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Abstract

We introduce aq-analog of the multiple harmonic series commonly referred to as multiple
values. The multipleq-zeta values satisfy aq-stuffle multiplication rule analogous to the stuffle mu
tiplication rule arising from the series representation of ordinary multiple zeta values. Additio
multipleq-zeta values can be viewed as special values of the multipleq-polylogarithm, which admits
a multiple Jacksonq-integral representation whose limiting case is the Drinfel’d simplex integra
the ordinary multiple polylogarithm whenq = 1. The multiple Jacksonq-integral representatio
for multiple q-zeta values leads to a second multiplication rule satisfied by them, referred t
q-shuffle. Despite this, it appears that many numerical relations satisfied by ordinary multip
values have no interestingq-extension. For example, a suitableq-analog of Broadhurst’s formula fo
ζ({3,1}n), if one exists, is likely to be rather complicated. Nevertheless, we show that a num
infinite classes of relations, including Hoffman’s partition identities, Ohno’s cyclic sum identities,
Granville’s sum formula, Euler’sconvolution formula, Ohno’s generalized duality relation, and th
derivation relations of Ihara and Kaneko extend to multipleq-zeta values.
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1. Introduction

Throughout, we assumeq is real and 0< q < 1. Theq-analog of a non-negative integ
n is

[n]q :=
n−1∑
k=0

qk = 1− qn

1− q
.

Definition 1. Let m be a positive integer and lets1, s2, . . . , sm be real numbers withs1 > 1
andsj � 1 for 2� j � m. The multipleq-zeta function is the nested infinite series

ζ [s1, . . . , sm] :=
∑

k1>···>km>0

m∏
j=1

q(sj−1)kj

[kj ]sjq
, (1.1)

where the sum is over all positive integerskj satisfying the indicated inequalities. Ifm = 0,
the argument list in (1.1) is empty, and we defineζ [ ] := 1. If the arguments in (1.1) ar
positive integers (withs1 > 1 for convergence), we refer to (1.1) as amultipleq-zeta value.

Clearly, limq→1 ζ [s1, . . . , sm] = ζ(s1, . . . , sm), where

ζ(s1, . . . , sm) :=
∑

k1>···>km>0

m∏
j=1

k
−sj
j , (1.2)

is the ordinary multiple zeta function [2–9,13,16]. In this paper, we make a detailed s
of the multipleq-zeta function and its values at positive integer arguments. Theq-stuffle
rule and some of its implications are worked out in Section 2. Among other thing
derive aq-analog of the Newton recurrence [6, Eq. (4.5)] forζ({s}n), aq-analog of Hoff-
man’s partition identity [16, Theorem 2.2], [9], and aq-analog of the parity reductio
theorem [3, Theorem 3.1]. In Section 3, we prove aq-analog of Ohno’s generalized d
ality relation [25]. Consequences of our generalizedq-duality relation include aq-analog
of ordinary duality for multiple zeta values, and aq-analog of the sum formula [15]. I
Section 4, we prove that the derivation theorem of Ihara and Kaneko [20] also exte
multipleq-zeta values. As we shall see, theq-analog of the Ihara–Kaneko derivation the
rem is in fact equivalent to generalizedq-duality. A special case (n = 1) yields aq-analog
of Hoffman’s derivation relation [16, Theorem 5.1], [19, Theorem 2.1]. In Section 5, we d
rive aq-analog of Ohno’s cyclic sum formula [19]. In Section 6, we introduce the mul
q-polylogarithm, derive a Jacksonq-integral analog of the Drinfel’d integral representat
for ordinary multiple polylogarithms, and prove aq-analog of a formula [3, Theorem 9.1
for the colored multiple polylogarithm. Finally, in Section 7 we employ Heine’s sum
tion formula for the basic hypergeometric function to derive a bivariate generating fun
identity for the multipleq-zeta valuesζ [m+ 2, {1}n] (0 � m, n ∈ Z). These are the value
of the multipleq-zeta function evaluated at the indecomposable sequences [16] consist
of a positive integer greater than 1 followed by a string ofn ones. Consequences of o
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generating function identity include the special caseζ [m + 2, {1}n] = ζ [n + 2, {1}m] of
q-duality, and aq-analog of Euler’s evaluation expressingζ(m + 2,1) as a convolution o
ordinary Riemann zeta values. More generally, we will see that for all integersm � 2 and
n � 0, ζ [m, {1}n] can be expressed in terms ofq-zeta values of a single argument. Eule
formula is but a special case, as is Markett’s formula [23] forζ(m,1,1).

Whereas the structure of our arguments in many cases derives from the corresp
arguments in the classicalq = 1 case, the reader should not be surprised to learn tha
is often the case with those afflicted with aq-virus, much of the difficulty in establishin
an appropriateq-theory is determining “where to put theq .” In this light, it may be worth
remarking that alternative definitions of the multipleq-zeta value are possible, and lead
other results. For example, in [10] we study the relationship between certain sums inv
q-binomial coefficients with the finite sums

Zn[s1, . . . , sm] :=
∑

n�k1�···�km�1

m∏
j=1

qkj

[kj ]sjq
, (1.3)

special cases of which have occurred in connection with some problems in sorting theor
Another model,

ζ ∗
q (s1, . . . , sm) :=

∑
k1>···>km>0

m∏
j=1

qkj sj

(1− qkj )sj

is suggested by Zudilin [30]. See also [28]. In Kaneko et al. [21], analytic properties of th
q-analog

ζ [s] =
∞∑

k=1

q(s−1)k

[k]sq
of the Riemann zeta function are studied. This immediately suggested Definition 1
the present author. However, as we were subsequently informed, Zhao [29] had a
been studying (1.1) and its polylogarithmic extension, albeit primarily from the v
point of analytic continuation and theq-shuffles of [6]. After a preliminary versio
(http://arXiv.org/abs/math.QA/0402093,v1, February 6, 2004) of the present paper w
circulated, Okuda and Yoshihiro [27] re-outlined proofs of our Theorems 5 and 9 an
gave a generalization of Theorem 15. For arithmetical results on singleq-zeta values, se
Zudilin [31–35].

Notation and terminology. As customary the boldface symbolsZ, Q, andC denote the
sets of integers, rational numbers, and complex numbers, respectively. We will useZ+ for
the set of positive integers; the subset{1,2, . . . , n} consisting of the firstn positive integers
will be denoted by〈n〉. We denote the cardinality of a setA by |A|, and whenA is finite, the
group of|A|! permutations of〈|A|〉 by S(A). If A = 〈n〉, we writeSn instead ofS(〈n〉).
Boolean expressions such as(k ∈ A) take the value 1 ifk ∈ A and 0 ifk /∈ A. To avoid the
potential for ambiguity in expressing complicated argument sequences without re
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argument sequences1, . . . , sm and {s}m = Catmj=1{s} for m � 0 consecutive copies ofs,
which may itself be a sequence of arguments. Throughout,I will denote the set{0,1}
andIm the Cartesian productI × · · · × I of m copies ofI whenm is a positive integer
This will cause no confusion with the notation for concatenation, since we will never
occasion to discuss the periodic sequence 0,1, . . . ,0,1. As in [3], we define thedepthof
the multipleq-zeta function (1.1) to be the numberm of arguments.

2. q-Stuffles

The stuffle multiplication rule [3,6,9] for the multiple zeta function (also referred t
the harmonic product or∗-product in [17,19]) arises when one expands the product of
nested series of the form (1.2), and is invariably given a recursive description. We
with an explicit formula for theq-stuffle multiplication rule satisfied by the multipleq-zeta
function; an explicit formula for the stuffle rule can then be derived by taking the lim
q → 1.

Let m andn be positive integers. Define astuffleon (m,n) as a pair(φ,ψ) of order-
preserving injective mappingsφ : 〈m〉 → 〈m + n〉, ψ : 〈n〉 → 〈m + n〉 such that the union
of their images is equal to〈r〉 for some positive integerr with max(m,n) � r � m + n.
In what follows we will abuse notation by writing (for example)φ−1(k) for the pre-image
φ−1({k}) of the singleton{k}. Sinceφ is injective,φ−1(k) is either empty{} or a singleton
{j } for some positive integerj , and we make the conventions

s{j} = sj , t{j} = tj , s{} = t{} = 0.

The stuffle multiplication rule for the multiple zeta function can now be written in the f

ζ(s1, . . . , sm)ζ(t1, . . . , tn) =
∑
(φ,ψ)

ζ

(
r

Cat
k=1

{sφ−1(k) + tψ−1(k)}
)
, (2.1)

where the sum is over all stuffles(φ,ψ) on (m,n), and r = r(φ,ψ) is the cardinality
(equivalently, the largest member) of the unionφ(〈m〉)∪ψ(〈n〉) of the images ofφ andψ .
More generally, expanding the product

ζ [s1, . . . , sm]ζ [t1, . . . , tn] =
∑

k1>···>km>0

m∏
j=1

q(sj−1)kj

[kj ]sjq
∑

l1>···>ln>0

n∏
j=1

q(tj−1)lj

[lj ]tjq

yields sums of products of terms of the form

q(s−1)k+(t−1)l

[k]s [l]t ,

q q
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q(s+t−2)k

[k]s+t
q

= (1− q)
q(s+t−2)k

[k]s+t−1
q

+ q(s+t−1)k

[k]s+t
q

.

It follows that

ζ [s1, . . . , sm]ζ [t1, . . . , tn]
=

∑
(φ,ψ)

∑
A

(1− q)|A|ζ
[

r

Cat
k=1

{
sφ−1(k) + tψ−1(k) − (k ∈ A)

}]
, (2.2)

where the outer sum is over all stuffles(φ,ψ) on (m,n), the inner sum is over all subse
A of the intersection of the images ofφ andψ , r = |φ(〈m〉) ∪ ψ(〈n〉)| as in (2.1), and the
Boolean expression(k ∈ A) takes the value 1 ifk ∈ A and 0 ifk /∈ A. We refer to (2.2) as
theq-stuffle multiplication rule. Note that (2.1) is the limiting caseq → 1 of (2.2). For an
alternativeq-deformation of the stuffle algebra, see [18].

2.1. Period-1 sums completely reduce

As an application of theq-stuffle multiplication rule (2.2), we show that for anys > 1
and positive integern, the multipleq-zeta functionζ [{s}n] can be expressed polynomia
in terms ofq-zeta functions of depth 1. See [5] for a discussion of the period-2 cas
ordinary multiple zeta values and related alternating Euler sums.

Theorem 1. If n is a positive integer ands > 1, then

nζ
[{s}n] =

n∑
k=1

(−1)k+1ζ
[{s}n−k

] k−1∑
j=0

(
k − 1

j

)
(1− q)jζ [ks − j ].

Proof. Let R denote the right-hand side of the equation in Theorem 1. Theq-stuffle mul-
tiplication rule (2.2) implies that

R =
n∑

k=1

(−1)k+1
k−1∑
j=0

(
k − 1

j

)
(1− q)j

{
n−k∑
m=0

ζ
[{s}m,ks − j, {s}n−k−m

]

+
n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]

+ (1− q)

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j − 1, {s}n−1−k−m

]}
. (2.3)

Now expand (2.3) into three triple sums. We re-index the first and third of these, rep
k by k + 1 in the first, andj by j − 1 in the third. Then
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R =
n−1∑
k=0

(−1)k
k∑

j=0

(
k

j

)
(1− q)j

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]

+
n−1∑
k=1

(−1)k+1
k−1∑
j=0

(
k − 1

j

)
(1− q)j

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]

+
n−1∑
k=1

(−1)k+1
k∑

j=1

(
k − 1

j − 1

)
(1− q)j

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]
.

(2.4)

In the second and third triple sums (2.4), we have omitted the terms correspond
k = n, because these vanish. In the second triple sum (2.4), the range onj can be extende
to include the termj = k because the binomial coefficient vanishes in that case. Similarl
the range onj in the third sum (2.4) can be extended to include the termj = 0. If we now
combine the extended second and third triple sums (2.4) using the Pascal formula

(
k − 1

j

)
+

(
k − 1

j − 1

)
=

(
k

j

)
,

we see that

R =
n−1∑
k=0

(−1)k
k∑

j=0

(
k

j

)
(1− q)j

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]

+
n−1∑
k=1

(−1)k+1
k∑

j=0

(
k

j

)
(1− q)j

n−1−k∑
m=0

ζ
[{s}m, (k + 1)s − j, {s}n−1−k−m

]
. (2.5)

The two triple sums (2.5) cancel except for thek = 0 term in the first. Thus, we find that

R =
n−1∑
m=0

ζ
[{s}m, s, {s}n−1−m

] = nζ
[{s}n],

as required. �
For reference, we note that lettingq → 1 in Theorem 1 yields the Newton recurren

[6, Eq. (4.5)] for multiple zeta values of period 1.

