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We investigate the spin structure of the kaon, based on the nonlocal chiral quark model from the
instanton vacuum. We first revisit the electromagnetic form factors of the pion and kaon, improving the
results for the kaon. We evaluate the generalized tensor form factors of the kaon in order to determine
the probability density of transversely polarized quarks inside the kaon. We consider the effects of flavor
SU(3) symmetry breaking, so that the probability density of the up and strange quarks are examined in
detail. It is found that the strange quark behaves differently inside the kaon in comparison with the up
quark.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Recently, the QCDSF/UKQCD Collaborations reported the first
lattice results for the pion transversity [1]. They evaluated the
probability density of the polarized quarks inside the pion and
found that their distribution in the impact-parameter space is
strongly distorted when the quarks are transversely polarized.
These lattice results have triggered various theoretical works [2–
5]. Broniowski et al. [4] have investigated the tensor form factors of
the pion within the local and nonlocal chiral quark models [4] and
have employed a larger value of the pion mass, i.e. mπ = 600 MeV
in such a way that the results can be compared with the lattice
data directly. They also considered the case of the chiral limit. In
Ref. [5], the tensor form factors of the pion were calculated and
the probability density of the polarized quarks inside the pion was
derived by combining the tensor form factors with the electromag-
netic (EM) ones, based on the nonlocal chiral quark model (NχQM)
from the instanton vacuum. The results were in good agreement
with the lattice data [1].

It is also of great interest to study the spin structure of the
kaon, since it sheds light on the effects of flavor SU(3) symmetry
breaking on behavior of the strange quark. Thus, in the present
Letter, we aim at investigating the generalized tensor form fac-
tors of the kaon and their implications for its spin structure within
the framework of the NχQM [6,7]. In Ref. [7], Musakhanov ex-
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tended the work of Ref. [6], considering the finite current-quark
mass. Since we need to take into account the explicit breaking of
flavor SU(3) symmetry breaking, we will use the extended NχQM
from the instanton vacuum [7–9]. The model provides a suitable
framework to study properties of the kaon, since the instanton vac-
uum explains the spontaneous chiral symmetry breaking (SχSB)
naturally via quark zero modes and the explicit breaking of flavor
SU(3) symmetry can be treated consistently. Moreover, an impor-
tant merit of this approach lies in the fact that there are only
two parameters, i.e. the average (anti)instanton size ρ̄ ≈ 1/3 fm
and average inter-instanton distance R̄ ≈ 1 fm. In particular, the
average size of instantons, of which the inverse is approximately
equal to ρ̄−1 ≈ 600 MeV, provides the natural scale of the model.
Note that the values of the ρ̄ and R̄ were estimated many years
ago phenomenologically in Ref. [11] as well as theoretically in
Refs. [12–14]. The present framework has been already used to
describe successfully semileptonic decays of the kaon [15] and
qualitatively its EM form factor [10].

In order to evaluate the probability density of the polarized
quarks inside the kaon, it is essential to know quantitatively the
EM form factor of the kaon. Thus, in the present work, we will
take as a free parameter the constituent-quark mass at the zero
virtuality of the quark rather than strictly following the previ-
ous model derived from the instanton vacuum. We will show that
while properties of the pion are very stable, those of the kaon are
much improved, compared to the results of the previous work [10].
We will also calculate the tensor form factors of the kaon with
the two different values of the constituent-quark mass. Then, the
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probability density of the polarized quarks inside the kaon will be
derived and discussed, based on the results of the EM and tensor
form factors of the kaon. We will also study the behavior of the up
and strange quarks inside the kaon, so that we understand the ef-
fects of flavor SU(3) symmetry breaking on the distribution of the
strange quarks inside the kaon.

