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Abstract

Synchronous primary breast cancer describes the oc-

currence of multiple tumors affecting one or both

breasts at initial diagnosis. This provides a unique

opportunity to identify tissue-specific genomic markers

that characterize each tumor while controlling for the

individual genetic background of a patient. The aim of

this study was to examine the genomic alterations

and degree of similarity between synchronous cancers.

Using metaphase comparative genomic hybridization

and array comparative genomic hybridization (aCGH),

the genomic alterations of 23 synchronous breast can-

cers from 10 patients were examined at both chromo-

somal and gene levels. Synchronous breast cancers,

when compared to their matched counterparts, were

found to have a common core set of genetic alterations,

with additional unique changes present in each. They

also frequently exhibited features distinct from the more

usual solitary primary breast cancers. The most fre-

quent genomic alterations included chromosomal gains

of 1q, 3p, 4q, and 8q, and losses of 11q, 12q, 16q, and

17p. aCGH identified copy number amplification in re-

gions that are present in all 23 tumor samples, including

1p31.3–1p32.3 harboring JAK1. Our findings suggest

that synchronous primary breast cancers represent a

unique type of breast cancer and, at least in some

instances, one tumor may give rise to the other.
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Introduction

Although many genetic perturbations have been detected

in a proportion of breast cancer cases, common events

underlying the majority of breast cancer cases have been

much harder to find, due partly to differences in genetic

background between individuals. Studying synchronous

tumors from the same patient can overcome such confounding

factors by allowing investigators to identify genetic markers

specific to individual tumors while controlling for both tissue-

specific and patient-specific genetic background factors.

The prevalence of synchronous primary breast carcinoma is

approximately 1% to 11% [1,2], although the incidence of these

cases may be underreported because clinical staging is based

on the single largest tumor. Genetic events underlying the

occurrence of synchronous breast tumors are poorly under-

stood. For example, it is not clear whether multiple synchro-

nous tumors develop through intramammary spread of a

primary tumor or they are pathogenetically independent pri-

mary tumors that develop simultaneously. Cytogenetic [3–7]

and clonal analysis studies [8–12] have not provided a con-

sistent genomic assessment of synchronous tumors, and it

remains inconclusive whether this group of breast cancers

represents a synchronous presentation of genetically unique

tumors or reflects molecular divergence in clonal progression

after one tumor has spread to a second site.

Conventional metaphase comparative genomic hybridiza-

tion (mCGH) [13] is a valuable tool used to obtain cytogenetic

signatures of tumors with a resolution of > 20 Mb [14] and, in

this study, to rapidly compare overall patterns of imbalance

within synchronous tumor subgroups. In contrast, array com-

parative genomic hybridization (aCGH) permits a more detailed

analysis with refined resolution at the level of genes and

expressed sequence tags (ESTs) [15]. We have previously

demonstrated the fidelity and applicability of single-cell com-

parative genomic hybridization (SCOMP) of whole genomic

amplification using minute amounts of microdissected formalin-

fixed paraffin-embedded (FFPE) materials for aCGH studies

[16]. The combination of tissue microdissection and whole
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genome amplification allows for an in-depth high-throughput

genomic analysis of well-defined cell populations. In this

study, genetic aberrations and the degree of genomic asso-

ciation between 23 synchronous breast cancers from 10 pa-

tients were investigated using mCHG and aCGH to define

alterations at chromosomal and locus-specific/gene levels.

Materials and Methods

Sample Collection

Samples from 23 synchronous tumors were collected from

10 patients at the University Health Network and Mount Sinai

Hospital (Toronto, Ontario, Canada), with approval from the Re-

search Ethics Boards at each institution. All 10 patients had no

family history of breast cancer. Cases from nine patients were

unilateral, and one patient presented with synchronous tumors

in both breasts (bilateral). All tumors exhibited no apparent

physical connection by standard histopathological analysis.

The distance between tumors is given in Table 1. FFPE tumor

sections from each case were evaluated by a pathologist

(S.J.D.), and representative tumor blocks were selected.

Tissue Microdissection and DNA Extraction

For each case, 20 to 40 unstained 5-mm-thick sections and

one H&E–stained reference section were cut from a repre-

sentative tumor block. FFPE tissue sections were treated with

xylene to remove paraffin and subsequently dehydrated in an

ethanol series. The slides were stained briefly with hemato-

xylin. With the use of the reference H&E slide for orientation, in-

vasive carcinoma was microdissected manually from FFPE

tissue sections using 18-gauge needles and a stereomicro-

scope. Small tumor regions that could not be microdissected

manually were isolated using the PixCell II Laser Capture

Microdissection System (Arcturus, Mountain View, CA). DNA

was extracted with the use of 3-day proteinase K digestion and

the Qiagen DNA Mini Kit (Qiagen, Inc., Mississauga, Ontario,

Canada) according to the manufacturer’s instructions. The

presence of amplifiable DNA was confirmed by polymerase

chain reaction (PCR) for a housekeeping gene (asparagine

synthetase). The forward and reverse primers of 5V-ACATTGA-

AGCACTCCGCGAC-3Vand 5V-CACATTGTCATAGAGGGCG-

3V (Qiagen) were used to amplify a DNA fragment of 160 bp.