Corollary 1. If n is a positive integer ands > 1, then

nζ
({s}n) =

n∑
k=1

(−1)k+1ζ
({s}n−k

)
ζ(ks).
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2.2. Partition identities

Additionalq-stuffle relations can be most easily stated using the concept of a set
tion. As in [9], it is helpful to distinguish between set partitions that are ordered and th
that are unordered.

Definition 2 (Unordered set partition). Let S be a finite non-empty set. Anunorderedset
partition ofS is a finite non-empty setP whose elements are disjoint non-empty subs
of S with unionS. That is, there exists a positive integerm = |P| and non-empty subse
P1, . . . ,Pm of S such thatP = {P1, . . . ,Pm}, S = ⋃m

k=1 Pk , andPj ∩Pk is empty ifj 	= k.

Definition 3 (Ordered set partition). Let S be a finite non-empty set. Anorderedset par-
tition of S is a finite ordered tuple
P of disjoint non-empty subsets ofS such that the
union of the components of
P is equal toS. That is, there exists a positive integerm and
non-empty subsetsP1, . . . ,Pm of S such that
P can be identified with the orderedm-tuple
(P1, . . . ,Pm),

⋃m
k=1 Pk = S, andPj ∩ Pk is empty ifj 	= k.

We next introduce the shift operatorsEk andδk defined as follows.

Definition 4. Let m andk be positive integers with 1� k � m, and lets1, . . . , sm be real
numbers withs1 > 1, sk � 2, andsj � 1 for 2 � j 	= k � m. The shift operatorEk is
defined by means of

Ekζ [s1, . . . , sm] = ζ

[
k−1
Cat
j=1

sj , sk − 1,
m

Cat
j=k+1

sj

]
.

Let δk := δk(q) = 1+ (1− q)Ek and abbreviateδ := δ1.

Theq-stuffle multiplication rule (2.2) can now be re-written in the form

ζ [s1, . . . , sm]ζ [t1, . . . , tn] =
∑
(φ,ψ)

(
r∏

k=1

δ
αk

k

)
ζ

[
r

Cat
k=1

{sφ−1(k) + tψ−1(k)}
]
, (2.6)

wherer = |φ(〈m〉) ∪ ψ(〈n〉)| andαk is equal to 1 or 0 according as to whetherk respec-
tively is or is not a member of the intersectionφ(〈m〉) ∩ ψ(〈n〉) of the images ofφ andψ .
Given (2.6), the following result is self-evident, but it can also be readily proved by m
ematical induction.

Theorem 2. Letn be a positive integer, and letsk > 1 for 1 � k � n. Then

n∏
k=1

ζ [sk] =
∑



( | 
P |∏
j=1

δ
|Pj |−1
j

)
ζ

[ | 
P |
Cat
j=1

∑
i∈Pj

si

]

P�〈n〉
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n∑

m=1

∑

P�〈n〉

| 
P |=m

|P1|−1∑
ν1=0

· · ·
|Pm|−1∑
νm=0

ζ

[
m

Cat
j=1

{ ∑
i∈Pj

si − νj

}]

×
m∏

j=1

(|Pj | − 1

νj

)
(1− q)νj ,

where the sum is over all ordered set partitions
P of 〈n〉 having components(P1, . . . ,Pm),
with 1� m = | 
P | � n.

If in Theorem 2 we abbreviate
∑

i∈Pj
si by pj and sum instead over unordered

partitions, we see that

n∏
k=1

ζ [sk] =
∑

P�〈n〉

( |P|∏
j=1

δ
|Pj |−1
j

) ∑
σ∈S(P)

ζ

[ |P|
Cat
j=1

pσ(j)

]
, (2.7)

where thePj ⊆ 〈n〉 are the distinct disjoint members ofP. Inverting (2.7) and expandin
the delta operators yields the following partition identity.

Theorem 3. Letn be a positive integer, and letsj > 1 for 1� j � n. Then

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
P�〈n〉

(−1)n−|P|

×
|P|∏
k=1

(|Pk| − 1
)! |Pk |−1∑

νk=0

(|Pk| − 1

νk

)
(1− q)νk ζ [pk − νk],

where the sum on the right is over all unordered set partitionsP = {P1, . . . ,Pm} of 〈n〉,
1 � m = |P| � n, andpk = ∑

j∈Pk
sj .

Letting q → 1 in Theorem 3, we obtain the following result of Hoffman [16, The
rem 2.2], which he proved using a counting argument.

Corollary 2 (Hoffman’s partition identity).Let n be a positive integer, and letsj > 1 for
1 � j � n. Then

∑
σ∈Sn

ζ

(
n

Cat
j=1

sσ(j)

)
=

∑
P�〈n〉

(−1)n−|P| ∏
P∈P

(|P | − 1
)! ζ(∑

j∈P

sj

)
,

where the sum on the right is over all unordered set partitionsP of 〈n〉.
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Proof of Theorem 3. It is enough to show that

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
P�〈n〉

(−1)n−|P| ∏
P∈P

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]
. (2.8)

Whenn = 1 this is trivial. Suppose the result (2.8) holds forn − 1. Then

∑
σ∈Sn−1

ζ

[
n−1
Cat
j=1

sσ(j)

]
=

∑
P�〈n−1〉

(−1)n−1−|P| ∏
P∈P

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]
. (2.9)

After multiplying Eq. (2.9) through byζ [sn], applying theq-stuffle multiplication rule (2.6)
to the left-hand side, and moving the stuffed terms to the right, we obtain

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
P�〈n−1〉

(−1)n−1−|P|ζ [sn]
∏
P∈P

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]

−
∑

σ∈Sn−1

n−1∑
k=1

δkζ

[
k−1
Cat
j=1

sσ(j), sσ (j) + sn,
n−1
Cat

j=k+1
sσ(j)

]
. (2.10)

Let u
(k)
j = sj if j 	= k andu

(k)
k = sk + sn. With the aid of the inductive hypothesis (2.9

the double sum on the right-hand side of (2.10) can now be expressed in the form

n−1∑
k=1

∑
σ∈Sn

δσ−1(k)ζ

[
n−1
Cat
j=1

u
(k)
σ (j)

]
=

n−1∑
k=1

∑
P�〈n−1〉

(−1)n−1−|P|

×
∏
P∈P

(|P | − 1
)! δ|P |−1+(k∈P)ζ

[∑
j∈P

u
(k)
j

]
.

From (2.10), it now follows that

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
P�〈n−1〉

(−1)n−1−|P|ζ [sn]
∏
P∈P

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]

+
n−1∑
k=1

∑
P�〈n−1〉

(−1)n−|P| ∏
P∈P

(|P | − 1
)! δ|P |−1+(k∈P)

× ζ

[ ∑
j∈P

u
(k)
j

]
. (2.11)

Note that in the second sum on the right-hand side of (2.11), ask runs from 1 ton−1, there
is a contribution of|P0| copies of the inner sum ifP0 ∈ P is such thatk ∈ P0. Therefore,
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if to each partitionP of 〈n − 1〉 in the first sum on the right-hand side of (2.11), we
R = P ∪ {{n}}, then

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
R�〈n〉
{n}∈R

(−1)n−|R| ∏
R∈R

(|R| − 1
)! δ|R|−1ζ

[∑
j∈R

sj

]

+
∑

P�〈n−1〉
P0∈P

(−1)n−|P||P0|! δ|P0|ζ
[
sn +

∑
j∈P0

sj

]

×
∏
P∈P
P 	=P0

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]
. (2.12)

Clearly, the second sum on the right-hand side of (2.12) can be re-written more suc
if we simply tossn into P0 and thus view eachP as an unordered set partition of〈n〉 in
which no part in the partition is equal to the singleton{n}. Thus,

∑
σ∈Sn

ζ

[
n

Cat
j=1

sσ(j)

]
=

∑
R�〈n〉
{n}∈R

(−1)n−|R| ∏
R∈R

(|R| − 1
)! δ|R|−1ζ

[∑
j∈R

sj

]

+
∑

P�〈n〉
{n}/∈P

(−1)n−|P| ∏
P∈P

(|P | − 1
)! δ|P |−1ζ

[∑
j∈P

sj

]
.

The result (2.8) now follows, since any partition of〈n〉 is either of the formR or P

above. �
Remark 1. The proof shows that Theorem 3 (and hence also its limiting case, Corolla
relies on only theq-stuffle multiplication property. Loosely speaking, we refer to res
such as Theorems 2 and 3 and Corollary 2 aspartition identitiesbecause they are easi
stated using the language of set partitions. Thenotion is defined precisely in [9], wher
among other things it is shown thatall partition identities are a consequence of the stu
multiplication rule, and hence a decision procedure exists for verifying them.

We conclude this section with one further result, namely aq-analog of [3, Theorem 3.1
Results which go beyond stuffles will be discussed in the subsequent sections.

Theorem 4 (Parity reduction).Let m be a positive integer, and lets1, . . . , sm be real num-
bers withs1 > 1, sm > 1, andsj � 1 for 1 < j < m. Then

ζ

[
m

Catsk

]
+ (−1)mζ

[
m

Catsm−k+1

]

k=1 k=1
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can be expressed as aZ[q]-linear combination of multipleq-zeta values of depth les
thanm. That is, the coefficients in the linear combination are polynomials inq with integer
coefficients.

Proof. Let N denote the Cartesian product ofm copies of the positive integers. Define
additive weight-function on subsets ofN by

w(A) :=
∑

n∈A

m∏
k=1

q(sk−1)nk

[nk]skq
,

where the sum is over all
n = (n1, . . . , nm) ∈ A. For eachk ∈ 〈m− 1〉, define the subsetPk

of N by Pk = {
n ∈ N : nk � nk+1}. The Inclusion–Exclusion Principle states that

w

(
m−1⋂
k=1

N \ Pk

)
=

∑
T ⊆〈m−1〉

(−1)|T |w
( ⋂

k∈T

Pk

)
. (2.13)

The term on the right-hand side of (2.13) arising from the empty subsetT = {} is∏m
k=1 ζ [sk] by the usual convention for intersection over an empty set. The left-hand

of (2.13) is simplyζ [s1, . . . , sm]. In light of the identity

q(s−2)n

[n]sq
= q(s−1)n

[n]sq
+ (1− q)

q(s−2)n

[n]s−1
q

,

it follows that the right-hand side of (2.13) is aZ[q]-linear combination of multipleq-zeta
values of depth strictly less thanm, except for the term corresponding toT = 〈m − 1〉,
which contributes

(−1)m−1
∑

1�n1�n2�···�nm

m∏
k=1

q(sk−1)nk

[nk]skq

= (−1)m−1ζ

[
m

Cat
k=1

sm−k+1

]

+ (
Z[q]-linear combination of lower depth multipleq-zeta values

)
. �

3. Generalized q-duality

In this section, we prove aq-analog of Ohno’s generalized duality relation [25]. As
consequence, we deriveq-analogs of the duality relation [2,3,6,16,17] and the sum
mula [15]. An additional consequence is aq-analog of Ihara and Kaneko’s derivatio
theorem [20], which we prove in Section 4.
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Definition 5. Let n ands1, . . . , sn be positive integers withs1 > 1. Letm be a non-negativ
integer. Define

Z[s1, . . . , sn;m] :=
∑

c1,...,cn�0
c1+···+cn=m

ζ [s1 + c1, . . . , sn + cn],

where the sum is over all non-negative integerscj with
∑n

j=1 cj = m. As in [2], for non-
negative integersaj andbj , define the dual argument lists

p =
(

n

Cat
j=1

{
aj + 2, {1}bj

})
, p′ =

(
n

Cat
j=1

{
bn−j+1 + 2, {1}an−j+1

})
.

Theorem 5 (Generalizedq-duality). For any pair of dual argument listsp, p′ and any
non-negative integerm, we have the equalityZ[p;m] = Z[p′;m].

