2

+¢[m+3—k, k] + ¢[k,m +3—k]}

=me[m+3l+(L—gmem+21+2 Y Lls.1]

5,1 =22
s+t=m+3

=m¢[m+ 3]+ (L —qg)m¢[m+2]
+2 Z Cls, 1] —2¢0Im +2,1)

s=2,t>1
s+t=m+3

=m¢[m+ 3]+ A —g)ymg[m+ 2]+ 2¢[m + 3] — 2¢[m + 2, 1]
=m+2¢m+3+QA—qg)mem+2]—2c[m+2,1].

Our proof of Theorem 15 employs techniques from the theory of basic hypergeometric

series. For reat andy and non-negative integer the asymmetrig-power [22] is given
by

n—1
n._ k 00 . i n
(x+y)y = ][L(x+yq ), (x+y)g = lim (x+y)g.

Theg-gamma function [1, p. 493], [14, p. 16] is defined by

L-ra-gt

T, =
q(x) 1- g0

and the basic hypergeometric function [1, p. 520], [14, p. xv, Eq. (22)] is

[x] < 1.

a b
2¢1[qq’¢q x

} B i A-g95A-q"; ,
= A-gd-qy
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Heine's g-analog of Gauss’s summation formula the ordinary hypergeometric func-
tion [1, p. 522], [14, p. xv, Eq. (23)] may be stated in the form

a gb I,(co)l;(c—a—>b
2¢l|:qucq —a—bj|= ‘1() q( ) |qc—a—b|<1. (73)

Iy(c—a)ly(c—b)’
Ouir first step towards proving Theorem 15 is to establish the following result.

Theorem 16 (¢-Analog of [3, Eq. (6.5)])Letx andy be real numbers satisfying| < 1
and|y| < 1. Then

o X Iy(L+x) Iy (1+y)
2 :2 : _qymtnpeymtipetl 2 M) =1— -4 4q 7.4
m:On:O( : [X]q [y]q g[m tau ] Fl] A+x+y) ( )

Proof. Let L denote the bivariate double generating function on the left-hand side of (7.4).
Then

(m+1k k=1
byl YD m+12q el ( o)
m=0

(m+1)k k _
m m q (/] [¥]
i3l Y0 “E: 7 H Ol

m=0 j=1
(m+D)k * Yy _ gl
m+l m+1 q q q
g Z( D Z kI +2 l_[ 1—qi
m=0 j=1

_ k-1
=q’ 71 7 Z( 1ym x]m+l q(m+l)k. ¢ (1—¢’7)
m=0 =1 9)q  j=1

(m+Dk  ky (1 q ))k
_ Z 1+l m+1z q q .
( ) [x] = m+l (1 q)k

m=0

Now interchange order of summation, noting that the sum ésma geometric series. Thus,
we find that

X gRA— gk 2 (=1t ('"H)k[x];"“

= Z k :
k=1 (1_q)q

E g A—-g™  gFx, /1K,

z_; Q-9 L+q xly/Ik],

= g0,
1- Q)]l; [k]q +qk[x]q

+1
m=0 [k]m

k=1



D.M. Bradley / Journal of Algebra 283 (2005) 752—798 795

gV A -7y 1-¢
1-9)% 1—ghtx

k=1
ZgVtPRL—gTE A—-gY)
— o)k (1= gLk
1—-q)g (1—g*)q

)Cl+
g .

Invoking Heine’s formula (7.3) completes the proofa

k=1

-y
=1- 2¢1[qq13r€

To express the right-hand side of (7.4) in the form of an exponentiated power series, we
require the following series expansion of the logarithm of¢ghgamma function.

Lemma 10. For real x such that-1 < x < 1, we have

log I (1+x) = —yqx+2 LY @ -1,
k=2 j=2
where
vq =109 —q) — —

[”]q
is ag-analog of Euler’s constani;.

Proof. By definition,

n

r,+x=01-¢q) xnm

Therefore,
1-
log I, (14 x) +xlog(1— q) = — ng( ) Zlog<1+< >q>
n=1
(1)[xkkn oo_)k ]k
—ZZ =Y — L5k, (75)
n=1k=1 k[” k=1

where

B S qkn
k] = —\ k>0.
¢[k] ; o £
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If we now multiply the identity

q(j—l)n q(j—l)n

jn
" 1

- = (g — - n,jezt
(1] iyt ) ( )

by (¢ — 1)¥~/ and sum om and j, we find that

k
Y g—-D Z(q eIt 11+Z(q D*el)l,
j=2 j=2
which telescopes, leaving us with
~ ~ k .
k= (g - DM+ @ - Dl k=1 (7.6)
j=2

If we now substitute (7.6) into (7.5), there comes

log Iy (1+x)+xlog(l—g)

00 k .
= Z — DL+ (g - 1)k—f¢[j]}

j=2

]k

=—(¢— D" Z[1llog(1+ (¢ — Dlx] )+i%i( - D¢l
q q q s X j:Zq J

xZ[1]logq (—D*[x1} ‘e
-1 J
1_4 kZZ Z( )l

In light of the fact that
o (=Dt

logr' (1 =—
gr(1+x) yx+k§ p

¢ (k)

and lim,_.1- I'; (14 x) = I'(1 4 x), it follows that lim,_.1_ y, = y. Thus, the proof of
Lemma 10 is complete. O

Proof of Theorem 15. By Theorem 16 and Lemma 10, we have

DO Dy e m+ 2.1
m=0n=0
(-1 - -
=1—expy > ——(Ixlg + Iy =[x+ 1) D (a - 1)“4[1]}.

k=2 j=2
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Noting that[x + y1, = [x1, + [¥]4 + (¢ — DIx],[y]4, the result now follows on replacing
[x]g by —u and[y], by —v. O
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