Whole Genomic Amplification

Three of 23 samples produced sufficient DNA for di-

rect aCGH study. SCOMP was performed on the remaining

20 samples, as DNA quantities were limited. We have previ-

ously demonstrated the fidelity of the SCOMP method of

whole genomic amplification in CGH studies using the MCF-

7 breast cancer cell line [16]. Test (tumor) DNA (100 ng)

and reference DNA (uninvolved pool of lymph nodes) were

subjected to MseI (New England Biolabs, Pickering, Ontario,

Canada) digestion in three separate reactions. For each re-

action, adaptor formation and ligation were carried out accord-

ing to Stoecklein et al. [17].

mCGH

Lymphocyte metaphase spreads were prepared using

standardmethods [18]. For the labeling of DNA, 2 ml of primary

Table 1. Histologic Features of Synchronous Breast Tumors.

Cases Type Laterality Tumor Size (cm) Tumor Distance (cm) Histologic Grade HER2

Grade T P M

Estrogen

Receptor

Progesterone

Receptor

P1T1 IDC (invasive micropapillary) R 1.3 1.3 II T2 P3 M1 + + ND

P1T2 IDC (NOS) R 0.8 1.3 II T2 P3 M1 + + ND

P1T3 IDC (NOS) L 0.7 0.75 II T3 P2 M1 + + ND

P1T4 IDC (NOS) L 0.7 0.75 II T3 P2 M1 + + ND

P2T1 IDC L 0.25 ND I T1 P2 M1 + + ND

P2T2 IDC L 1.7 ND II T2 P2 M1 + � ND

P3T1 IDC L 1.6 ND II T3 P2 M1 + + �
P3T2 IDC L 2.0 ND II T3 P2 – 3 M1 + + �
P4T1 IDC (tubular) R 0.8 0.4 I T1 P2 M1 + + ND

P4T2 IDC (tubular) R 1.6 0.4 I T1 P2 M1 + + ND

P5T1 IDC (NOS) R 2.3 1.8 II T2 P2 M3 � � �
P5T2 IDC (NOS) R 1.0 1.8 II T3 P2 M1 � � �
P6T1 IDC (NOS) L 2.7 3.0 III T3 P3 M3 � � �
P6T2 IDC (NOS) L 0.4 3.0 I T1 P2 M1 + � �
P6T3 IDC (NOS) L 0.5 1.7 II T3 P2 M1 �
P7T1 IDC (NOS) L 1.5 1.5 II T2 P3 M1 + + �
P7T2 IDC (NOS) L 1.1 1.5 I T1 P3 M1 + + �
P8T1 IDC (NOS) R 6.7 3.2 III T3 P3 M3 � � �
P8T2 IDC (NOS) R 2.5 3.2 III T3 P3 M3 � � �
P9T1 IDC R 1.5 5.0 II N2/3 ND

P9T2 IDC R 1.0 5.0 II N2/3 ND

P10T1 ND ND ND ND ND ND

P10T2 ND ND ND ND ND ND

Tumors are tabulated based on type, laterality, size, relative distance between synchronous tumors, histology, nuclear grading, and hormone receptor status

(+, positive; �, negative). Histologic grade is composed of three parameters each scored 1–3: tubules, nuclear pleomorphism, and mitotic rate. Scores are

added to give an overall grade (grade I = 3–5; grade II = 6 or 7; grade III = 8 or 9). Twenty-three samples from 10 patients were used for the study. From the

10 patient cases, 9 cases were unilateral synchronous tumors and 1 case was bilateral. All cases were invasive ductal carcinomas. ND = no data; NOS =

not otherwise specified.
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SCOMP product of both test (tumor) and reference DNA

(lymph node) was simultaneously PCR-amplified and labeled

with biotin-16-dUTP (Roche Diagnostics, Laval, Canada) and

digoxigenin-11-dUTP (Roche), respectively. Subsequently,

8 mg of biotin-labeled test DNA was combined with 8 mg of

digoxigenin-labeled reference DNA and precipitated with

100 mg of unlabeled human CotI DNA (Invitrogen, Burlington,

Ontario, Canada) and 100 mg of sonicated salmon sperm

DNA (Invitrogen) to suppress the hybridization of repetitive se-

quences. Normal male lymphocyte metaphase slides were

treated with pepsin at 37jC for 5 minutes, washed with

1� phosphate-buffered saline and 2� sodium saline citrate

(SSC), dehydrated in an ethanol series, and denatured with

70% formamide/2� SSC at 70jC for 2 minutes. Probes were

denatured and hybridized to denatured metaphase slides.