Them = 0 case of Theorem 5 is worth stating separately. It is a directq-analog of the
duality relation for multiple zeta values. A related, but distinct duality result for (1.3
proved in [10].

Corollary 3 (q-Duality).For any pair of dual argument listsp andp′, we have the equalit
ζ [p] = ζ [p′]. In other words, for all non-negative integersaj , bj , 1 � j � n, we have the
equality

ζ

[
n

Cat
j=1

{
aj + 2, {1}bj

}] = ζ

[
n

Cat
j=1

{
bn−j+1 + 2, {1}an−j+1

}]
.

As noted by Ohno [25], the sum formula [15] is an easy consequence of his gene
duality relation. Likewise, the followingq-analog of the sum formula is a consequence
our generalizedq-duality relation (Theorem 5).

Corollary 4 (q-Sum formula).For any integers0 < k � n, we have

∑
s1+s2+···+sn=k

ζ [s1 + 1, s2, . . . , sn] = ζ [k + 1],

where the sum is over all positive integerss1, s2, . . . , sn with sum equal tok.

Proof. If we take the dual argument lists in the formp = (n + 1) andp′ = (2, {1}n−1) and
putm = k − n, then Theorem 5 states that

ζ [k + 1] =
∑

c1,...,cn�0
c1+···+cn=k−n

ζ

[
2+ c2,

n

Cat
j=2

{1+ cj }
]

=
∑

s1,...,sn�1
s1+···+sn=k

ζ

[
s1 + 1,

n

Cat
j=2

sj

]
. �
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Remark 2. The q-sum formula (Corollary 4) is also easily seen to be equivalent to
identity

∑
k1>···>kn>0

qk1

[k1]q
n∏

j=1

1

[kj ]q − zqkj
=

∞∑
m=1

qnm

[m]nq([m]q − zqm)
, n ∈ Z+, z ∈ C,

which is given an independent proof in [11].

3.1. Proof of generalizedq-duality

To prove Theorem 5, we need to employ some algebraic machinery first introduc
Hoffman [17]. The argument itself extends ideas of Okuda and Ueno [26] to theq-case. Let
h = Q〈x, y〉 denote the non-commutative polynomial algebra over the rational numb
two indeterminatesx andy, and leth0 denote the subalgebraQ1⊕xhy. TheQ-linear map
ζ̂ :h0 → R is defined bŷζ [1] := ζ [ ] = 1 and

ζ̂

[
s∏

j=1

xaj ybj

]
= ζ

[
s

Cat
j=1

{
aj + 1, {1}bj−1}], aj , bj ∈ Z+.

For each positive integern, let Dn be the derivation onh that mapsx �→ 0 andy �→ xny,
and letθ be a formal parameter. Then

∑∞
n=1 Dnθ

n/n is a derivation onh�θ� andσθ =
exp(

∑∞
n=1 Dnθ

n/n) is an automorphism ofh�θ�. Let τ be the anti-automorphism ofh
that switchesx andy. For any wordw ∈ h0, definef [w; θ ] := ζ̂ [σθ (w)] andg[w; θ ] :=
ζ̂ [σθ (τ (w))]. By definition ofDn,

∑∞
n=1 Dnθ

n/n sendsx �→ 0 andy �→ {log(1−xθ)−1}y.
Thus,σθ sendsx �→ x andy �→ (1− xθ)−1y. Therefore,

f

[
s∏

j=1

xaj ybj ; θ

]
= ζ̂

[
s∏

j=1

xaj
{
(1− xθ)−1y

}bj

]

=
∞∑

m=0

θm
∑

c1,...,cn�0
c1+···+cn=m

ζ

[
n

Cat
i=1

{ki + ci}
]
, (3.1)

where(k1, . . . , kn) = (Catsj=1{aj + 1, {1}bj−1}) andn = ∑s
j=1 bj . Theorem 5 can now b

restated in the equivalent form given below.

Theorem 6 (Generalizedq-duality, reformulated).For all w ∈ h0, f [w; θ ] = g[w; θ ]. In
other words,̂ζ ◦ σθ is invariant under ordinary dualityτ .

The following difference equation is a key result in the proof of Theorem 6.

Theorem 7. Letai, bi be positive integers with
∑s

i=1(ai + bi) > 2. Make the abbreviation
θ ′ := qθ − 1, and recall the notationIm = {0,1} × · · · × {0,1} for them-fold Cartesian
product from Section1. The generating functionsf andg satisfy the difference equation
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proof
∑
ε,δ∈I s

δ1<a1, εs<bs

(−θ)δ·ε(1− q)δ·εf
[

s∏
i=1

xai−δi ybi−εi ; θ

]

=
∑

δ,ε∈I s+1

δs+1=ε1=0
δ1<a1, εs+1<bs

(−θ ′)δ·ε−1(1− q)δ·εf
[

s∏
i=1

xai−δi ybi−εi+1; θ ′
]
.

Here, we useδ to denote the ordered tuple whoseith component is1 − δi , and of course
δ · ε denotes the dot product

∑
i δiεi . Similarly, ε denotes the ordered tuple whoseith

component is1− εi , andδ · ε = ∑
i (1− δi)(1− εi).

We also require the following lemma, which shows that the generating functionf [w; θ ]
can be analytically continued to a meromorphic function ofθ with at worst simple poles a
θ = q−ν[ν]q for positive integersν.

Lemma 1. Letw = ∏s
i=1 xaiybi , whereai andbi are positive integers. LetB0 := 0 and set

Bi := ∑i
j=1 bj for 1 � i � s. Then

f [w; θ ] =
∞∑

ν=1

Cν[w]
[ν]q − θqν

,

where

Cν[w] :=
Bs∑

k=1

∑
m1>···>mk−1>ν

ν>mk+1>···>mBs >0

Ek[w;m1, . . . ,mk−1, ν,mk+1, . . . ,mBs ],

and

Ek[w;m1, . . . ,mk−1, ν,mk+1, . . . ,mBs ]

=
{

s∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

}/
Bs∏

j=1
j 	=k

([mj ]q − qmj −ν[ν]q
)
.

In the expression forEk , we have placed the compound subscript1+ Bi−1 in parentheses
to emphasize that the entire expression1+ Bi−1 occurs in the subscript ofm.

We defer the proofs of Theorem 7 and Lemma 1 in order to proceed directly to the
of Theorem 6.
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Proof of Theorem 6. We use induction on the total degree of the word
∏s

i=1 xai ybi . The
base case is clearly satisfied, since the wordxy is self-dual. Now apply Theorem 7 tof
andg. Subtracting the two equations gives

∑
δ,ε∈I s

δ1<a1, εs<bs

(−θ)δ·ε(1− q)δ·ε
{

f

[
s∏

i=1

xai−δi ybi−εi ; θ

]
− g

[
s∏

i=1

xai−δi ybi−εi ; θ

]}

=
∑

δ,ε∈I s+1

δs+1=ε1=0
δ1<a1, εs+1<bs

(−θ ′)δ·ε−1(1− q)δ·ε

×
{

f

[
s∏

i=1

xai−δi ybi−εi+1; θ ′
]

− g

[
s∏

i=1

xai−δi ybi−εi+1; θ ′
]}

.

But the terms whose words have total degree less than
∑s

i=1(ai + bi) are cancelled by th
induction hypothesis. This leaves us with

(−θ)s

{
f

[
s∏

i=1

xai ybi ; θ

]
− g

[
s∏

i=1

xai ybi ; θ

]}

= (−θ ′)s
{

f

[
s∏

i=1

xai ybi ; θ ′
]

− g

[
s∏

i=1

xai ybi ; θ ′
]}

.

Thus, the function

H(θ) := (−θ)s

{
f

[
s∏

i=1

xai ybi ; θ

]
− g

[
s∏

i=1

xai ybi ; θ

]}

satisfies the functional equationH(θ) = H(θ ′), whereθ ′ = qθ −1. But by Lemma 1,H(θ)

is a meromorphic function ofθ of the form

θs
∞∑

ν=1

hν

[ν]q − θqν
,

with at worst simple poles atθ = pν := q−ν[ν]q for positive integersν. Note that 0=
p0 < p1 < p2 < · · · andp′

ν = qpν − 1 = pν−1 for all ν � 1. The functional equation thu
implies that ifH has a pole atpν , thenH must also have a pole atpν−1. SinceH has
no pole atp0, it follows that eachhν = 0. Thus,H vanishes identically and the proof
complete. �

Let 1 	= w = ∏s
i=1 xaiybi ∈ h0. Henceforth, we assume that|θ | < 1/q . To prove that

f and g satisfy the difference equation as stipulated by Theorem 7, first observ
from (3.1),
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he
f [w; θ ] =
∞∑

ν=0

θν
∑
cj �0∑n

j=1 cj =ν

∑
m1>···>mn>0

n∏
j=1

q(kj +cj −1)mj

[mj ]kj +cj
q

=
∑

m1>···>mn>0

n∏
j=1

∞∑
cj =0

q(kj+cj −1)mj

[mj ]kj +cj
q

θcj

=
∑

m1>···>mn>0

n∏
j=1

q(kj−1)mj

[mj ]kj −1
q ([mj ]q − θqmj )

=
∑

m1>···>mBs >0

s∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θqmj
, (3.2)

whereB0 := 0 andBi := ∑i
j=1 bj for 1 � i � s as in the statement of Lemma 1.

Definition 6. If d = (d1, . . . , ds) ∈ I s is such thatds = 0 if bs = 1, let

f [w;d; θ ] :=
∑

m1>···>mBs >0

s∏
i=1

q
ai(m(1+Bi−1)−di)

[m(1+Bi−1) − di]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θqmj
.

The extra requirement onds ensures that no division by zero occurs whenBs = 1. Note
that we now havef [w; θ ] = f [w; {0}s; θ ]. For the proof of Theorem 7, we require t
following sequence of lemmata.

Lemma 2. If (s > 1 or b1 > 1) anda1 > 1, then

∑
δ,ε∈I

(−θ)δε(1− q)δεf

[
xa1−δyb1−ε

s∏
i=2

xai ybi ; {0}s; θ

]

=
∑
δ∈I

(−θ ′)δf
[
xa1−δyb1

s∏
i=2

xai ybi ;1, {0}s−1; θ

]
.

Lemma 3. If s > 1 or b1 > 1, then

∑
ε∈I

(−θ)εf

[
xyb1−ε

s∏
i=2

xai ybi ; {0}s; θ

]
= (−θ ′)f

[
xyb1

s∏
i=2

xaiybi ;1, {0}s−1; θ

]
.

Lemma 4. If 1 < j < s or (j = s andbs > 1), then

∑
(−θ)δε(1− q)δεf

[(
j−1∏

xaiybi

)
xaj−δybj−ε

s∏
xaiybi ; {1}j−1, {0}s−j+1; θ

]

δ,ε∈I i=1 i=j+1
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or the

, we
=
∑
δ,ε∈I

(−θ ′)δε(1− q)δε

× f

[(
j−2∏
i=1

xai ybi

)
xaj−1ybj−1−εxaj−δybj

s∏
i=j+1

xai ybi ; {1}j , {0}s−j; θ

]
.

Lemma 5. If bs > 1, then

f

[
s∏

i=1

xaiybi ; {1}s; θ

]
=

∑
ε∈I

(−θ ′)−εf

[(
s−1∏
i=1

xai ybi

)
xasybs−ε; {0}s; θ ′

]
.

Lemma 6. If s > 1, then

∑
δ∈I

(−θ)δf

[(
s−1∏
i=1

xai ybi

)
xas−δy; {1}s−1;0; θ

]

=
∑
δ,ε∈I

(−θ ′)δε(1− q)δεf

[(
s−2∏
i=1

xai ybi

)
xas−1ybs−1−εxas−δy; {0}s; θ ′

]
.

Lemma 7. If a > 1, then

∑
δ∈I

(−θ)δf
[
xa−δy; θ

] =
∑
δ∈I

(−θ ′)δf
[
xa−δy; θ ′].

For completeness, we also record the following result, although it is not needed f
proof of Theorem 7.

Lemma 8. θf [xy; θ ]+ (1− q) = θ ′f [xy; θ ′] − 1/θ ′.

We shall prove Lemmas 1–8 in Section 3.2 below. Assuming their validity for now
proceed with the proof of Theorem 7.