2. The generalized tensor form factors Bni(Q 2) of the pseu-
doscalar meson are defined as the matrix elements of the follow-
ing tensor operator〈
φ(p f )

∣∣Oμνμ1···μn−1
T

∣∣φ(pi)
〉

= AS
[

(pμqν − qμpν)

mφ

×
n−1∑

i=even

qμ1 · · ·qμi pμi+1 · · · pμn−1 Bni
(

Q 2)], (1)

where pi and p f stand for the initial and final on-shell mo-
menta of the pseudoscalar meson φ, respectively. We assign the
mass of the meson as mφ , and also introduce respectively the av-
erage momentum and the momentum transfer p = (p f + pi)/2
and q = p f − pi . For definiteness, we will only take into account
the positively charged pion (π+) and kaon (K +) for the me-
son in this work. Moreover, we set the pion and kaon masses as
mπ = 140 MeV and mK = 495 MeV as numerical input. The tensor
operator can be expressed as

Oμνμ1···μn−1
T = AS

[
ψ̄ f σ

μν
(
i
↔
Dμ1

) · · · (i
↔
Dμn−1

)
ψ f

]
. (2)

The operations A and S denote the anti-symmetrization in (μ,ν)

and symmetrization in (ν, . . . ,μn−1) with the trace terms sub-
tracted in all the indices. The ψ f stands for a quark field with
flavor f .

Taking into account Eqs. (1) and (2), we can define respectively
the first and second generalized tensor form factors Bφ, f

10 and Bφ, f
20

in the momentum space as the matrix element of the tensor cur-
rent, using the auxiliary-vector method as in Ref. [16]:〈
φ(p f )

∣∣ψ̄ f (0)σabψ f (0)
∣∣φ(pi)

〉
= [

(pi · a)(p f · b) − (pi · b)(p f · a)
] Bφ, f

10 (Q 2)

mφ

,

〈
φ(p f )

∣∣ψ̄ f (0)σab(i
↔
D · a)ψ f (0)

∣∣φ(pi)
〉

= {
(p · a)

[
(pi · a)(p f · b) − (pi · b)(p f · a)

]} Bφ, f
20 (Q 2)

mφ

, (3)

where the vectors satisfy the following conditions a2 = a ·b = 0 and
b2 �= 0, and we have used a shorthand notation σab ≡ σμνaμbν .
With the help of this auxiliary-vector method, one can eliminate
the trace-term subtractions. We also use the hermitized covariant
derivative i

↔
Dμ ≡ (i

→
Dμ − i

←
Dμ)/2, where Dμ indicates the SU(Nc)

covariant derivative. Since we are interested in the spatial distri-
bution of the transversely polarized quark inside the meson, we
need to consider the Fourier transform of the form factors [17]:

Fφ, f (b2⊥
) = 1

(2π)2

∫
d2q⊥ e−ib⊥·q⊥Fφ, f (q2⊥

)

= 1

2π

∞∫
0

Q dQ J0(bQ )Fφ, f (Q 2), (4)

where Fφ, f designates a generic flavor form factor representing,
for instance, Aφ, f or Bφ, f . The b⊥ denotes the impact parameter
n0 n0
that measures the distance from the center of momentum of the
meson to the quark in the transversed plane to its motion. Here,
we use |q⊥| ≡ Q and |b⊥| ≡ b. The J0 stands for the Bessel func-
tion of order zero. Similarly, the Fourier transform of the derivative
of the generalized form factors with respect to b2⊥ can be evaluated
as

∂Fφ, f (b2⊥)

∂b2⊥
≡ [

Fφ, f (b2⊥
)]′

= − 1

4πb

∞∫
0

Q 2 dQ J1(bQ )Fφ, f (Q 2). (5)

The J1 denotes the Bessel function of order one.
The probability density of the transversely polarized quark with

flavor f is defined in terms of the generalized vector and tensor
form factors [1]:

ρ
φ, f
n (b⊥, s⊥) = 1

2

[
Aφ, f

n0

(
b2⊥

) − si⊥ε i jb j
⊥

mφ

∂ Bφ, f
n0 (b2⊥)

∂b2⊥

]
, (6)

where the s⊥ stands for the fixed transverse spin of the quark.
For simplicity, we choose the z direction for the quark longitudinal
momentum. In the case of exact flavor SU(3) symmetry, the vec-
tor form factor Aφ, f

10 with flavor f is just equal to the EM form

factor due to isospin symmetry [18]: Aπ,u
10 (Q 2) = −Aπ,d

10 (Q 2) =
Fπ (Q 2). Similarly, we have the following relation for the kaon:
AK ,u

10 (Q 2) = −AK ,s
10 (Q 2) = F K (Q 2) because of V -spin symmetry.