Following a 48-hour hybridization, posthybridization washes

and antibody detection were carried out as described by

Speicher et al. [19]. Metaphase spreads were captured using

the Vysis Quips SmartCapture imaging system, and image

analysis was performed using the Quips CGH/Karyotyper and

Interpreter software (Vysis, Downers Grove, IL). Final CGH

profiles were analyzed at 95% confidence intervals. The cutoff

values for chromosomal gains and losses were 1.2 and

0.8, respectively.

aCGH

For all 23 samples, 1 mg of test DNA and 1 mg of FFPEDNA

extracted from a pool of lymph node tissues (reference) were

labeled by random priming using Cy3-dUTP (Amersham

Biosciences, Piscataway, NJ) and Cy5-dUTP (Amersham)

fluorescent nucleotides, respectively, in triplicate reactions.

Purified labeled products were pooled and hybridized onto

Human 19K cDNA single-spot arrays (Clinical Genomics

Center; http://www.microarrays.ca/) in duplicate experiments.

The 19K cDNA arrays contained 19,000 cDNA and ESTs.

Images were captured using a GenePix 4000A scanner (Axon

Instruments, Union City, CA) and analyzed using the GenePix

Pro 3.0 software (Axon Instruments).

Data Analysis

Analysis of microarray data was performed using Nor-

malise Suite software (Normalise Suite, Toronto, Ontario,

Canada) [20] (available as free download at http://www.

utoronto.ca/cancyto/) to graphically illustrate regions of gains

or losses along chromosomes. Array data were loaded in

GPR format and matched to the appropriate ‘‘gene list’’ file

(corresponding to Human 19K cDNA arrays used in the ex-

periment). Duplicate normalized files were combined to-

gether into one ‘‘project file.’’ Biomathematical analysis of

the data was carried out using Eisen clustering software

(available at http://rana.lbl.gov/EisenSoftware.htm) to calcu-

late distance matrices and to plot a hierarchical clustering

map. The significance analysis of microarrays (SAM)method

was used to determine statistically significant recurrent am-

plified and deleted regions associated with synchronous

tumors. A log2 ratio threshold of ± 0.25 was used to define

all copy number amplifications and deletions. This threshold

value is within the acceptable range for the number of false

positives. mCGH profiles were compiled using the Progene-

tix software (Progenetix, Stanford, CA) [21] (available at

http://www.progenetix.net) to produce a frequency graph

of regions of chromosomal imbalances. Constitutive hetero-

chromatic regions were excluded from all analyses.

Real-Time Quantitative PCR (Q-PCR)

Real-Time Q-PCR was conducted using the 2� Quan-

titect SYBR Green PCR kit (Qiagen) and the ABI Prism

7700 sequence detection system (Applied Biosystems, Fos-

ter City, CA) to validate array data. Oligonucleotide primers

were designed using Primer Express (version 1.5; PE Ap-

plied Biosystems, Foster City, CA). Quantitative reactions

for the target gene JAK1 on 1p32.3–p31.3 and a reference

gene c-interferon (IFNG) on 12q24.1 were performed in

50-ml volumes and in separate tubes. For each sample,

reactions were performed in duplicate for both the reference

gene and the target gene. A threshold of 1.5 was used for

copy number amplification. The following forward and re-

verse primers (Qiagen) were used: JAK1: 5V-TCCCTGATAA-

CAGCACATGCA-3V and 5V-ACCTTCCCAAAGTGGCCC-3V;
IFNG: 5V-GCCTCCCTAACCTGATTGGT-3V and 5V-CAATC-
CCTGACTCGCTCTC-3V.

Results

Clinical Characteristics

The histopathological characteristics of tumors were tab-

ulated based on type, relative distance between synchro-

nous tumors, histology, grade, and hormone receptor status.

Twenty-three samples from 10 patients were used for the

study. From the 10 patient cases, 9 were unilateral synchro-

nous tumors and 1 was bilateral. All cases were invasive

duct carcinomas (Table 1).

mCGH from SCOMP-Amplified Tumor DNA

Reproducible profiles were obtained from 15 of 23 samples

revealing numerous chromosomal imbalances of synchro-

nous breast cancer samples (Table 2). Across all tumors,

the most frequent chromosomal gains were observed on 1q

(80%), 3p (70%), 4q (60%), and 8q (60%). Regions exhibiting

marked loss were 11q (70%), 12q (60%), 16q (60%), 17p

(60%), 16 p (50%), and 19q (50%) (Figure 1).

The CGH findings between synchronous tumors (Table 2)

revealed at least three common regions of chromosomal

gains and losses (Table 2, italicized ). Interestingly, when the

imbalance pattern was compared within synchronous tu-

mors from each patient, regions of chromosomal loss were

more concordant than regions of gain.