Proof of Theorem 7. Let L denote the left-hand side. First, consider the case whena1 > 1
andbs > 1. Then

L =
∑

δ,ε∈I s

(−θ)δ·ε(1− q)δ·εf
[

s∏
i=1

xai−δi ybi−εi ; θ

]
.

In the sum over ordereds-tuplesδ andε, renameδ = (δ2, . . . , δs) andε = (ε2, . . . , εs) so
that
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press

use
L =
∑

δ,ε∈I s−1

(−θ)δ·ε(1− q)δ·ε
∑

δ1,ε1∈I

(−θ)δ1ε1(1− q)δ1ε1f

[
s∏

i=1

xai−δi ybi−εi ; {0}s; θ

]

=
∑

δ,ε∈I s−1

(−θ)δ·ε(1− q)δ·ε
∑
δ1∈I

(−θ ′)δ1f

[
xa1−δ1yb1

s∏
i=2

xai−δi ybi−εi ;1, {0}s−1; θ

]
,

by Lemma 2. Ifs > 1, we again renameδ = (δ3, . . . , δs) andε = (ε3, . . . , εs) and write

L =
∑
δ1∈I

(−θ ′)δ1
∑

δ,ε∈I s−2

(−θ)δ·ε(1− q)δ·ε

×
∑

δ2,ε2∈I

(−θ)δ2ε2(1− q)δ2ε2f

[
xa1−δ1yb1

s∏
i=2

xai−δi ybi−εi ;1, {0}s−1; θ

]
.

We now apply Lemma 4, first withj = 2, and again withj = 3, and so on up toj = s. The
result is that

L =
∑

δ=(δ1,...,δs)∈I s

ε=(ε1,...,εs)∈I s

ε1=0

(−θ ′)δ·ε(1− q)δ·εf
[(

s−1∏
i=1

xai−δi ybi−εi+1

)
xas−δs ybs ; {1}s; θ

]
. (3.3)

On the other hand, ifs = 1, we have (3.3) with no application of Lemma 4. In any ca
applying Lemma 5 to (3.3) yields

L =
∑

δ,ε∈I s

ε1=0

(−θ ′)δ·ε(1− q)δ·ε
∑

εs+1∈I

(−θ ′)εs+1−1f

[
s∏

i=1

xai−δi ybi−εi+1; {0}s; θ ′
]
.

If we now extendδ and ε by adjoining an extra component to each, viz.δs+1 = 0 and
εs+1 ∈ I respectively, we find that

L =
∑

δ,ε∈I s+1

δs+1=ε1=0

(−θ ′)δ·ε(1− q)δ·εf
[

s∏
i=1

xai−δi ybi−εi+1; {0}s; θ ′
]
,

as required.
The proof in the casea1 = 1, bs > 1 is similar. The main difference is thatδ1 = 0 and

we begin by applying Lemma 3 instead of Lemma 2. For purposes of brevity, we sup
the details.

It is convenient to split the casea1 > 1, bs = 1 into the two subcasess > 1 ands = 1,
since in the former we end by applying Lemma 6, while in the latter we instead
Lemma 7. Suppose first thats > 1. We have
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L =
∑

δ,ε∈I s

εs=0

(−θ)δ·ε(1− q)δ·εf
[

s∏
i=1

xai−δi ybi−εi ; {0}s; θ

]

=
∑

δ,ε∈I s−1

εs=0

(−θ)δ·ε(1− q)δ·ε
∑

δ1,ε1∈I

f

[
xa1−δ1yb1−ε1

s∏
i=2

xai−δi ybi−εi ; {0}s; θ

]
.

Now apply Lemma 2, and then Lemma 4 successively, withj = 2,3, . . . , s − 1. The result
is

L =
∑

η,ν∈I s−1

ν1=0

(−θ ′)η·ν(1− q)η·ν ∑
δs∈I
νs=0

(−θ)δs

× f

[(
s−1∏
i=1

xai−ηi ybi−νi+1

)
xas−δs y; {1}s−1,0; θ

]
.

Lemma 6 now gives

L =
∑

η,ν∈I s

ν1=0

(−θ ′)η·ν(1− q)η·νf
[

s−1∏
i=1

xai−ηi ybi−νi+1xas−ηs y; {0}s; θ ′
]

=
∑

η,ν∈I s+1

ηs+1=ν1=νs+1=0

(−θ ′)η·ν−1(1− q)η·νf
[

s∏
i=1

xai−ηi ybi−νi+1; θ ′
]
,

as required. On the other hand, ifs = 1 note that in this case Theorem 7 is just a restatem
of Lemma 7.

The final case, witha1 = bs = 1 ands > 1, is proved in much the same way as the ot
cases withs > 1. Observe that nowδ1 = εs = 0 in the sum on the left, andδ1 = εs+1 = 0
on the right. The result is established by applying Lemma 3, then Lemma 4 succes
as necessary forj = 2,3, . . . , s − 1, and finally Lemma 6.

Thus,f satisfies the difference equation as claimed. This and the fact thatg[w; θ ] =
f [τ (w); θ ] readily implies thatg satisfies the same difference equation.�
3.2. Proofs of Lemmas 1–8

We begin with the proof of Lemma 1.

Proof of Lemma 1. From the penultimate step in (3.2), noting thatn = Bs , we have
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f [w; θ ] =
∑

m1>···>mBs >0

Bs∏
j=1

q(kj−1)mj

[mj ]kj −1
q ([mj ]q − θqmj )

=
∑

m1>···>mBs >0

Bs∑
k=1

Ek[w;m1, . . . ,mBs ]
[mk]q − θqmk

,

where the partial fraction decomposition

Bs∑
h=1

Eh[w;m1, . . . ,mBs ]
[mh]q − θqmh

=
Bs∏

j=1

q(kj−1)mj

[mj ]kj −1
q ([mj ]q − θqmj )

implies that

Bs∑
h=1

Eh[w;m1, . . . ,mBs ]
Bs∏

j=1
j 	=h

([mj ]q − θqmj
) =

Bs∏
j=1

q(kj−1)mj

[mj ]kj −1
q

.

Letting θ → q−mk [mk]q now gives that

Ek[w;m1, . . . ,mBs ] =
{

Bs∏
j=1

q(kj −1)mj

[mj ]kj −1
q

}/
Bs∏

j=1
j 	=k

([mj ]q − qmj−mk [mk]q
)
.

The general formula forEk[m1, . . . ,mk−1, ν,mk+1, . . . ,mBs ] now follows immediately
on replacingmk by ν and noting thatkj = ai + 1 precisely whenj = 1+ Bi−1; otherwise
kj = 1. The lemma itself now follows on interchanging order of summation.�

Proofs of several of the remaining lemmata make use of the partial fraction identi

θq2m

[m]aq([m]q − θqm)
− qm

[m]a−1
q ([m]q − θqm)

= θ ′q2m−a

[m − 1]aq([m]q − θqm)
− qm−a+1

[m − 1]a−1
q ([m]q − θqm)

+ qm−a+1

[m − 1]aq
− qm

[m]aq
, (3.4)

valid for a > 0 andm > 1.

Proof of Lemma 2. Let

B :=
n∏ q(kj −1)mj

[mj ]kj −1
([mj ]q − θqmj )

. (3.5)

j=2 q
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Then by (3.4),

θf

[
s∏

i=1

xai ybi ; {0}s; θ

]
− f

[
xa1−1yb1

s∏
i=2

xaiybi ; {0}s; θ

]

=
∑

m1>···>mn>0

{
θq2m1

[m1]a1
q ([m1]q − θqm1)

− qm1

[m1]a1−1
q ([m1]q − θqm1)

}
q(a1−2)m1B

=
∑

m1>···>mn>0

{
θ ′q2m1−a1

[m1 − 1]a1
q ([m1]q − θqm1)

− qm1−a1+1

[m1 − 1]a1−1
q ([m1]q − θqm1)

+ qm1−a1+1

[m1 − 1]a1
q

− qm1

[m1]a1
q

}
q(a1−2)m1B

=
∑

m1>···>mn>0

{
θ ′qa1(m1−1)

[m1 − 1]a1
q ([m1]q − θqm1)

− q(a1−1)(m1−1)

[m1 − 1]a1−1
q ([m1]q − θqm1)

}
B

+
∑

m2>···>mn>0

B

∞∑
m1=m2+1

{
q(a1−1)(m1−1)

[m1 − 1]a1
q

− q(a1−1)m1

[m1]a1
q

}

= θ ′f
[

s∏
i=1

xai ybi ;1; {0}s−1 θ

]
− f

[
xa1−1yb1

s∏
i=2

xaiybi ;1; {0}s−1; θ

]

+
∑

m2>···>mn>0

Bq(a1−1)m2

[m2]a1
q

.

But

∑
m2>···>mn>0

Bq(a1−1)m2

[m2]a1
q

=
∑

m2>···>mn>0

{
qa1m2

[m2]a1
q

+ (1− q)
q(a1−1)m2

[m2]a1−1
q

}
B

= f

[
xa1yb1−1

s∏
i=2

xai ybi ; {0}s; θ

]

+ (1− q)f

[
xa1−1yb1−1

s∏
i=2

xaiybi ; {0}s; θ

]
,

and the result follows. �
Proof of Lemma 3. Again, letB be given by (3.5). In this case (3.4) gives

θf

[
xyb1

s∏
xaiybi ; {0}s; θ

]

i=2
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=
∑

m1>···>mn>0

θq2m1

[m1]q([m1]q − θqm1)
· q−m1B

=
∑

m1>···>mn>0

{
θ ′q2m1−1

[m1 − 1]q([m1]q − θqm1)
+ qm1

[m1 − 1]q − qm1

[m1]q
}
q−m1B

=
∑

m1>···>mn>0

θ ′qm1−1B

[m1 − 1]q([m1] − θqm1)

+
∑

m2>···>mn>0

B

∞∑
m1=m2+1

(
1

[m1 − 1]q − 1

[m1]q
)

= θ ′f
[
xyb1

s∏
i=2

xai ybi ;1, {0}s−1; θ

]
+

∑
m2>···>mn>0

(
1

[m2]q + q − 1

)
B.

In light of q − 1+ 1/[m2]q = qm2/[m2]q , it follows that

θf

[
xyb1

s∏
i=2

xai ybi ; {0}s; θ

]
− θ ′f

[
xyb1

s∏
i=2

xai ybi ;1, {0}s−1; θ

]

=
∑

m2>···>mn>0

Bqm2

[m2]q = f

[
xyb1−1

s∏
i=2

xai ybi ; {0}s; θ

]
,

as claimed. �
Proof of Lemma 4. Let m = m(1+Bj−1). Define the quantitiesA andB by

A =
j−1∏
i=1

q
ai(m(1+Bi−1)−di )

[m(1+Bi−1) − di]ai
q

Bi∏
h=1+Bi−1

1

[mh]q − θqmh
,

and

qajmB

[m]aj
q ([m]q − θqm)

=
s∏

i=j

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
h=1+Bi−1

1

[mh]q − θqmh
.

Then (3.4) gives

θf

[
s∏

i=1

xaiybi ; {1}j−1, {0}s−j+1; θ

]

− f

[(
j−1∏

xai ybi

)
xaj−1ybj

s∏
xai ybi ; {1}j−1, {0}s−j+1; θ

]

i=1 i=j+1
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=
∑

m1>···>mn>0

A

{
θq2m

[m]aj
q ([m]q − θqm)

− qm

[m]aj−1
q ([m]q − θqm)

}
q(aj−2)mB

=
∑

m1>···>mn>0

A

{
θ ′q2m−aj

[m − 1]aj
q ([m]aj

q − θqm)
− qm−aj +1

[m − 1]aj−1
q ([m]q − θqm)

+ qm−aj +1

[m − 1]aj
q

− qm

[m]aj
q

}
q(aj−2)mB

=
∑

m1>···>mn>0

A

{
θ ′qaj (m−1)

[m − 1]aj
q ([m]q − θqm)

− q(aj−1)(m−1)

[m − 1]aj−1
q ([m]q − θqm)

}
B

+
∑

m1>···>mn>0

A

{
q(aj−1)(m−1)

[m − 1]aj
q

− q(aj−1)m

[m]aj
q

}
B

= θ ′f
[

s∏
i=1

xai ybi ; {1}j , {0}s−j ; θ

]

− f

[(
j−1∏
i=1

xai ybi

)
xaj−1ybj

s∏
i=j+1

xai ybi ; {1}j , {0}s−j ; θ

]

+
∑

m1>···>mBj−1
−1+mBj−1>m(2+Bj−1)>···>mBs >0

AB

−1+mBj−1∑
m=1+m(2+Bj−1)

(
q(aj−1)(m−1)

[m − 1]aj
q

− q(aj−1)m

[m]aj
q

)
.