However, these simple relations are broken by explicit flavor SU(3)
symmetry breaking. Hence, it is necessary to compute separately
the up–down and strange form factors of the kaon.

In the previous works [5,10], the positively charged pion and
kaon electromagnetic form factors were already investigated. Thus,
we will employ the same theoretical framework to compute the
vector form factors. Although the kaon vector form factors are dif-
ferent from the EM form factor of the kaon as mentioned above,
they can be easily evaluated within the same framework. There-
fore, we will only focus on how to evaluate the tensor form factors.
For more details, one refers to Ref. [10]. Considering all the ingre-
dients discussed so far, one is finally led to the analytical definition
of the flavor probability density of the quark in the transverse
impact-parameter space as follows:

ρ
φ, f
n (b⊥, sx = ±1) = 1

2

[
Aφ, f

n0

(
b2) ∓ b sin θ⊥

mφ

[
Bφ, f

n0

(
b2)]′], (7)

where the spin of the quark inside the meson is quantized along
the x axis, s⊥ = (±1,0).

3. We now briefly explain the extended NχQM from the in-
stanton vacuum [7–9] and derive the generalized form factors
of the pion and kaon. Considering first the dilute instanton liq-
uid, characterized by two instanton parameters, i.e. the average
(anti)instanton size ρ̄ ≈ 1/3 fm and average inter-instanton dis-
tance R̄ ≈ 1 fm with the small packing parameter πρ̄4/R̄4 ≈ 0.1,
we are able to average the fermionic determinant over collective
coordinates of instantons with fermionic quasi-particles, i.e. the
constituent quarks introduced. The averaged determinant is re-
duced to the light-quark partition function that can be given as a
functional of the tensor field in the present case. Having bosonized
and integrated it over the quark fields, we obtain the following
effective nonlocal chiral action in the large Nc limit in Euclidean
space:
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Seff[m f , φ]
= −Sp ln

[
i/∂ + im f + i

√
M

(
∂2

)
Uγ5(φ)

√
M

(
∂2

) + σ · T
]
, (8)

where m f , φ, and Sp indicate the current-quark mass, the pseudo-
Nambu–Goldstone (NG) boson field, and the functional trace over
all relevant spaces, respectively. Assuming isospin symmetry and
explicit flavor SU(3) symmetry breaking, we use the following nu-
merical values mu = md = 5 MeV and ms = 180 MeV. The M(i∂)

stands for the momentum-dependent effective quark mass, gen-
erated from the fermionic zero modes of the instantons [6]. Its
analytical form is in general given by

M
(
∂2) = M0 F 2(t),

F (t) = 2t

[
I0(t)K1(t) − I1(t)K0(t) − 1

t
I1(t)K1(t)

]
. (9)

Here, t = |/∂ |ρ̄/2, and In and Kn stand for the modified Bessel func-
tions with the order n. In the numerical calculations, instead of
using Eq. (9), we will make use of the following parametrization
for numerical convenience:

M
(
∂2) = M0

(
2

2 + ρ̄2∂2

)2

, (10)

where M0 indicates the constituent-quark mass at zero quark vir-
tuality and its value is determined by the self-consistent equation
of the instanton model in the chiral limit [7–9]:

1

R̄4
= 4Nc

∫
d4 p

(2π)4

M2(p)

p2 + M2(p)
, (11)

resulting in M0 ≈ 350 MeV. As done in Refs. [7,8,19], M0 is modi-
fied due to the explicit flavor symmetry breaking in the following
way:

M0 → M0 f (m f ) = M0

[√
1 + m2

f

d2
− m f

d

]
, (12)

where d = 198 MeV. We will call this model with the original set
of parameters as model I. Note that M0 should be modified in such
a way that the instanton-number density is independent of the fi-
nite current-quark mass [7,8,19]. On the other hand, considering
theoretical uncertainties in the instanton framework for the flavor
SU(3) sector, we still can choose the value of M0 to reproduce ex-
perimental data such as the pion and kaon electric-charge radii,
setting f (m f ) = 1 in Eq. (12), from a very phenomenological point
of view, whereas the instanton parameters remain unchanged. We
call this phenomenological way as model II. The pseudo-NG boson
field is represented in a nonlinear form as [20]:

Uγ5(φ) = exp

[
iγ5(λ · φ)

Fφ

]

= 1 + iγ5(λ · φ)

Fφ

− (λ · φ)2

2F 2
φ

+ · · · , (13)

where φα is the flavor SU(3) multiplet defined as

λ · φ =

⎛
⎜⎜⎜⎝

π0√
2

+ η√
6

π+ K +

π− − π0√
2

+ η√
6

K 0

K − K̄ 0 − 2η√
6

⎞
⎟⎟⎟⎠ , (14)

where the trace over the isospin space is defined by tr[λαλβ ] =
2δαβ . The Fφ denotes the weak-decay constant for the pseudo-
NG bosons, whose empirical values are 93.2 MeV for the pion and
113 MeV for the kaon for instance. The last term in Eq. (8) denotes
σ · T = σμν Tμν , where σμν = i[γμ, γν ]/2 and Tμν designates the
external tensor field.

The three-point correlation function in Eq. (3) can be easily cal-
culated by a functional differentiation with respect to the pseudo-
NG boson and external tensor fields. Having performed the func-
tional trace and that over color space, we can write the matrix
elements for the Bφ, f

10 (Q 2) and Bφ,q
20 (Q 2), corresponding to Eq. (3),

as follows:〈
φ(p f )

∣∣q†(0)σabq(0)
∣∣φ(pi)

〉
= −2Nc

F 2
φ

∫
d4k

(2π)4

× Trγ

[
1

i/D1

√
M1γ5

√
M2

1

i/D2

√
M2γ5

√
M3

1

i/D3
σab

]
,

〈
φ(p f )

∣∣q†(0)σab(i
↔
D · a)q(0)

∣∣φ(pi)
〉

= −2Nc

F 2
φ

∫
d4k

(2π)4

× Trγ

[
1

i/D1

√
M1γ5

√
M2

1

i/D2

√
M2γ5

√
M3

1

i/D3
σabη

]
, (15)

where η ≡ (k + pi
2 ) · a. The relevant momenta are also defined as

k1 = k − pi

2
− q

2
, k2 = k + pi

2
− q

2
,

k3 = k + pi

2
+ q

2
. (16)

Here, we have used the notation Mi ≡ M(k2
i ) for i = (1,2,3).

The denominators become /Di = /ki + iM̄i in Eq. (15), where M̄i =
Mi +mi . For B K ,u

n0 , we choose m1,3 = mu and m2 = ms , while we set

m1,3 = ms and m2 = mu for B K ,s
n0 . In order to evaluate the matrix

element, we define the initial and final pion momenta in the Breit
(brick-wall) frame in Euclidean space as done in Ref. [10]. We also
have chosen the auxiliary vectors explicitly as a = (0,1,0, i) and
b = (1,0,1,0), which satisfy the conditions mentioned previously,
and have defined σab = σμνaμbν . The momentum-dependent ef-
fective quark mass Ma,b,c can be also defined by using Eqs. (10)
and (16).

4. We now present the numerical results and discuss them.
First, in order to see the reliability of the present framework, we
have computed the positive-charged pion and kaon EM form fac-
tors. Moreover, the vector form factors can be easily derived from
them. In the left panel of Fig. 1, we draw the numerical results
for the EM form factors of the pion and kaon, using model I and
model II, separately. Note that the results of model I are the same
as those given in Ref. [10] as they should be. As for the pion, the
results from the two models almost coincide with each other be-
cause of the small masses of the light quarks in comparison to the
renormalization point μ � 600 MeV, and turn out to be in good
agreement with the experimental data taken from Refs. [21–26].
This renormalization-point value is proportional to the inverse of
the average (anti)instanton size, i.e. μ ≈ 1/ρ̄ [11–14], indicating
the scale of the quark–(anti)instanton interaction strength. Though
model I provides considerably good results, we made fine-tuning
of the value of M0 to be 343 MeV for model II to fit the electric-
charge radius of the pion 〈r2〉exp