Patient 1, the only case of bilateral breast cancer, pre-

sented with four tumors: two in the right breast (P1T1 and

P1T2) and two in the left breast (P1T3 and P1T4). The paired

tumors P1T1 and P1T2 possessed common changes, namely,

the gains of 8q and the losses of regions on 19q and 22q,

with tumor P1T2 displaying far more regions of chromosomal

gains and losses. Tumors P1T3 and P1T4 from the left breast

showed greater similarities in overall genomic gains and
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losses, with tumor P1T3 showing six additional regions of

chromosomal gain and with tumor P1T4 showing two regions

of additional chromosomal gain. Regions of deletion were

similar in the two tumors, with tumor P1T4 showing additional

losses on 19q and 22q. However, a comparison between

tumors from the right breast and those from the left breast

showed marked dissimilarities (Table 2 and Figure 2). Overall

comparisons using chromosomes 1, 8, and 13 for these four

tumors showed a general similarity in the profiles of tumor

pairs arising in the same breast, but a different pattern of

imbalance was apparent when profiles from opposite breasts

were compared for these chromosomes.

aCGH

aCGH analysis of 23 samples using the Human 19K

cDNA array revealed copy number changes comparable to

findings by mCGH analysis and can be accessed from http://

www.uhnresearch.ca/labs/done/publications.htm.

The increased resolution revealed regions of focal gains and

loci of amplification at 1q, 3p, 4q, and 8q. Moreover, the profiles

of each tumor could be compared to their matched synchro-

nous counterpart, and the extent of genomic imbalance could

be determined with greater mapping precision (Figure 3).

The comparative values of known breast cancer–related

genes that have their corresponding sequences represented

on the array were investigated. Array features corresponding

to TP53 (17p13.1), IGF2 receptor (11p15.5), IL-6 (7p21),

ERBB2-interacting protein (5p14.3–q12.3), IFNa receptor 1

(21q22), MYC (8q24.21), MAP3K12 (12q13), TIMP2

(17q25.3), TIMP3 (22q12.1–q13.2), IFNGR2 (21q22),

CCND1 (11q13.1), and ATM (11q22.3) exhibit normal copy

number values in all samples. The increased mapping

resolution of aCGH revealed structural conformation of am-

plicons in greater detail compared to mCGH data, as shown

by the mCGH profiles of the 17p13 and 17q25 regions, de-

tecting a net chromosomal gain of the region. The aCGH

data of the corresponding region included TP53 (17p13.1)

and TIMP2 (17q25.3), respectively, and revealed normal

copy number values for both genes. However, array features

mapping telomerically and centromerically to these genes

exhibited low-level amplification of nonannotated genes

(supplementary data available at http://www/uhnresearch.

ca/labs/done/publications.htm). These changes were collec-

tively detectable as chromosomal gains in 17p13 and 17q25

regions by mCGH. Thus, as expected, aCGH was able to

reveal the complexity of amplicon copy number at a resolu-

tion higher than that in mCGH.

Using SAM, the genes on the array that exhibited signif-

icant copy number alterations and were consistently ampli-

fied or deleted in all 23 samples were identified. The analysis

produced a list of 189 ESTs and genes, 159 copy number

amplifications, and 30 deletions, the majority of which

were nonannotated. (This list is available at http://www.

uhnresearch.ca/labs/done/publications.htm.) The exception

was the 1p31.3–1p32.3 region harboring JAK1. Varying lev-

els of JAK1 amplification were detected in all samples. The

copy number amplification of JAK1 in all 23 samples was

confirmed by Q-PCR, with copy numbers ranging from a

1.5-fold to a 6.3-fold increase compared to JAK1 levels in

the reference sample (a pool of lymph nodes). All alterations

obtained from SAM were categorized based on type (copy

number amplification or deletion) and further grouped based

on the chromosomal arm where the alteration occurred. The

frequency graph of aCGH data is shown in Table 3.

Eisen cluster analysis of the aCGH data was performed to

identify the degree of similarities between matched synchro-

nous tumors (Figure 4). The analysis clustered patients 6 and

8 with the greatest degree of similarity between their respec-

tive tumors. Tumors P1T3 and P1T4 (left breast) from patient

1 also clustered closely but separated from P1T1 and P1T2

Table 2. A List of Chromosomal Alterations in Cases of Synchronous Breast Cancer.

Tumor Cases Gain Deletion

P1T1 5p11.2–23, 8q 8p21–22, 9q13–qter, 19q13.3, 22q

P1T2 3p12–q12, 4q13, 4q22–28, 6q11–14, 8q11.2–24.1 1p33-pter, 1q34, 10q25, 12q24.1, 12q24.3, 16q12.2–24.1, 19q,

20q11.2–13.2, 22q13

P1T3 1q12, 2p31.3, 3p12–q12, 4q12, 5q21.1, 9q12, 12q12, 12q13.2 11p13–15, 11q21–24, 16q12.2–24.1, 17p

P1T4 1q12, 3p12, 4q22–31.2, 5q15, 12q13.2, 13q21 11p14–15.3, 11q21–24, 16q21–23, 17p, 19q13.3, 22q13.1