It follows that

θf

[
s∏

i=1

xai ybi ; {1}j−1, {0}s−j+1; θ

]

− f

[(
j−1∏
i=1

xaiybi

)
xaj−1ybj

s∏
i=j+1

xai ybi ; {1}j−1, {0}s−j+1; θ

]

− θ ′f
[

s∏
i=1

xaiybi ; {1}j , {0}s−j ; θ

]

+ f

[(
j−1∏
i=1

xaiybi

)
xaj−1ybj

s∏
i=j+1

xai ybi ; {1}j , {0}s−j ; θ

]

=
∑

m1>···>mBj−1
−1+mB >m(2+B )>···>mBs >0

A

{
q

(aj−1)m(2+Bj−1)

[m(2+Bj−1)]aj
q

− q
(aj−1)(−1+mBj−1)

[−1+ mBj−1]aj
q

}
B

j−1 j−1
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=
∑

m1>···>mBj−1>m(2+Bj−1)>···>mBs >0

A

{
q

ajm(2+Bj−1)

[m(2+Bj−1)]aj
q

+ (1− q)
q

(aj−1)m(2+Bj−1)

[m(2+Bj−1)]aj−1
q

− q
aj (−1+mBj−1)

[−1+ mBj−1]aj
q

− (1− q)
q

(aj−1)(−1+mBj−1)

[−1+ mBj−1]aj−1
q

}
B

= f

[(
j−1∏
i=1

xai ybi

)
xaj ybj−1

s∏
i=j+1

xai ybi ; {1}j−1, {0}s−j+1; θ

]

+ (1− q)f

[(
j−1∏
i=1

xai ybi

)
xaj−1ybj−1

s∏
i=j+1

xaiybi ; {1}j−1, {0}s−j+1; θ

]

− f

[(
j−2∏
i=1

xaiybi

)
xaj−1ybj−1−1

s∏
i=j

xai ybi ; {1}j , {0}s−j; θ

]

− (1− q)f

[(
j−2∏
i=1

xaj ybj

)
xaj−1ybj−1−1xaj−1ybj

s∏
i=j+1

xaiybi ; {1}j , {0}s−j; θ

]
,

as required. �
Proof of Lemma 5. Herebs > 1, and thus if we shift summation indicesmi �→ 1 + mi ,
then

f

[
s∏

i=1

xai ybi ; {1}s; θ

]

=
∑

m1>···>mBs >0

s∏
i=1

q
ai(m(1+Bi−1)−1)

[m(1+Bi−1) − 1]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θqmj

=
∑

m1>···>mBs �0

s∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj + 1]q − θqmj+1

=
∑

m1>···>mBs �0

s∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

=
( ∑

m1>···>mBs >0

+
∑

m1>···>m(Bs−1)>0

) s∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

×
Bi∏ 1

[mj ]q − θ ′qmj
j=1+Bi−1
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= f

[
s∏

i=1

xaiybi ; {0}s; θ ′
]

−
(

1

θ ′

)
f

[(
s−1∏
i=1

xai ybi

)
xas ybs−1; {0}s; θ ′

]
. �

Proof of Lemma 6. In this case,Bs = 1+ Bs−1 and we have

f

[(
s−1∏
i=1

xai ybi

)
xas−1y; {1}s−1,0; θ

]
− θf

[(
s−1∏
i=1

xai ybi

)
xasy; {1}s−1,0; θ

]

=
∑

m1>···>mBs >0

{
s−1∏
i=1

q
ai(m(1+Bi−1)−1)

[m(1+Bi−1) − 1]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θqmj

}

×
{

q(as−1)mBs

[mBs ]as−1
q

− θqasmBs

[mBs ]as
q

}
1

[mBs ]q − θqmBs

=
∑

m1>···>mBs >0

{
s−1∏
i=1

q
ai(m(1+Bi−1)−1)

[m(1+Bi−1) − 1]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θqmj

}
q(as−1)mBs

[mBs ]as
q

.

Now shift the summation indicesmi �→ mi + 1 and use[m + 1]q − θqm+1 = [m]q − θ ′qm

to obtain

f

[(
s−1∏
i=1

xaiybi

)
xas−1y; {1}s−1,0; θ

]
− θf

[(
s−1∏
i=1

xaiybi

)
xasy; {1}s−1,0; θ

]

=
∑

m1>···>mBs �0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}
q(as−1)m1+Bs

[1+ mBs ]as
q

.

Now replacemBs by mBs − 1. Then

f

[(
s−1∏
i=1

xai ybi

)
xas−1y; {1}s−1,0; θ

]
− θf

[(
s−1∏
i=1

xai ybi

)
xas y; {1}s−1,0; θ

]

=
∑

m1>···>mBs−1�mBs >0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}
q(as−1)mBs

[mBs ]as
q

=
∑

m1>···>mBs−1>mBs >0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}

× q(as−1)mBs

[m ]as
· [mBs ]q − θ ′qmBs

[m ] − θ ′qmBs
Bs q Bs q
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+
∑

m1>···>mBs−1>0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}
q(as−1)m(Bs−1)

[m(Bs−1)]as
q

=
∑

m1>···>mBs >0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}

× q(as−1)mBs

[mBs ]as−1
q ([mBs ]q − θ ′qmBs )

− θ ′ ∑
m1>···>mBs >0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}

× qasmBs

[mBs ]as
q ([mBs ]q − θ ′qmBs )

+
∑

m1>···>mBs−1>0

{
s−1∏
i=1

q
aim(1+Bi−1)

[m(1+Bi−1)]ai
q

Bi∏
j=1+Bi−1

1

[mj ]q − θ ′qmj

}
q

(as−1)mBs−1

[mBs−1]as
q

= f

[(
s−1∏
i=1

xaiybi

)
xas−1y; {0}s; θ ′

]
− θ ′f

[(
s−1∏
i=1

xaiybi

)
xasy; {0}s; θ ′

]

+ f

[(
s−2∏
i=1

xai ybi

)
xas−1ybs−1−1xas y; {0}s; θ ′

]

+ (1− q)f

[(
s−2∏
i=1

xai ybi

)
xas−1ybs−1−1xas−1y; {0}s; θ ′

]
. �

Proof of Lemma 7. If a > 1, then

f
[
xa−1y; θ

] − θf
[
xay; θ

] =
∞∑

m=1

(
q(a−1)m

[m]a−1
q

− θqam

[m]aq

)
1

[m]q − θqm

=
∞∑

m=1

q(a−1)m

[m]aq
=

∞∑
m=1

q(a−1)m

[m]aq
· [m]q − θ ′qm

[m]q − θ ′qm

=
∞∑

m=1

q(a−1)m

[m]a−1
q ([m]q − θ ′qm)

− θ ′
∞∑

m=1

qam

[m]aq([m]q − θ ′qm)

= f
[
xa−1y; θ ′] − θ ′f

[
xay; θ ′]. �
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Proof of Lemma 8. Let n be a positive integer. Then

θ

n∑
m=1

qm

[m]q([m]q − θqm)
− θ ′

n∑
m=1

qm

[m]q([m]q − θqm)

=
n∑

m=1

[m]q − θ ′qm

[m]q([m]q − θ ′qm)
−

n∑
m=1

1

[m]q − θ ′qm

−
n∑

m=1

[m]q − θqm

[m]q([m]q − θqm)
+

n∑
m=1

1

[m]q − θqm

=
n∑

m=1

1

[m]q − θqm
−

n∑
m=1

1

[m]q − θ ′qm

=
n−1∑
m=0

1

[m + 1]q − θqm+1 −
n∑

m=1

1

[m]q − θ ′qm

=
n−1∑
m=0

1

[m]q − θ ′qm
−

n∑
m=1

1

[m]q − θ ′qm

= 1

−θ ′ − 1

[n]q − θ ′qn
.

The result now follows on lettingn → ∞. �

4. Derivations

We continue to employ the algebraic notation of the previous section, and writeζ̂ (·)
for the q = 1 case of theQ-linear mapζ̂ [·] defined there. Thus,̂ζ (xs1−1y · · ·xsm−1y) =
ζ(s1, . . . , sm) gives the ordinary multiple zeta value. Note thatq-duality (Corollary 3)
simply says that̂ζ [τw] = ζ̂ [w] for all wordsw ∈ h0, while ordinary duality reduces t
ζ̂ (τw) = ζ̂ (w). In contrast [10], for (1.3) the relevant algebra is noth0, but hy, with the
automorphismw �→ (Jw)x−1y (whereJ switchesx andy but preserves the order of th
word) replacing the anti-automorphismτ .

If D is a derivation ofh, letD denote the conjugate derivationτDτ . As in [19], we refer
to D as symmetric (respectively antisymmetric) ifD = D (D = −D), and note that an
symmetric or antisymmetric derivation is completely determined by where it sendsx. Ihara
and Kaneko [20] defined a family of antisymmetric derivations∂n for positive integersn by
declaring that∂n(x) = x(x + y)n−1y. They conjectured—and subsequently proved—
for all positive integersn and wordsw ∈ h0, ζ̂ (∂n(w)) = 0. Here, we shall prove that th
result extends to the multipleq-zeta function.

Theorem 8. For all positive integersn and wordsw ∈ h0, ζ̂ [∂n(w)] = 0.



D.M. Bradley / Journal of Algebra 283 (2005) 752–798 779

at

opf
lter-
0].
Proof. Again, for positive integern letDn be the derivation mappingx �→ 0 andy �→ xny.
Fix a formal power series parametert and set

D :=
∞∑

n=1

tn
Dn

n
, σ := exp(D), ∂ :=

∞∑
n=1

tn
∂n

n
.

The reformulated version of the generalizedq-duality theorem (Theorem 6) states th
ζ̂ [σw] = ζ̂ [στw] for all w ∈ h0. In view of the special case,q-duality (Corollary 3), this
is equivalent to(σ − σ)w ∈ kerζ̂ for all w ∈ h0. We show that in fact,(σ − σ)h0 = ∂h0,
from which it follows that Theorem 8 is equivalent to generalizedq-duality. To prove the
equivalence, we require the following identity of Ihara and Kaneko [20].

Proposition 1 [19, Theorem 5.9].We have the following equality ofh�t� automorphisms:
exp(∂) = σσ−1.

To complete the proof of Theorem 8, observe as in [20,30] that since

∂ = log
(
σσ−1) = log

(
1− (σ − σ)σ−1) = −(σ − σ)

∞∑
n=1

1

n

(
(σ − σ)σ−1)n−1

σ−1,

and

σ − σ = (
1− σσ−1)σ = (

1− exp(∂)
)
σ = −∂

∞∑
n=1

∂n−1

n! σ,

we see that∂h0 ⊆ (σ − σ)h0 and(σ − σ)h0 ⊆ ∂h0. Thus for the kernel of̂ζ , we have the
equivalences

(σ − σ)w ∈ kerζ̂ ⇐⇒ ∂w ∈ kerζ̂ ⇐⇒ ∀n ∈ Z+, ζ̂ [∂nw] = 0. �
Remark 3. The proof of Proposition 1 that is given in [19] involves imposing a H
algebra structure onh and defining an action on it. Zudilin [30, Lemma 7] presents an a
native proof in the caset = 1 along the lines originally indicated by Ihara and Kaneko [2
It is possible to extend Zudilin’s presentation [30] to arbitraryt by defining a family
{ϕs : s ∈ R} of automorphisms ofR〈〈x, y〉〉 defined on the generatorsz = x + y and y

by

ϕs(z) = z, ϕs(y) = (1− tz)sy

(
1− 1− (1− tz)s

z
y

)−1

.

Routine calculations on the generators verify the equalities

ϕs1 ◦ ϕs2 = ϕs1+s2, ϕ0 = id,
d

ϕs

∣∣∣∣ = ∂, ϕ1 = σσ−1.

ds s=0
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The first three results imply thatϕs = exp(s∂), and the substitutions = 1 gives Proposi-
tion 1.