π ≈ (0.672 fm)2. The pion decay
constant is reproduced to be Fπ ≈ 94 MeV for both models, while
its empirical value is Fπ = 93.2 MeV. All the numerical results are
listed in Table 1.
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Fig. 1. (Color online.) Electromagnetic form factors of the pion and kaon from model I and model II as functions of Q 2 in the left panel. The experimental data are taken
from Refs. [21–24,26,27]. Kaon generalized form factors, AK , f

10 , B K , f
10 , and B K , f

20 , as functions of Q 2 for each flavor, based on model I (solid) and model II (square) in the right
panel.

Table 1
The results of the decay constants and charge radii of the pion and kaon from model I and model II, respectively. We have used mu,d = 5 MeV, ms = 180 MeV, 1/R̄4 =
(200 MeV)4, and 1/ρ̄ = 600 MeV.

φ Model M0 Fφ F phen.
φ 〈r2〉theo.

φ 〈r2〉exp.
φ

π I 350 MeV 94.23 MeV 93.2 MeV (0.673 fm)2 [(0.672 ± 0.008) fm]2

II 343 MeV 94.43 MeV (0.672 fm)2

K I 350 MeV 100.17 MeV 113 MeV (0.639 fm)2 [(0.560 ± 0.031) fm]2

II 407 MeV 118.64 MeV (0.560 fm)2
In contrast, the kaon EM form factors depend on which model
we are using. The results of model I are underestimated, being
compared with the experimental data [27]: For example, the kaon
charge radius turns out to be 〈r2〉theo.

K = (0.639 fm)2, which is
about 10% larger than the experimental one 〈r2〉exp.

K = (0.560 fm)2.
In addition, we have the smaller value of the kaon decay constant
F K = 100.17 MeV in comparison to the corresponding empirical
value F K = 113 MeV. These sizable deviations from the data have
been already observed in our previous work [10], and can be
understood by the absence of the meson-loop corrections (MLC)
which is essential for the cases with the explicit flavor SU(3) sym-
metry breaking [28]. Hence, to remedy this problem for the kaon
case, one may consider the MLC coming from the mesonic fluc-
tuations around the saddle point. However, since it is rather in-
volved, we take a more phenomenological stand on this problem.
So, model II can be regarded as a phenomenological way in con-
fronting with the experimental data. We now fit the value of M0
to reproduce the experimental value for the kaon electric charge
radius. The fitted value M0 = 407 MeV brings also about the kaon
decay constant F K = 118.64 MeV which is in good agreement with
the data. We note that the nonlocal contributions to the electro-
magnetic form factors of the pion and kaon, which were already
discussed in Ref. [10], are about (30–40)%. All the numerical re-
sults can be found in Table 1.

Once all the relevant parameters are fixed as discussed above
(see Table 1), we can proceed to compute the generalized form
factors of the kaon within the two models. As for the pion form
factors, one can refer to our previous work [5]. In the left panel of
Fig. 1, we depict the results from model I in solid (pion) and shot-
dashed (kaon) curves, where as those from model II are drawn in
dotted (pion) and long-dashed (kaon) curves. Being different from
the pion case, it is necessary to consider the up and strange quarks
separately in Eq. (2). However, the up and strange vector form fac-
tors of the kaon must satisfy the charge conservation at Q 2 = 0 as
follows:

2

3
AK ,u

10 (0) − 1

3
AK ,s

10 (0) = 1. (17)

In the right panel of Fig. 1, we show the results of the up and
strange generalized vector and tensor form factors. The results
from model I are drawn in solid curves, whereas those from
model II are distinguished by putting squares. The six curves in
the upper part correspond to the up form factors and those in the
lower part illustrate the strange ones. One can observe from the
numerical results that the difference between the results from the
two different models is noticeable in general apart from the B20.
Before we derive the probability densities of the polarized quarks,
it is very convenient to parameterize the form factors [1]:

Aφ, f
10

(
Q 2) → Aφ, f

10 (0)

1 + Q 2/M2
Aφ, f

10

,

Bφ, f
n0

(
Q 2) → Bφ, f

n0 (0)

[1 + Q 2/(pn M2
Bφ, f

n0

)]pn
, (18)

where the M
AK , f

n0
and M

B K , f
n0

denote the pole masses corresponding

to the flavor form factors. Note that we employ a simple monopole
and p-pole type parametrizations for the vector and tensor form
factors, respectively. Considering the condition p > 1.5 for the reg-
ular behavior of the probability density at b⊥ → 0 [29] and follow-
ing Ref. [1], we take p1 = p2 = 1.6 as a trial. These parametrized
form factors are also very useful in analyzing the lattice simu-
lation [1]. Using the numerical results for the generalized form
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Table 2
Results for the parametrized form factors in Eq. (18) and 〈bK ,q

y 〉 for model I and model II.

Model Quark AK ,q
10 (0) M

AK ,q
10

B K ,q
10 (0) M

B K ,q
10

B K ,q
20 (0) M

B K ,q
20

〈bK ,q
y 〉

I q = u 1.045 0.647 GeV 0.880 0.726 GeV 0.199 0.748 GeV 0.168 fm
q = s −0.909 0.772 GeV −0.760 0.709 GeV −0.143 0.806 GeV 0.166 fm

II q = u 1.025 0.894 GeV 0.687 0.898 GeV 0.128 0.918 GeV 0.133 fm
q = s −0.950 1.081 GeV −0.473 1.272 GeV −0.108 1.520 GeV 0.100 fm

Fig. 2. (Color online.) Polarized quark-spin density ρ
K , f
1 for the up (left column) and strange (right column) quarks as functions of the impact parameters bx and by for

model I (upper panels) and II (lower panels).
factors drawn in the left panel of Fig. 1 and Eq. (18), we extract
the numerical values for the parametrized form factors as

(M AK ,u
10

, MB K ,u
10

, MB K ,u
20

) = (0.647,0.726,0.748) GeV,

(M AK ,s
10

, MB K ,s
10

, MB K ,s
20

) = (0.772,0.709,0.806) GeV (19)

for model I and

(M AK ,u
10

, MB K ,u
10

, MB K ,u
20

) = (0.894,0.898,0.918) GeV,

(M AK ,s
10

, MB K ,s
10

, MB K ,s
20

) = (1.081,1.272,1.520) GeV (20)

for model II. The results of the pole masses from model II turn out
to be in general larger than those from model I, which indicates
that the form factors from model II decrease less slowly than those
from model I, as shown in Fig. 1. The pole masses of the pion ten-
sor form factors [5] MBπ,u

10
= 0.761 GeV and MBπ,u

20
= 0.864 GeV1

1 We note that there was an error in Ref. [5] related to the tadpole diagram. The
contribution from this diagram is essentially zero for the tensor form factors due
can be compared with those from the lattice simulation, (0.756 ±
0.095) GeV and (1.130 ± 0.265) GeV, respectively [18]. Note that
these lattice data are extrapolated values to mπ = 140 MeV from
the higher pion mass mπ ≈ 600 MeV. In Ref. [34], the Holdom–
Terning–Verbeek (HTV) nonlocal-interaction model was employed
to compute the tensor form factors for the pion. Their results are
qualitatively compatible with ours given in Ref. [5]. All the numer-
ical results are summarized in Table 2 in addition to the values of
the generalized form factors at Q 2 = 0.