P2T1 1q12–43, 5q15, 11p11.2–14, 11q13 1p35-pter, 3p24-pter, 6q16–24, 16p12-pter, 16q22–23, 17p, 17q11.1–12,

18q12–22, 22q13

P3T1 1q12, 1q22–31.3, 3p12, 4q11–28, 5p13–q23, 19q11–13.3,

22q13

8p23, 11q23–25, 12q22–24.2, 16p12-pter, 16q22–23,

17p11.2–12, 17q24

P3T2 1q12, 3p12, 4q11–12, 4q22–25, 5q11.2, 6q12, 8q21.2, 22q13 12q24.1, 16p12-pter

P5T2 1q41-pter, 2q31, 4q24 1p33-pter, 2q33-pter, 5q34, 9q33–34, 10q25-qter, 14q23, 16p12-pter,

17p, 17q25, 18q22, 19q13.11–13.3, 22q12–13, Xq27

P6T1 1q12, 8q12–23, 11p13–14 1p35-pter, 5q33.1–34, 6q25, 7q33–36, 11q23–24, 12q24.2, 13q32,

14q31, 16p13.2-pter, 16q22–23, 17p12-pter, 19q13.2–13.3

P6T2 4q13–26, 5q14–21, 8q11.2–23, 13q21, 14q12, 17q21 1p35-pter, 2p21-pter, 6q24–25, 7q35–36, 8p22-pter, 11q21–24,

12q23-qter, 16p, 16q21–23, 17p, 18q22, 19q

P7T2 1q11–12, 3p12, 4q13–28, 5q15, 13q21 1p36-pter, 6q24-qter, 8p22-pter, 9q34, 11q23, 16p12-pter, 17p, Xq27

P8T1 1q, 3p12, 6q12, 7q22, 8q11.2–24.11, 9p, 10p, 12q12 2q36-qter, 9q31–34, 10q23-qter, 11q23, 12q22–24.2, 16p13.2, 17q23–25

P8T2 1q, 10p 10q25-qter, 11q23–25, 12q22–24.2, Xq25–27

P10T1 1p13–q32, 4q13–32, 6q12–14, 9q12 2p23-ter, 4p15.3-pter, 9p22, 10q25-qter, 11q23, 12q24.1, 14q31,

16q13.1-qter, 16q21–23, 20p13, 20q13.1, Xq27

P10T2 1q12, 1q25, 3q11.2, 5q11.1–23, 9q12, 12q13.2, 22q 1p35-pter, 6p24-pter, 8p22-pter, 9q34, 12q24.1–24.2, 13q33, 15q25,

16q22–23, 17p13, 17q25, 19q13.3, Xp22.1-pter

Common changes between paired samples are italicized.
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(right breast). These patterns were consistent with the group-

ings determined by similar patterns of chromosomal change

identified by mCGH analysis. All other tumors showed a pat-

tern of imbalance clustered away from these tumors.

To compare the profiles of synchronous tumors in a given

patient, the log2 values of array data were plotted on chro-

mosomes 1 to X using Normalise Suite. The profiles were

superimposed to facilitate comparison and to determine

regions with different imbalance levels. An example is shown

in Figure 3.

Discussion

The identification of genomic alterations associated with the

development of breast cancer has been hampered by the

large variation in the genetic changes found between tumors.

Part of this variation may be patient-specific. The study of

multiple tumors in the same patient, therefore, is of great

value as it allows direct genomic comparison of (synchro-

nous) tumors while excluding confounding genetic varia-

tions, such as copy number polymorphisms (i.e., variation

in the number of copies of a sequence within the DNA), that

exist between individuals. To date, the relationship between

synchronous tumors remains unclear. The histologic com-

parison of synchronous tumors in the same patient often

reveals different morphologic features. The limited number

of genetic analyses of this presentation of breast cancer

shows variations in results and is inconclusive as to whether

or not synchronous tumors share common molecular events

or indeed represent truly distinct entities. A clonal analysis

based on restriction fragment length polymorphism of the

X-chromosome phosphoglycerokinase (PGK ) gene [8] re-

vealed that the same X-chromosome was inactivated in

all 10 tumors from three patients. This finding was taken

to suggest that the multiple tumors were clonally related.

However, a somewhat different conclusion was arrived at

by Shibata et al. [10], who demonstrated that a subset

of synchronous cases had discordant allelic patterns and

inferred that synchronous tumors in those cases arose in-

dependently. The clonality of multiple tumors was also ex-

amined by loss-of-heterozygosity studies on 16q in 60 cases

of multiple tumors [9], on 5 chromosomal arms (11p/q, 13q,

and 7p,q) in 8 cases [22], and on 7 chromosome arms (3p,

11p, 11q, 13q, 14q, 17p, and 17q) in 26 tumors [11]. All

Figure 1. Frequency graph of aberrations in 15 cases of synchronous breast cancer obtained by mCGH. The green marks on the right side of the chromosome

ideograms indicate the frequency of chromosomal gains, and the red marks on the left show the frequency of losses. The cutoff values for chromosomal gain and