Remark 4. In view of the identity∂1 = D1 − D1, the casen = 1 of Theorem 8 yields the
following q-analog of Hoffman’s derivation theorem [16, Theorem 5.1], [19, Theorem

Corollary 5. For any wordw ∈ h0, ζ̂ [D1w] = ζ̂ [D1w]. Equivalently, ifs1, . . . , sm are
positive integers withs1 > 1, then

m∑
k=1

ζ

[
k−1
Cat
j=1

sj ,1+ sk,
m

Cat
j=k+1

sj

]
=

m∑
k=1

sk−2∑
j=0

ζ

[
k−1
Cat
i=1

si , sk − j, j + 1,
m

Cat
i=k+1

si

]
.

By the usual convention on empty sums, the sum on the right is zero ifsk < 2.

5. Cyclic sums

In this section, we state and prove aq-analog of the cyclic sum theorem [19], orig
nally conjectured by Hoffman and subsequently proved by Ohno using a partial fra
argument. As a corollary, we give another proof of theq-sum formula (Corollary 4).

Theorem 9 (q-Cyclic sum formula).Letn ands1, s2, . . . , sn be positive integers such th
sj > 1 for somej . Then

n∑
j=1

ζ

[
sj + 1,

n

Cat
m=j+1

sm,
j−1
Cat
m=1

sm

]
=

n∑
j=1

sj−2∑
k=0

ζ

[
sj − k,

n

Cat
m=j+1

sm,
j−1
Cat
m=1

sm, k + 1

]
.

Note that the inner sum on the right vanishes ifsj = 1. We refer to Theorem 9 as th
q-cyclic sum formula because, as with the limiting case in [19], it has an elegant refo
lation in terms of cyclic permutations of dual argument lists.

Definition 7. If 
s = (s1, . . . , sn) is a vector ofn positive integers, let

C(
s) = {
(s1, . . . , sn), (s2, . . . , sn, s1), . . . , (sn, s1, . . . , sn−1)

}
denote the set of cyclic permutations of
s. Also, for notational convenience, defin
ζ ∗[s1, . . . , sn] := ζ [s1 + 1, s2, . . . , sn].

We can now restate Theorem 9 as follows.

Theorem 10 (q-Analog of [19, Eq. (2)]).Let s ands′ be dual argument lists. Then∑
p∈C(s)

ζ ∗[p] =
∑

p∈C(s′)
ζ ∗[p].
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no

s

To prove the implication Theorem 9⇒ Theorem 10, we borrow an argument of Oh
for theq = 1 case. Let

s =
(

m

Cat
j=1

{
aj + 2, {1}bj

}) = (s1, . . . , sn),

whereaj andbj are non-negative integers for 1� j � m andn = m + b1 + · · · + bm. The
right-hand side of Theorem 9 is

|C(s)|
n

∑
p∈C(s)

p1−2∑
k=0

ζ [p1 − k,p2, . . . , pn, k + 1]

= |C(s)|
n

∑
(c,d)

c1∑
k=0

ζ

[
c1 + 2− k, {1}d1,

m

Cat
j=2

{
cj + 2, {1}dj

}
, k + 1

]
,

where the outer sum on the right is over all cyclic permutations

(c,d) = (
(c1, d1), . . . , (cm, dm)

)
of the ordered sequence of ordered pairs((a1, b1), . . . , (am, bm)). Invoking q-duality
(Corollary 3), we find that the right-hand side of Theorem 9 can now be expressed a

|C(s)|
n

{ ∑
(c,d)

ζ

[
m

Cat
j=1

{
cj + 2, {1}dj

}
,1

]

+
∑
(c,d)

c1∑
k=1

ζ

[
c1 + 2− k, {1}d1,

m

Cat
j=2

{
cj + 2, {1}dj

}
, k + 1

]}

= |C(s)|
n

{ ∑
(c,d)

ζ

[
dm + 3, {1}cm,

m

Cat
j=2

{
dm−j+1 + 2, {1}cm−j+1

}]

+
∑
(c,d)

c1∑
k=1

ζ

[
2, {1}k−1,

m−1
Cat
j=1

{
dm−j+1 + 2, {1}cm−j+1

}
, d1 + 2, {1}c1−k

]}

=
∑

p∈C(s′)
ζ ∗[p].

But the left-hand side of Theorem 9 is

n∑
ζ ∗

[
n

Cat
m=j

sm,
j−1
Cat
m=1

sm

]
=

∑
ζ ∗[p].
j=1 p∈C(s)



782 D.M. Bradley / Journal of Algebra 283 (2005) 752–798

of the
tions.

19,

more
on of

r all

ding
We now proceed with the proof of Theorem 9. As we shall see, much of the proof
limiting case in [19] can be adapted to the present situation with only minor modifica
To this end, we introduce two auxiliaryq-series.

Definition 8. For positive integerss1, s2, . . . , sn and non-negative integersn+1, let

T [s1, . . . , sn] :=
∑

k1>···>kn+1�0

qk1−kn+1

[k1 − kn+1]q
n∏

j=1

q(sj−1)kj

[kj ]sjq
,

S[s1, . . . , sn+1] :=
∑

k1>···>kn+1>0

qk1

[k1 − kn+1]q
n+1∏
j=1

q(sj−1)kj

[kj ]sjq
. (5.1)

For the convergence of theq-series (5.1), we have the following generalization of [
Theorem 3.1].

Theorem 11. T [s1, . . . , sn] is finite if there is an indexj with sj > 1; S[s1, . . . , sn+1] is
finite if one ofs1, . . . , sn exceeds1 or if sn+1 > 0.

We defer the proof of Theorem 11 to the end of the section in order to proceed
directly with the proof of Theorem 9. The key result we need is a direct generalizati
the corresponding result in [19]:

Theorem 12 (q-Analog of [19, Theorem 3.2]).If s1, . . . , sn are positive integers with
sj > 1 for somej , then

T [s1, . . . , sn] − T [s2, . . . , sn, s1] = ζ [s1 + 1, s2, . . . , sn] −
s1−2∑
k=0

ζ [s1 − k, s2, . . . , sn, k + 1],

where the sum on the right vanishes ifs1 = 1.

The proof of Theorem 9 now follows immediately on summing Theorem 12 ove
cyclic permutations of the argument sequences1, . . . , sn.

Proof. Although we provide details, the argument is quite similar to the correspon
argument in [19]. One minor difference is that limN→∞ 1/[N]q = 1 − q 	= 0 if q 	= 1,
which affects the computations used to arrive at (5.5) below. First,

S[s1, . . . , sn,0] =
∑

k1>···>kn+1>0

qk1−kn+1

[k1 − kn+1]q
n∏

j=1

q(sj−1)kj

[kj ]sjq

=
∑ qk1−kn+1

[k1 − kn+1]q
n∏ q(sj−1)kj

[kj ]sjq
k1>···>kn+1�0 j=1
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−
∑

k1>···>kn>0

qk1

[k1]q
n∏

j=1

q(sj−1)kj

[kj ]sjq
= T [s1, . . . , sn] − ζ [s1 + 1, s2, . . . , sn]. (5.2)

Next, we apply the identity

qk1−kn+1

[k1 − kn+1]q [k1]q = 1

[kn+1]q
(

1

[k1 − kn+1]q − 1

[k1]q
)

(5.3)

to S[s1, . . . , sn+1]. This gives

∑
k1>···>kn+1>0

qk1−kn+1

[k1 − kn+1]q [k1]q · q(s1−1)k1

[k1]s1−1
q

· qsn+1kn+1

[kn+1]sn+1
q

n∏
j=2

q(sj−1)kj

[kj ]sjq

=
∑

k1>···>kn+1>0

(
1

[k1 − kn+1]q − 1

[k1]q
)

q(s1−1)k1

[k1]s1−1
q

· qsn+1kn+1

[kn+1]1+sn+1
q

n∏
j=2

q(sj−1)kj

[kj ]sjq
,

from which it follows that

S[s1, . . . , sn+1] = S[s1 − 1, s2, . . . , sn,1+ sn+1] − ζ [s1, . . . , sn,1+ sn+1]. (5.4)

Finally, applying (5.3) toS[1, s2, . . . , sn, sn+1 − 1] gives

∑
k1>···>kn+1>0

qk1−kn+1

[k1 − kn+1]q [k1]q · q(sn+1−1)kn+1

[kn+1]sn+1−1
q

n∏
j=2

q(sj−1)kj

[kj ]sjq

=
∑

k1>···>kn+1>0

(
1

[k1 − kn+1]q − 1

[k1]q
) n+1∏

j=2

q(sj−1)kj

[kj ]sjq

=
∑

k2>···>kn+1>0

n+1∏
j=2

q(sj−1)kj

[kj ]sjq
lim

N→∞

N∑
k1=k2+1

(
1

[k1 − kn+1]q − 1

[k1]q
)

=
∑

k2>···>kn+1>0

n+1∏
j=2

q(sj−1)kj

[kj ]sjq
lim

N→∞

kn+1−1∑
m=0

(
1

[k2 − m]q − 1

[N − m]q
)

=
∑ n+1∏ q(sj−1)kj

[kj ]sjq

kn+1−1∑ (
1

[k2 − m]q + q − 1

)

k2>···>kn+1>0 j=2 m=0
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m 3.2].
-

=
∑

k2>···>kn+1>m�0

qk2−m

[k2 − m]q
n+1∏
j=2

q(sj−1)kj

[kj ]sjq
.

It follows that
S[1, s2, . . . , sn, sn+1 − 1] = T [s2, . . . , sn, sn+1]. (5.5)

Now let 0� j � s1 − 2, apply (5.4) and sum onj . This yields

s1−2∑
j=0

S[s1 − j, s2, . . . , sn, j ] =
s1−2∑
j=0

(
S[s1 − j − 1, s2, . . . , sn, j + 1]

− ζ [s1 − j, s2, . . . , sn, j + 1]),
which telescopes, leaving

S[s1, s2, . . . , sn,0] = S[1, s2, . . . , sn, s1 − 1] −
s1−2∑
j=0

ζ [s1 − j, s2, . . . , sn, j + 1].

Now apply (5.2) and (5.5) to obtain

T [s1, . . . , sn] − ζ [s1 + 1, s2, . . . , sn] = T [s2, . . . , sn, s1]

−
s1−2∑
j=0

ζ [s1 − j, s2, . . . , sn, j + 1]. �

As Ohno observed, the sum formula [15] is an easy consequence of [19, Theore
Correspondingly, we can give another proof of Corollary 4, ourq-analog of the sum for
mula.

Alternative proof of Corollary 4. Sum Theorem 12 over alls1, . . . , sn with s1 +
· · · + sn = k. Since the resulting sum ofT -functions vanishes, we get

∑
s1+···+sn=k

ζ [s1 + 1, s2, . . . , sn] =
∑

s1+···+sn=k

s1−2∑
j=0

ζ [s1 − j, s2, . . . , sn, j + 1]

=
∑

s1+···+sn+1=k

ζ [s1 + 1, s2, . . . , sn+1].

It follows that the sums are independent ofn; whence each is equal to∑
s1=k

ζ [s1 + 1] = ζ [k + 1],

as required. �
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We conclude the section with a proof of Theorem 11. Again, the argument close
lows Ohno’s proof of the limiting case in [19].

Proof of Theorem 11. By (5.2),

S[s1, . . . , sn, sn+1] � S[s1, . . . , sn,0] � T [s1, . . . , sn],
soS[s1, . . . , sn+1] is finite if T [s1, . . . , sn] is. By (5.5),

S[1, s2, . . . , sn, sn+1] = T [s2, . . . , sn, sn+1 + 1],
so the statement about finiteness ofS follows from the corresponding statement aboutT .
To prove finiteness ofT [s1, . . . , sn] with s1 + · · · + sn > n, it suffices to consider the cas
s1 + · · · + sn = n + 1, for if sk > 1, thenT [s1, . . . , sn] � T [{1}k−1,2, {1}n−k]. Thus, we
need only prove thatT [{1}k−1,2, {1}n−k] < ∞ for 1 � k � n. Whenk = 1, we have

T
[
2, {1}n−1] =

∑
k1>···>kn+1�0

qk1−kn+1+k1

[k1 − kn+1]q[k1]2q
n∏

j=2

1

[kj ]q

�
∑

k1>···>kn>0
k1�m>0

qm+k1

[m]q[k1]2q
n∏

j=2

1

[kj ]q

= ζ
[
3, {1}n−1] + nζ

[
2, {1}n] +

n−1∑
k=1

ζ
[
2, {1}k−1,2, {1}n−k−1]

< ∞.