We are now in a position to consider the quark-spin probability
density ρ

φ,q
n , defined in Eq. (6), using our numerical results for the

generalized form factors. For definiteness, we choose s⊥ = +1 ex-
plicitly in Eq. (7) and take the absolute values for the densities. Af-
ter performing the Fourier transform of the form factors, we show
the numerical results as functions of the two-dimensional impact-
space parameters, i.e. bx and by as shown in Fig. 2. As already

to its antisymmetric nature. However, correcting the error brings about negligible
changes in the numerical results.
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Fig. 3. (Color online.) Profiles of the probability densities at bx = 0.05 fm for the
u quark (upper-two curves) and s quark (lower-two curves) for the model I (solid)
and II (square).

shown in Ref. [5] and understood from Eq. (7), the unpolarized-
quark probability density (s⊥ = 0) must be symmetric under the
rotation with respect to the z axis, being perpendicular to the
bx–by plane. Hence, we do not see any interesting structures from
them. On the contrary, when the quark inside the meson is polar-
ized (s⊥ = +1), there appears tilted structures signaling the spin
structure inside the meson. In Fig. 2, we show the numerical re-
sults for the polarized densities from model I (upper-two panels)
and from model II (lower-two panels). In the left (right) column,
we depict them for the up (strange) quarks. One can clearly ob-
serve the distortions of the surfaces due to the polarization. For in-
stance, in Fig. 3, we draw the profiles of probability densities of the
polarized up and strange quarks as functions of by at bx = 0.05 fm,
separately for each model. While the peak positions are very sim-
ilar to each other, their strengths are different. These structural
differences within the densities can be measured via the average
shift of the peak position along the bx direction as follows:

〈
bφ, f

y
〉 =

∫
d2b⊥ byρ

φ, f
1 (b⊥, s⊥)∫

d2b⊥ ρ
φ, f
1 (b⊥, s⊥)

= 1

2mφ

Bφ, f
10 (0)

Aφ, f
10 (0)

. (21)

Using this, we obtain 〈bφ,u
y 〉 = 0.168 fm and 〈bφ,s

y 〉 = 0.166 fm for

model I, and 〈bφ,u
y 〉 = 0.133 fm and 〈bφ,s

y 〉 = 0.100 fm for model II.
In the previous work, using Eq. (21), we obtain 〈bπ

y 〉 = 0.161 fm,
which is compatible with the lattice calculation 〈bπ

y 〉 = (0.151 ±
0.024) fm, being extrapolated to mπ = 140 MeV [1], which is sim-
ilar to that of the kaon from model I. However, it turns out that
the result for the kaon is about 30% smaller than that for the pion
from model II. In other words, if one considers the phenomenologi-
cally preferable results, i.e. model II, the difference in the polarized
densities for the pion and kaon becomes more obvious, which im-
plies that the polarization effect of the spin inside the pion gets
more evident than inside the kaon.

Anticipating the results from lattice QCD in near future, we
present the relevant numerical results at μ = 2 GeV which is a
usual scale of the lattice simulation. For this purpose, we want to
take into account the renormalization-group (RG) evolution [4,30]
as follows:

Bn0
(

Q 2,μ
) = Bn0

(
Q 2,μ0

)[ α(μ)
]γn/(2β0)

, (22)

α(μ0)
where we have used the anomalous dimensions γ1 = 8/3 and
γ2 = 8, and β0 = 11Nc/3 − 2N f /3 (Nc = 3 and N f = 3 in the
present case). Thus, the powers in the LO evolution equation are
given as 4/27 and 4/9, respectively, for n = 1 and n = 2, which
indicate that the dependence of the tensor charge on the normal-
ization point turns out to be rather weak. Note that the anoma-
lous dimension is simply the same as that for the nucleon tensor
charge [31]. We also take ΛQCD = 0.248 GeV which was also used
in evolving the nucleon tensor charges and anomalous magnetic
moments [32,33]. Since the normalization point of the present
model is around 0.6 GeV, whereas the lattice calculation was car-
ried out at μ = 2 GeV, the scale factors turn out to be

Bφ, f
10

(
Q 2,μ = 2 GeV

) = 0.89Bφ, f
10

(
Q 2,μ0 = 0.6 GeV

)
,

Bφ, f
20

(
Q 2,μ = 2 GeV

) = 0.70Bφ, f
20

(
Q 2,μ0 = 0.6 GeV

)
. (23)

The corresponding results for the tensor charges at μ = 2 GeV are
listed in Table 3.