losses were 1.2 and 08, respectively. The graph was created with the Progenetix software [21].
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three studies concluded that monoclonality could be estab-

lished only in some cases and that the remaining proportion

of tumors could be distinct primaries. An immunohistochem-

ical study based on p53 and c-erbB2 expression was in

agreement with this finding and reported that only a frac-

tion of multiple tumors were clonally related [23], whereas a

more recent immunohistochemical study on bilateral breast

cancer reported dissimilar patterns of p53 and osteopontin

expression [24]. Cytogenetic studies and karyotypic com-

parison of multiple tumors indicated that only a proportion

of synchronous breast tumors were distinct primaries at the

chromosomal level and that the differences in those cases

may be reflective of their independent origin [3–7,25]. The

inconsistency in these reports could be due to the limitations

of the techniques used, which examine only a few parame-

ters and do not give an overall assessment of genomic

anomalies. Although classic karyotyping studies of breast

cancer samples provide a genomewide evaluation of the

samples, they have a greater risk of introducing in vitro

selection biases.

In this study, we have: utilized microdissection and ge-

nome amplification techniques for the specific isolation of

cells from each tumor; used standard mCGH to identify gross

chromosomal aberrations; and performed aCGH to improve

the resolution of an imbalancemap and to identify loci/gene–

specific regions of copy number changes. The resolution of

mCGH is known to be 20 Mb, making the detection of smaller

regions much more difficult; thus, the limitation in resolution

can be compensated for by aCGH. Conversely, mCGH can

provide a rapid means of determining overall patterns of

imbalance for comparative purposes, such as within our

various synchronous tumor subsets. Therefore, the aim of

this study was to objectively examine the degree of genomic

similarity between synchronous tumors and to identify

regions of recurrent alteration at higher resolution by aCGH.

The mCGH analysis of synchronous breast tumor sam-

ples revealed a number of chromosomal aberrations, which

are in part consistent with genomic signatures of breast car-

cinomas (http://www.progenetix.de/~pgscripts/progenetix/

LC50/ideogram.html). The results were compared to a

Figure 2. Comparison of mCGH profiles of synchronous tumors in patient 1 with four synchronous breast tumors. Tumors P1T1 and P1T2 show no gain on 1q,

whereas tumors 3 and 4 are similar in showing gains on chromosome 1q. Tumors P1T1 and P1T2 have high gains of 8q, whereas tumors P1T3 and P1T4 show

normal profiles for chromosome 8. Chromosome 13 in tumor 4 shows a low-level gain in the q region. Although tumors P1T1, P1T2, and P1T3 have not been

(marked to have) scored as having this chromosomal gain, this region in these cases has ‘‘spikes’’ just below the threshold, suggesting a possible gradual increase

in chromosomal instability in this region. For each profile, the black vertical line on the middle represents a ratio of 1.0; the red line on the left represents a ratio of

0.8; and the green line on the right represents a ratio of 1.2. Alterations to the right represent chromosomal gains, and alterations to the left are chromosomal

losses. Gains and deletions are marked next to chromosome ideograms as green and red bars, respectively.
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breast cancer CGH database, a map of chromosomal alter-

ations in 686 cases of breast cancers of different types [21].

They can be categorized into two groups: chromosomal

aberrations known to be associated with breast cancer such

as gains of 1q and 8q and loss of 17p, and those that are not

commonly implicated in breast cancer. The chromosomal

gain of the 4q region, for instance, has not been reported to

be frequently involved in breast cancer [21]. Patterns of 4q

gain are similar in the majority of our cases and include the

region 4q22–4q26. The chromosomal gain of this region

obtained by mCGH was supported by array data showing a

cluster of mostly nonannotated genes in the 4q region with

high copy number values. The function of the majority of

these genes is unknown. To date, putative oncogenes in 4q

that may have biologic roles that are important in breast

cancer development and/or progression have not yet been

reported; future studies may thus reveal novel oncogenes in

this region. The additional frequent chromosomal alterations

in our synchronous cases were the losses of 16q and 16p.

The latter is more frequently reported as amplified in breast

cancer, whereas 16q, at times, is associated with loss [21].

It has been reported that the loss of genomic material from 16q

is present in low-grade to intermediate-grade ductal carci-

noma in situ [26] and high-grade ductal carcinoma in situ [27].

The comparison of mCGH profiles revealed that all syn-

chronous tumors had unique features and that paired tumors

in a given patient, although similar, were not identical. The

results were compared to those obtained from unifocal

tumors (data not shown) and validated that the alterations

are not the consequence of experimental artifacts. The

Figure 3. Comparison of aCGH profiles of synchronous tumors from patient 9. Profiles of P9T1 (green) and P9T2 (red) were generated by Normalise Suite software

and superimposed to facilitate comparison. Note the dissimilar regions in chromosomes 6, 8, 9, 12, 17, and 20 (arrows). For each profile, the vertical line on the

middle represents a ratio of 1.0. By convention, alterations to the right are copy number amplifications, and alterations to the left are copy number deletions.