Arguing inductively, we now suppose thatT [{1}k−1,2, {1}n−k] < ∞ for somek � 1.
By (5.2), (5.5) and the inductive hypothesis,

T
[{1}k,2, {1}n−k−1] = S

[{1}k,2, {1}n−k−1,0
] + ζ

[
2, {1}k−1,2, {1}n−k−1]

= T
[{1}k−1,2, {1}n−k

] + ζ
[
2, {1}k−1,2, {1}n−k−1]

< ∞,

as required. �

6. Multiple q-polylogarithms

In analogy with [3, Eq. (1.1)], define

λq

[
s1, . . . , sm
b1, . . . , bm

]
:=

∑ m∏
b

−νk

k

[
m∑

νj

]−sk

, (6.1)

ν1,...,νm>0 k=1 j=k q
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and set

Li s1,...,sm[x1, . . . , xm] :=
∑

n1>···>nm>0

m∏
k=1

x
nk

k

[nk]skq
. (6.2)

The substitutionnk = ∑m
j=k νj shows that (6.1) and (6.2) are related by

Li s1,...,sm[x1, . . . , xm] = λq

[
s1, . . . , sm
y1, . . . , ym

]
, yk =

k∏
j=1

x−1
j .

Theorem 13 (q-Analog of [3, Theorem 9.1]).Letb1, . . . , bm ∈ C, s1, . . . , sm > 0 and letn
be a positive integer. Then

nmλqn

[
s1, . . . , sm
bn

1, . . . , bn
m

]
= [n]sq

∑
εn

1=···=εn
m=1

λq

[
s1, . . . , sm

ε1b1, . . . , εmbm

]
,

where the sum is over allnm sequences(ε1, . . . , εm) of complexnth roots of unity, and
s = ∑m

k=1 sk .

Proof. In light of the identity

1

[ν]sqn

=
(

1− qn

1− qnν

)s

=
(

1− qn

1− q

)s( 1− q

1− qnν

)s

= [n]sq
[nν]sq

,

we have

nmλqn

[
s1, . . . , sm
bn

1, . . . , bn
m

]
= nm

∑
ν1,...,νm>0

m∏
k=1

b
−nνk

k

[
m∑

j=k

νj

]−sj

qn

= nm
∑

ν1,...,νm>0

m∏
k=1

b
−nνk

k [n]sjq
[
n

m∑
j=k

νj

]−sj

q

= [n]sq
∑

ν1,...,νm>0

m∏
k=1

nb
−nνk

k

[
m∑

j=k

nνj

]−sj

q

= [n]sq
∑

ν1,...,νm>0

m∏
k=1

b
−νk

k

[
m∑

j=k

νj

]−sj

q

n−1∑
µk=0

e−2πiµkνk/n

= [n]sq
n−1∑
µ1=0

· · ·
n−1∑

µm=0

∑
ν1,...,νm>0

m∏
k=1

b
−νk

k e−2πiµkνk/n

[
m∑

j=k

νj

]−sj

q

.

Lettingεk = e2πiµk/n completes the proof. �
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In contrast with our proof of Theorem 13, the proof of the limiting case in [3] made
of the Drinfel’d simplex integral representation for multiple polylogarithms. As inte
representations for multiple polylogarithms have proved eminently useful in establi
many of their properties, we derive here aq-analog of the Drinfel’d simplex integral for th
multipleq-polylogarithm (6.1). Recall [1, p. 486], [14, p. 19], [22] the Jacksonq-integral

a∫
0

f (t) dqt := (1− q)

∞∑
n=0

aqnf
(
aqn

)
, a > 0.

Theorem 14. Lets1, . . . , sm be positive integers. For the multipleq-polylogarithm, we have
the multiple Jacksonq-integral representation

λq

[
s1, . . . , sm
y1, . . . , ym

]
=

∫ m∏
k=1

(
sk−1∏
r=1

dqt
(k)
r

t
(k)
r

)
dqt

(k)
sk

yk − tsk
, (6.3)

where the multiple Jacksonq-integral (6.3) is over the simplex

1 > t
(1)
1 > · · · > t(1)

s1
> · · · > t

(m)
1 > · · · > t(m)

sm
> 0.

Remark 5. As in [3], we may abbreviate (6.3) by

λq

[
s1, . . . , sm
y1, . . . , ym

]
= (−1)m

1∫
0

m∏
k=1

(
ω[0])sk−1

ω[yk], ω[b] := dqt

t − b
.

Corollary 6. For multipleq-zeta values, we have the multiple Jacksonq-integral represen-
tation

ζ [s1, . . . , sm] = (−1)m

1∫
0

m∏
k=1

(
ω[0])sk−1

ω

[
k∏

j=1

q1−sj

]
.

Proof of Theorem 14. We first establish the following lemma.

Lemma 9. Let s be a positive integer,0 < t0 < 1 andm > 0. Then

∫
t0>t1>···>ts>0

(
s−1∏
r=1

dqtr

tr

)
tm−1
s dq ts = tm0

[m]sq
.

Proof. Whens = 1, the integral reduces to the geometric series

∫
tm−1
1 dqt1 = (1− q)t0

∞∑
j=0

qj
(
qj t0

)m−1 =
(

1− q

1− qm

)
tm0 .
t0>t1>0
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6.4)
Suppose the lemma holds fors − 1. By the inductive hypothesis,

∫
t0>t1>···>ts>0

(
s−1∏
r=1

dqtr

tr

)
tm−1
s dqts =

∫
t0>t1>0

tm1

[m]s−1
q

dqt1

t1
= 1

[m]s−1
q

∫
t0>t1>0

tm−1
1 dqt1

= tm0

[m]sq
,

as required. �
To prove (6.3), it will suffice to establish the identity

∫ m∏
k=1

(
sk−1∏
r=1

dqt
(k)
r

t
(k)
r

)
dqt

(k)
sk

yk − t
(k)
sk

= λq

[
s1, . . . , sm

y1/t0, . . . , ym/t0

]
, (6.4)

where the integral (6.4) is over the simplex

t0 > t
(1)
1 > · · · > t(1)

s1
> · · · > t

(m)
1 > · · · > t(m)

sm
> 0.

Whenm = 1, (6.4) reduces to

∫
t0>t1>···>ts>0

(
s−1∏
r=1

dqtr

tr

)
y−1 dqts

1− y−1ts
=

∫
t0>t1>···>ts>0

(
s−1∏
r=1

dqtr

tr

) ∞∑
ν=1

y−νtν−1
s dqts

=
∞∑

ν=1

y−ν

∫
t0>···>ts>0

(
s−1∏
r=1

dqtr

tr

)
tν−1
s dqts

=
∞∑

ν=1

y−νtν0

[ν]sq
= λ

[
s

y/t0

]
.

Suppose (6.4) holds form−1. Then the inductive hypothesis implies that the integral (
is equal to

∫
t0>t1>···>ts1>0

(
s1−1∏
r=1

dqtr

tr

)
y−1

1 dqts1

1− y−1
1 ts1

∑
ν2,...,νm>0

m∏
k=2

tνk
s1

y
−νk

k

[
m∑

j=k

νj

]−sj

q

=
∑

ν1,...,νm>0

y
−ν1
1

m∏
k=2

y
−νk

k

[
m∑

j=k

νj

]−sj

q

∫
t >t >···>t >0

(
s1−1∏
r=1

dqtr

tr

)
tν1+ν2+···+νm−1
s1

dqts1
0 1 s1
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gral,
or
=
∑

ν1,...,νm>0

m∏
k=1

y
−νk

k t
νk

0

[
m∑

j=k

νj

]−sk

q

= λq

[
s1, . . . , sm

y1/t0, . . . , ym/t0

]
. �

Remark 6. Zhao [29] has outlined an alternative approach to deriving the multiple Jac
q-integral representation of the multipleq-polylogarithm. In addition, he initiates a stud
of what are essentially theq-shuffles, first explicated in [6, Section 7], that arise wh
multiplying two such integrals. Regarding these, the approach taken in [6] is to con
an alphabetA of q-difference formsf (t) dqt = f (t)(1− q)t for variousf , and define the
q-shuffle product q on the free monoidA∗ of words onA by the recursion

{∀w ∈ A∗, 1 q w = w q 1 = w,

∀a, b ∈ A, ∀u,v ∈ A∗, au q bv = a(u q bv) + b
(
η(au) q v

)
.

Here,η is the Rogersq-difference operator defined on forms byη(f (t) dqt) = f (qt) ×
(1 − q)qt and extended to an automorphism ofA∗ in the obvious manner. Using th
q-product rule forq-differentiation [14,22] in the form(Dqfg)(x) = g(x)(Dqf )(x) +
f (qx)(Dqg)(x), one readily verifies that this definition of theq-shuffle ensures that equ
tion

x∫
0

u q v =
( x∫

0

u

)( x∫
0

v

)
,

aq-analog of the corresponding shuffle relation for the ordinary Drinfel’d simplex inte
holds for the multiple Jacksonq-integral. However, the implications of this definition f
multipleq-polylogarithms and multipleq-zeta values have not yet been worked out.

In contrast, Zhao [29] uses the equivalent, but more symmetric form

(Dqfg)(x) = f (x)(Dqg)(x) + g(x)(Dqf )(x) + (q − 1)x(Dqf )(x)(Dqg)(x)

of theq-product rule to derive the formula

( x∫
0

r∏
i=1

ai

)( x∫
0

s∏
j=1

bj

)

=
x∫

0

(
r∏

i=1

ai

s∏
j=1

bj

)
+

min(r,s)∑
c=1

(q − 1)c

×
∑

1�i1<···<ic�r

x∫
0

c+1∏
k=1

{(
(a1+ik−1 · · ·aik−1) (b1+jk−1 · · ·bjk−1)

)〈aik , bjk 〉
}
,

1�j1<···<jc�s
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d
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i-
where denotes the ordinary shuffle product [3,4,6–8],ai = dqt/(t −αi), bj = dqt/(t −
βj ), i0 = j0 = 0, ic+1 = r + 1, jc+1 = s + 1, 〈ar+1, bs+1〉 = 1, and for all 1� i � r and
1 � j � s,

〈ai, bj 〉 = t dqt

(t − αi)(t − βj )
=




1

βj − αi

(
βj dqt

t − βj

− αi dqt

t − αi

)
, if αi 	= βj ,

dqt

t − β
+ β dqt

(t − β)2 , if αi = βj = β.

This is essentially aq-shuffle multiplication rule for the multipleq-polylogarithm, and in
principle could lead to aq-shuffle relation for multipleq-zeta values if all terms coul
be reduced to such. Zhao works out the case of the depth-1 productζq(m)ζq(n) for 2 �
m,n ∈ Z, but even here the result is quite complicated, and in addition we get non-ze
polylogarithmic terms

∞∑
k=1

q(j+1)k

[k]2q
, 0 < j ∈ Z,

appearing in the final result. Thus, at least for the present, the situation with resp
q-shuffles for multipleq-zeta values is less satisfactory than the corresponding situat
the case of theq-stuffles (Section 2).

7. A double generating function for ζ [m + 2, {1}n]

In this section, we derive the followingq-analog of [2, Eq. (10)] and a few of its impl
cations.

Theorem 15. The double generating function identity

∞∑
m=0

∞∑
n=0

um+1vn+1ζ
[
m + 2, {1}n]

= 1− exp

{ ∞∑
k=2

{
uk + vk − (

u + v + (1− q)uv
)k}1

k

k∑
j=2

(q − 1)k−j ζ [j ]
}

(7.1)

holds.

Noting that the generating function (7.1) is symmetric inu andv, we immediately derive
the following special case ofq-duality.

Corollary 7. For all non-negative integersm andn, ζ [m + 2, {1}n] = ζ [n + 2, {1}m].
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Of course, we have already provedq-duality at full strength (Corollary 3) as a cons
quence of generalizedq-duality (Theorem 5). The main interest for Theorem 15 may
that it shows thatζ [m + 2, {1}n] can be expressed in terms of sums of products of dep
q-zeta values. Whenn = 1, this reduces to the following convolution identity, which p
vides aq-analog of Euler’s evaluation [2, Eq. (31)], [12,24] ofζ(m + 2,1).