5. In the present work, we aimed at investigating the spin
structure of the kaon, based on the nonlocal chiral quark model
from the instanton vacuum. We first evaluated the generalized
form factors for the kaon, i.e. vector and tensor form factors for
the moments n = 1,2. We calculated the flavor vector and ten-
sor form factors of the kaon with explicit flavor SU(3) symmetry
breaking considered. In order to improve the electromagnetic form
factors of the kaon, which was studied previously [10], we treated
the constituent-quark mass at zero virtuality of the quark as a free
parameter to fit the experimental data. The vector properties of
the pion were almost not changed, whereas those of the kaon
were shown to be much improved by using the higher value of
the constituent-quark mass. Both the results for the pion and kaon
were in good agreement with the data.

Having evaluated the generalized vector and tensor form fac-
tors of the kaon, we proceeded to compute the probability den-
sities of the polarized quark inside the kaon. In doing so, we
parametrized the form factors, employing the simple monopole
and p-pole type parameterizations for the vector and tensor ones.
Using the parametrized results, we computed the probability den-
sities of the unpolarized and polarized quarks inside the kaon as
functions of the impact parameters, which reveal the spin struc-
tures of the kaon. Anticipating the data from the lattice simulation
in near future, we also presented the results of the tensor charges,
evolving them from the present scale μ0 ≈ 600 MeV to μ = 2 GeV
which is a scale often used in the lattice simulations.

We summarize the important observations in the present work:

• The electromagnetic form factor of the pion is reproduced
quantitatively well for both models, whereas that of the kaon
is well described within model II, i.e. the phenomenological
one, compared to the original model (model I) in which there
is no free parameter. This difference can be understood by the
absence of the 1/Nc meson-loop corrections in the present
work, which will improve the results of the original model.

• Due to the explicit flavor SU(3) symmetry breaking, the up and
strange form factors turn out to be asymmetric with respect to
the interchange of up and strange quarks, i.e. V -spin transfor-
mation, being different from the pion case. In general we find
that the strange form factors are relatively flat in comparison
to the up form factors.

• In parametrizing the form factors, we find that model II pro-
vides larger pole masses (0.894–1.520) GeV than those from
model I (0.647–0.806) GeV. Note that the results of model I
are closer to those of the pion.
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Table 3
Renormalization-group (RG) evolution of the results for the B K ,q

10 (0) and B K ,q
20 (0) at the scale μ = 2 GeV with mK = 495 MeV for model I and model II. We also write the

results for the pion.

Model I Model II Pion [5]

Quark B K , f
10 (0) B K , f

20 (0) Quark B K , f
10 (0) B K , f

20 (0) Bπ,u
10 (0) Bπ,u

20 (0)

u 0.783 0.139 u 0.611 0.090 0.217 0.034
s −0.676 −0.100 s −0.421 −0.076
• Considering the tensor form factors, we find that the proba-
bility density for the polarized quarks get distorted. The de-
gree of this distortion can be measured by the deviation of
the average value of 〈bK , f

y 〉 from zero. In model II, the de-
viation depending on quark species is seen more obviously,
i.e. 〈bK ,(u,s)

y 〉 = (0.133,0.100) fm, while almost no difference
is observed for model I.

• The RG evolution of the present results brings about the tensor
charges as follows: B K ,u

10 = (0.611–0.783),

|B K ,s
10 | = (0.421–0.676), B K ,u

20 = (0.090–0.139), and |B K ,s
20 | =

(0.076–0.100) at the renormalization scale μ = 2 GeV, the-
oretical uncertainties of the present model being taken into
account.

As we have shown in the present work, the generalized form
factors play a role of revealing the internal spin structures of
mesons. While it is very difficult to get access directly to the spin
structures of mesons, the lattice data will shed light on under-
standing them. Moreover, the generalized form factors with differ-
ent operators and with higher moments will further show us how
the quarks inside the kaon behave more in detail. Thus, it will be
of great interest to investigate them in the future.
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