Thresholds are marked on the graph (top) and indicate 3 SD from the mean. Yellow dotted lines are data points.

Table 3. Frequency of Copy Number Amplifications and Deletions Present in All 23 Synchronous Tumors Samples from aCGH Data.

Copy Number Amplifications Copy Number Deletions

1p (39.1%), 1q (52.2%), 2q (21.7%), 3p (4.4%), 4q (30.4%), 5q (4.3%), 6p (4.3%),

6q (8.7%), 7p (17.4%), 7q (21.7%), 8q (21.7%), 9p (8.7%), 9q (17.4%),

10q (8.7%), 11p (21.8%), 11q (21.8%), 12p (4.4%), 12q (21.8%), 13q (8.7%),

14q (13.0%), 16p (4.4%), 17q (4.4%), 18p (8.7%), 18q (8.7%), 20q (4.4%),

21q (8.7%), 22q (4.4%), Xp (17.4%)

1p (39.1%), 1q (53.2%), 2q (21.8%), 3p (4.4%), 4q (30.4%), 5p (4.4%),

5q (4.4.%), 6p (4.4%), 6q (8.7%), 7p (17.4%), 7p (17.4%), 7q (17.4%),

8q (13.0%), 10q (8.7%), 11p (30.4%), 11q (13.0%), 12p (8.7%),

17q (13.0%), 18p (13.0%), 18q (8.7%), Xq (26.1%)

The SAM method was used to determine statistically significant recurrent amplified and deleted regions associated with synchronous tumors. Copy number

alterations were categorized based on type (amplification or deletion) and further grouped based on the chromosomal arm where the alterations are present.
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genomic profiles of the majority of tumors (11 of 15) were

shown to be distantly related to their matched synchronous

pair. This is an interesting observation because it might be

expected that the profiles of multiple tumors in a given

patient, having grown in a common milieu, would be more

similar to one another than to tumors of different patients.

Our finding demonstrates that the genetic pathology of

synchronous tumors of the same patient goes beyond the

boundaries of patient specificity and that the profiles of

synchronous tumors within the same microenvironment

may be different. Some of the subtle differences in imbalance

level may be related to the scale of an alteration. For

example, comparisons between the four tumors from patient

1 showed minor differences in 13q levels of chromosomal

gain. It can be postulated that this subtle increase in gain

may be a function of differential levels of chromosomal

instability and/or polysomy for this region in all four synchro-

nous tumors. It may well be that tumor 4 was the first tumor to

develop in this patient and, therefore, the incongruity in the

CGH profile of 13q may reflect temporal differences in the

progression of breast cancer in this patient.

Hierarchical clustering of aCGH data was performed to

reveal the relative relationship between tumors. Interestingly,

again, the analysis did not group together all paired tumors in

a given patient. In fact, with the exception of P8T1/T2 and

P6T1/T2, all other tumors were only distantly related to their

matched synchronous tumor and showed similarities to

tumors in different hosts. P8T1 and P8T2 were grouped

closely together, and yet the distance between these unilat-

eral tumors was 3.7 cm—more than the distance between

the other tumors with distantly related profiles. The relation-

ship between synchronous tumors in a given patient, there-

fore, does not seem to be a function of the physical distance

between them in the host microenvironment.

Amplification of the 1p31.3–p32.3 region was found in all

synchronous breast cancer samples by high-resolution

aCGH. A candidate gene of interest in this region and on

the array included the JAK1 gene. JAK1 has been reported

to be involved in various biologic pathways, including epi-

dermal growth factor signaling [28], IFN [29], and IL-6 [30]

pathways, all of which have been shown be associated with

breast cancer [31–34]. To our knowledge, this is the first time

that copy number amplification of JAK1 has been reported in

breast cancer. The family of JAK tyrosine kinases (JAK 1–3),

through the activation of the STAT signaling pathway, dem-

onstrates a dual role: apoptosis and transcription of negative

regulators of cell cycle such as p21, or cell proliferation

through PI3K and MAP kinase activation [35]. In the MDA-

MB-468 breast cancer cell line, JAK1-mediated activation of

STAT, a downstream target of JAK, could induce apoptosis

[36]. Another study examined the expression pattern of

tyrosine kinases in 13 breast cancer cell lines and 2 normal

immortalized breast epithelial cell lines, and demonstrated

high levels of tyrosine kinases, including HER2/neu and

JAK1, in breast cancer cells [36]. In the quest to identify

transcriptional targets of BRCA1 involved in breast can-

cer, one study examined BRCA1 effects on expression in

a generated epithelial cell line (derived from human embry-

onic kidney) with inducible BRCA1 expression. Microarray

analysis revealed a group of highly overexpressed genes,

including JAK1, STAT, CCND1, andMYC [37]. The associa-

tion of JAK1 and BRCA1 has also been reported in prostate

cancer. Immunoprecipitation studies showed that BRCA1

interacts with JAK1 in prostate cancer and blocks the acti-

vation of the JAK–STAT signaling pathway [38]. Because

BRCA1 is a tumor suppressor that is also involved in familial

breast cancer, a potential relation between BRCA1 and JAK1

was postulated. The role of JAK1 in other malignancies sug-

gests a possible role of this gene in the pathology of several

tumor types [38].