Corollary 8. Letm be a non-negative integer. Then

2ζ [m + 2,1] = (m + 2)ζ [m + 3] + (1− q)mζ [m+ 2] −
m+1∑
k=2

ζ [m + 3− k] ζ [k].

In particular, whenm = 0 we getζ [2,1] = ζ [3], which corrects an error in [30, Theo
rem 15].

Proof. Compare coefficients ofum+1v2 on each side of the double generating funct
identity (7.1). Letting

ck :=




k∑
j=2

(q − 1)k−j ζ [j ], if k � 2

0, if k < 2,

we find that

2ζ [m + 2,1] = (m + 2)cm+3 + 2(1− q)(m + 1)cm+2 + (1− q)2 mcm+1

−
∑

k+l=m+3

ckcl + 2(q − 1)
∑

k+l=m+2

ckcl − (q − 1)2
∑

k+l=m+1

ckcl, (7.2)

where convolution sums in (7.2) range over all integersk and l satisfying the indicated
relations. Now

(m + 2)cm+3 + 2(1− q)(m + 1)cm+2 + (1− q)2 mcm+1

= (m + 2)

m+3∑
j=2

(q − 1)m+3−j ζ [j ] − 2(m + 1)

m+2∑
j=2

(q − 1)m+3−j ζ [j ]

+ m

m+1∑
j=2

(q − 1)m+3−j ζ [j ]

= {
(m + 2) − 2(m + 1) + m

}m+1∑
j=2

(q − 1)m+3−j ζ [j ]

+ (m + 2)

m+3∑
j=m+2

(q − 1)m+3−j ζ [j ] − 2(m + 1)(q − 1)ζ [m + 2]

= (m + 2)ζ [m + 3] + (1− q)mζ [m + 2].
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In light of (7.2), it now follows that

2ζ [m + 2,1] − (m + 2)ζ [m + 3] − (1− q)mζ [m + 2]
= −

∑
k+l=m+3

ckcl + 2(q − 1)
∑

k+l=m+2

ckcl − (q − 1)2
∑

k+l=m+1

ckcl .

To avoid having to deal directly with boundary cases, we setζ+[n] := ζ [n] (n � 2) and
(q − 1)n+ = (q − 1)n (n � 0). Then

2ζ [m + 2,1] − (m + 2)ζ [m + 3] − (1− q)mζ [m + 2]
= −

∑
k∈Z

cm+3−k

{
ck − 2(q − 1)ck−1 + (q − 1)2ck−2

}
= −

∑
k∈Z

cm+3−k

∑
j∈Z

{
(q − 1)

k−j
+ − 2(q − 1)(q − 1)

k−1−j
+

+ (q − 1)2(q − 1)
k−2−j
+

}
ζ [j ]

= −
∑
k∈Z

cm+3−k

{
ζ+[k] + {

(q − 1) − 2(q − 1)
}
ζ+[k − 1]

+
∑

j�k−2

{
(q − 1)k−j − 2(q − 1)k−j + (q − 1)k−j

}
ζ+[j ]

}

=
∑
k∈Z

cm+3−k(q − 1)ζ+[k − 1] −
∑
k∈Z

cm+3−k ζ+[k].

We now re-index the latter two sums, replacingk by m + 4 − n in the first, andk by
m + 3− n in the second. Thus,

2ζ [m + 2,1] − (m + 2)ζ [m + 3] − (1− q)mζ [m + 2]
=

∑
n∈Z

ζ+[m + 3− n](q − 1)cn−1 −
∑
n∈Z

ζ+[m + 3− n]cn

=
∑
n∈Z

ζ+[m + 3− n]
∑
j∈Z

{
(q − 1)(q − 1)

n−1−j
+ − (q − 1)

n−j
+

}
ζ+[j ]

=
∑
n∈Z

ζ+[m + 3− n]
{ ∑

j�n−1

{
(q − 1)n−j − (q − 1)n−j

}
ζ+[j ] − (q − 1)0+ζ+[n]

}

= −
∑
n∈Z

ζ+[m + 3− n]ζ+[n]

= −
m+1∑
n=2

ζ [m + 3− n]ζ [n],

as claimed. �
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Remark 7. Similarly, one could derive an explicit identity forζ [m + 2,1,1] in terms
of depth-1q-zeta values by comparing coefficients ofum+1v3 in Theorem 15. The re
sulting identity would be aq-analog of Markett’s double convolution identity [23] fo
ζ(m + 2,1,1).

Alternatively, Corollary 8 can be proved as a simple consequence of theq-stuffle mul-
tiplication rule (2.2) and the depth-2 case of theq-sum formula (Corollary 4). Thus,

m+1∑
k=2

ζ [m + 3− k]ζ [k] =
m+1∑
k=2

{
ζ [m + 3] + (1− q)ζ [m + 2]

+ ζ [m + 3− k, k] + ζ [k,m + 3− k]}
= mζ [m + 3] + (1− q)mζ [m + 2] + 2

∑
s,t�2

s+t=m+3

ζ [s, t]

= mζ [m + 3] + (1− q)mζ [m + 2]
+ 2

∑
s�2, t�1
s+t=m+3

ζ [s, t] − 2ζ [m + 2,1]

= mζ [m + 3] + (1− q)mζ [m + 2] + 2ζ [m + 3] − 2ζ [m + 2,1]
= (m + 2)ζ [m + 3] + (1− q)mζ [m + 2] − 2ζ [m + 2,1].

Our proof of Theorem 15 employs techniques from the theory of basic hypergeo
series. For realx andy and non-negative integern, the asymmetricq-power [22] is given
by

(x + y)nq :=
n−1∏
k=0

(
x + yqk

)
, (x + y)∞q := lim

n→∞(x + y)nq .

Theq-gamma function [1, p. 493], [14, p. 16] is defined by

Γq(x) = (1− q)∞q (1− q)1−x

(1− qx)∞q
,

and the basic hypergeometric function [1, p. 520], [14, p. xv, Eq. (22)] is

2φ1

[
qa, qb

qc

∣∣∣∣x
]

=
∞∑ (1− qa)nq(1− qb)nq

(1− qc)nq(1− q)nq
xn, |x| < 1.
n=0
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c-

(7.4).

s,
Heine’sq-analog of Gauss’s summation formula for the ordinary hypergeometric fun
tion [1, p. 522], [14, p. xv, Eq. (23)] may be stated in the form

2φ1

[
qa, qb

qc

∣∣∣∣qc−a−b

]
= Γq(c)Γq(c − a − b)

Γq(c − a)Γq(c − b)
,

∣∣qc−a−b
∣∣ < 1. (7.3)

Our first step towards proving Theorem 15 is to establish the following result.

Theorem 16 (q-Analog of [3, Eq. (6.5)]).Let x andy be real numbers satisfying|x| < 1
and|y| < 1. Then

∞∑
m=0

∞∑
n=0

(−1)m+n[x]m+1
q [y]n+1

q ζ
[
m + 2, {1}n] = 1− Γq(1+ x)Γq(1+ y)

Γq(1+ x + y)
. (7.4)

Proof. Let L denote the bivariate double generating function on the left-hand side of
Then

L = −[y]q
∞∑

m=0

(−1)m+1[x]m+1
q

∞∑
k=1

q(m+1)k

[k]m+2
q

k−1∏
j=1

(
1− [y]q

[j ]q
)

= −[y]q
∞∑

m=0

(−1)m+1[x]m+1
q

∞∑
k=1

q(m+1)k

[k]m+2
q

k−1∏
j=1

[j ]q − [y]q
[j ]q

= −[y]q
∞∑

m=0

(−1)m+1[x]m+1
q

∞∑
k=1

q(m+1)k

[k]m+2
q

k−1∏
j=1

qy − qj

1− qj

= qy

(
1− q−y

1− q

) ∞∑
m=0

(−1)m+1[x]m+1
q

∞∑
k=1

q(m+1)k

[k]m+2
q

· q(k−1)y

(1− q)k−1
q

k−1∏
j=1

(
1− qj−y

)

=
∞∑

m=0

(−1)m+1[x]m+1
q

∞∑
k=1

q(m+1)kqky

[k]m+1
q

· (1− q−y)kq

(1− q)kq
.

Now interchange order of summation, noting that the sum onm is a geometric series. Thu
we find that

L =
∞∑

k=1

qky(1− q−y)kq

(1− q)kq

∞∑
m=0

(−1)m+1q(m+1)k[x]m+1
q

[k]m+1
q

= −
∞∑

k=1

qky(1− q−y)kq

(1− q)kq
· qk[x]q/[k]q

1+ qk[x]q/[k]q

= −
∞∑ q(y+1)k(1− q−y)kq

(1− q)kq
· [x]q
[k]q + qk[x]q
k=1
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es, we
= −
∞∑

k=1

q(y+1)k(1− q−y)kq

(1− q)kq
· 1− qx

1− qk+x

= −
∞∑

k=1

q(y+1)k(1− q−y)kq

(1− q)kq
· (1− qx)kq

(1− q1+x)kq

= 1− 2φ1

[
q−y, qx

q1+x

∣∣∣∣q1+y

]
.

Invoking Heine’s formula (7.3) completes the proof.�
To express the right-hand side of (7.4) in the form of an exponentiated power seri

require the following series expansion of the logarithm of theq-gamma function.

Lemma 10. For real x such that−1< x < 1, we have

logΓq(1+ x) = −γq x +
∞∑

k=2

[x]kq
k

k∑
j=2

(q − 1)k−j ζ [j ],

where

γq := log(1− q) − logq

1− q

∞∑
n=1

qn

[n]q

is aq-analog of Euler’s constant,γ .

Proof. By definition,

Γq(1+ x) = (1− q)−x
∞∏

n=1

1− qn

1− qn+x
.

Therefore,

logΓq(1+ x) + x log(1− q) = −
∞∑

n=1

log

(
1− qn+x

1− qn

)
= −

∞∑
n=1

log

(
1+

(
1− qx

1 − qn

)
qn

)

=
∞∑

n=1

∞∑
k=1

(−1)k[x]kq qkn

k [n]kq
=

∞∑
k=1

(−1)k[x]kq
k

ζ̃ [k], (7.5)

where

ζ̃ [k] :=
∞∑ qkn

[n]kq
, k > 0.
n=1
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If we now multiply the identity

qjn

[n]jq
= (q − 1)

q(j−1)n

[n]j−1
q

+ q(j−1)n

[n]jq
(
n, j ∈ Z+)

by (q − 1)k−j and sum onn andj , we find that

k∑
j=2

(q − 1)k−j ζ̃ [j ] =
k∑

j=2

(q − 1)k−j+1 ζ̃ [j − 1] +
k∑

j=2

(q − 1)k−j ζ [j ],

which telescopes, leaving us with

ζ̃ [k] = (q − 1)k−1 ζ̃ [1] +
k∑

j=2

(q − 1)k−j ζ [j ], k � 1. (7.6)

If we now substitute (7.6) into (7.5), there comes

logΓq(1+ x) + x log(1− q)

=
∞∑

k=1

(−1)k[x]kq
k

{
(q − 1)k−1 ζ̃ [1] +

k∑
j=2

(q − 1)k−j ζ [j ]
}

= −(q − 1)−1 ζ̃ [1] log
(
1+ (q − 1)[x]q

) +
∞∑

k=1

(−1)k[x]kq
k

k∑
j=2

(q − 1)k−j ζ [j ]

= xζ̃ [1] logq

1− q
+

∞∑
k=2

(−1)k[x]kq
k

k∑
j=2

(q − 1)k−j ζ [j ].

In light of the fact that

logΓ (1+ x) = −γ x +
∞∑

k=2

(−1)kxk

k
ζ(k)

and limq→1− Γq(1 + x) = Γ (1 + x), it follows that limq→1− γq = γ . Thus, the proof of
Lemma 10 is complete.�
Proof of Theorem 15. By Theorem 16 and Lemma 10, we have

∞∑
m=0

∞∑
n=0

(−1)m+n[x]m+1
q [y]n+1

q ζ
[
m + 2, {1}n]

= 1− exp

{ ∞∑ (−1)k

k

([x]kq + [y]kq − [x + y]kq
) k∑

(q − 1)k−j ζ [j ]
}

.

k=2 j=2
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Noting that[x + y]q = [x]q + [y]q + (q − 1)[x]q[y]q , the result now follows on replacin
[x]q by −u and[y]q by −v. �
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