The mechanism(s) underlying the pathogenesis of syn-

chronous primary breast cancers is not well understood.

Figure 4. Cluster analysis of array data showing the relative relationship

between synchronous breast cancer tumors. Tumor samples with a high

degree of similarity are connected to the tree by very short branches. Tumors

with decreased similarity are joined by increasingly longer branches. Tumors

in patient 8 (P8T1 and P8T2) and patient 3 (P3T1 and P3T2) show the greatest

degree of similarity to their synchronous counterparts. In patient 6, only

tumors P6T1 and P6T2 are clustered closely, whereas P6T3 is only distantly

related. Tumors P1T3 and P1T4 (left breast) from patient 1 also clustered

closely but separated from P1T1 and P1T2 (right breast). Note that not all

tumors are matched to their synchronous counterparts. The clustering map

was created with Eisen cluster.
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Several different possibilities exist. Genetically similar tu-

mors arising in a single individual may suggest a ‘‘field ef-

fect’’ whereby genetic aberrations affect a region or a ‘‘field’’

of the breast, but each tumor develops different additional

genetic aberrations [39]. Multiple tumors in a given patient

may also have a metastatic relationship and, therefore,

similarities between tumors can merely be the consequence

of a metastatic event from a common primary site. If one

tumor metastasizes within the breast, presumably each will

continue to accumulate genetic alterations independently

after separation, so the time since separation would affect

the similarity of genetic profiles. The genetic differences we

see in synchronous tumors in a given patient may also be

due to tumor heterogeneity. Indeed, studies have shown that

breast cancers exhibit high levels of tumor heterogeneity

[40–42]. Alternatively, it may be indicative of independent

primary tumors that undergo different tumorigenic mecha-

nisms and that are present within the same microenviron-

ment merely by coincidence. Genomic findings show that,

although some paired tumors shared similarities in imbal-

ance profiles, none of the matched synchronous tumors had

identical profiles. This result is suggestive of a model for the

occurrence of synchronous breast cancer that could involve

genomic divergence away from a ‘‘related’’ common progen-

itor. Such a mechanism of origin would be consistent with

current ideas concerning tumor-initiating cells [43]. This

finding is also in agreement with previously reported clonal

studies of bilateral breast cancers based on TP53 mutation

[44] and phenotypic characteristics [45] and studies on

metastatic breast lesions [44] where no relation between

molecular genetics and histopathological parameters could

be established. According to the tumor progression model

[46], metastases derived from monoclonal tumors are ex-

pected to contain the core genetic features of the primary

tumor. It may be, however, that such a simple linear model

may be inadequate to explain the genetic progression of

a primary breast cancer (Figure 5). Our data suggest that

both models may be occurring. Cluster analysis suggests a

linear model for patients 1, 6, and 8 because paired tumors

appear to be more closely related to each other. The findings

of the bilateral case of patient 1 are interesting as there is

close relatedness for the right (P1T1 and P1T2) and left (P1T3

and P1T4) tumors, but little overall similarity when the tumor

groups from the right and left breasts are compared. Thus, it

would appear that a linear model may hold for genomically

related synchronous tumors within the same breast, but a

model involving early genomic divergence is more likely to

explain the CGH dissimilarity of the right and left breast tu-

mors. For the remaining cases, the situation is unclear. The

factors influencing the observed genomic changes are nu-

merous and include the effects of the microenvironment,

the level of genomic heterogeneity, and the karyotypic char-

acteristics associated with disease progression.

In conclusion, our CGH data revealed that all synchro-

nous tumors, despite their similar features, have unique ge-

nomic characteristics and that no two synchronous tumors

in a given patient are identical. This bears potential thera-

peutic implications in designing more tailored clinical treat-

ments for patients with synchronous breast cancer.
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Figure 5. Shown is a schematic model used to explain the genomic relationships of synchronous breast cancers arising from a common progenitor. In the first

model, the progenitor breast cancer cell 1 (left) contains the ‘‘core’’ genomic information, and genomic divergence during tumor growth leads to synchronous

tumors possessing related genomic signatures (shown as a different gray tone). The expansion of clones from this common progenitor, through either selection of

the microenvironment or karyotypic viability, results in clones that will accumulate unique genomic changes. The second model implicates the presence of a

progenitor breast cancer cell 2 shown in gray, also possessing the ‘‘core’’ genomic information for breast cancers. Collectively, it can be seen that tumors (1 and 2)

can evolve independently from the progenitor cell with no common lineage, but may possess common changes.
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