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1. Introduction

Generalizing the finite type invariant, or Vassiliev invariant for a knot or link [1,4,30] Stanford [27,28] defined a finite
type invariant for an embedded graph in a 3-sphere S3. Then the first author [10] has given a basis for the space of the
finite type invariants for the theta curve of order � 3, and Koike [17] has given a basis for the space of order 4. See also [26].
In this paper, we consider an embedded handcuff graph in S3, which consists of two vertices P1, P2, and three edges e1,
e2, e3, with orientation as shown in Fig. 1. We give a basis for the space of the finite type invariants for the spatial handcuff
graph of order � 3. Our method is similar to one adopted in [9,11–14,24], where bases of finite type invariants of knots or
links of small dimension are given.

The value of an order n finite type invariant of a spatial handcuff graph with n singular points depends only on the
corresponding n-chord diagram (Proposition 4.1), and every such value determines the space of finite type invariant of
order � n, Vn . However, by the generalized Reidemeister moves for a spatial handcuff graph (Fig. 2) some n-chord diagrams
share the same value, which cause the relations (FI), (4T), (VE), (RV) as shown in Fig. 7. Let Dn be the space of all n-chord
diagrams, and An the quotient space of Dn modulo these relations. Then there is a natural monomorphism Vn/Vn−1 → A∗

n ,
which sends a finite type invariant of order n to the linear function on the space on An . The main result of this paper is to
give a basis for Vn/Vn−1, n � 3 (Theorems 7.1, 7.2, 8.1). Our method is similar to [10], where we have given a basis of the
space of finite type invariant for a theta curve of order � 3. First, we give a spanning set for An , n � 3 (Section 6), which
gives an upper bound for the dimension of Vn/Vn−1. Next, we give a certain set of finite type invariants whose number is
the same as the obtained upper bound for dim Vn/Vn−1; these invariants are derived from the Conway polynomials or the
Jones polynomials of sublinks of a spatial handcuff graph (Proposition 3.1). Lastly, we show they are linearly independent.

Notice that the above monomorphism Vn/Vn−1 → A∗
n is actually surjective [25] (Proposition 5.1); for the knot case, such

a theorem is known as the Kontsevich theorem [1,5,18,19,30]. However, we do not use this fact. Koike [17] and Sugita [29]
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Fig. 1. The oriented handcuff graph.

Fig. 2. Generalized Reidemeister moves for a spatial trivalent graph.

have given a basis of An for the theta curve of order � 4 and the spatial handcuff graph of order � 3, respectively, which
eventually gave a basis of Vn/Vn−1.

This paper is organized as follows: In Sections 2–5, we briefly explain a finite type invariant for a spatial handcuff graph,
including the space of chord diagrams. In Section 6, we give a spanning set for An , n � 3. In Sections 7 and 8, we give a
basis for Vn/Vn−1, n � 3, which allows us to give a basis of An (Corollary 8.2). Then comparing the result of the space of
finite type invariant of order � 3 for an ordered 2 component oriented links in [14], a finite type invariant of order � 3 for
a spatial handcuff graph is determined by the link consisting of the two loops, and is not affected by the connecting edge
(Corollary 8.3).

2. Spatial handcuff graph

Two spatial handcuff graphs Φ and Φ ′ are equivalent if there is an orientation preserving homeomorphism h of S3

such that h(Φ) = Φ ′ and h|Φ : Φ → Φ ′ is orientation preserving. If two spatial handcuff graphs are equivalent, then they are
related by a finite sequence of the five moves (I)–(V) on diagrams as shown in Fig. 2; see [16,31]. They are called generalized
Reidemeister moves for spatial graphs.

3. Finite type invariant

A singular spatial handcuff graph is the image of an oriented handcuff graph under an immersion into S3 whose only
singularities are transverse double points. We assume that a double point on a singular spatial handcuff graph is a rigid (or
flat) vertex.
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Fig. 3. A skein triple.

Let v be an invariant of a spatial handcuff graph in S3, which takes values in the rational numbers Q. We may extend it
to a singular spatial handcuff graph via the Vassiliev skein relation:

v(Φx) = v(Φx+) − v(Φx−), (3.1)

where Φx is a spatial handcuff graph with x a double point and Φx+ , Φx− are ones obtained from Φx by replacing x by a
positive crossing x+ and a negative crossing x− , respectively. Then v is a finite type invariant of order � n if v(Φ) = 0 for an
arbitrary singular spatial handcuff graph Φ that has more than n double points. If v is of order � n but not of order � n −1,
then v is called a finite type invariant of order n.

Denote by Vn the vector space consisting of all finite type invariants for a spatial handcuff graph of order � n. There is
a filtration:

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · . (3.2)

Note that the finite type invariants form an algebra, that is, the product of a finite type invariant of order m and one of n is
a finite type invariant of order m + n; cf. [13, Section 4].

The Conway polynomial ∇(L) ∈ Z[z] [7], and the Jones polynomial V (L; t) ∈ Z[t±1/2] [8] are invariants for an unordered
oriented link L, which are defined by the following formulas:

∇(O ) = 1; (3.3)

∇(L+) − ∇(L−) = z∇(L0); (3.4)

V (O ; t) = 1; (3.5)

t−1 V (L+; t) − tV (L−; t) = (
t1/2 − t−1/2)V (L0; t); (3.6)

where O is the unknot and L+ , L− , L0 are three links that are identical except near one point where they are as in Fig. 3.
We denote by an(L) the coefficient of zn of the Conway polynomial ∇(L).

For a spatial handcuff graph Φ having two loops e1 and e2, we use the following notations:

• λ(Φ)k denotes the kth power of the linking number of e1 and e2; λ(Φ)k = lk(e1, e2)
k ,

• a2[i](Φ) = a2(ei) (i = 1,2),
• a3(Φ) = a3(e1 ∪ e2),
• V (3)[i](Φ) denotes the 3rd derivative of the Jones polynomial of ei evaluated at t = 1 (i = 1, 2); V (3)[i](Φ) = V (3)(ei;1),

which we also simply denote by λk , a2[i], a3, V (3)[i], respectively. Then they are finite type invariants for a spatial handcuff
graph.

Proposition 3.1.

λ(Φ)k ∈ Vk, (3.7)

a2[i](Φ) ∈ V2, (3.8)

a3(Φ), V (3)[i](Φ) ∈ V3. (3.9)

In fact, according to Stanford [27], a finite type invariant of a 2-component link e1 ∪ e2 or a knot ei (i = 1,2) is a finite
type invariant for Φ . Bar-Natan [1] has shown that the coefficient of the Conway polynomial of a link L is a finite type
invariant for a link L. Birman and Lin [4] proved that the Jones polynomial of a knot can be interpreted as an infinite
sequence of finite type knot invariants, and Stanford [28] generalized this for a link. See also [13,14].

Remark 3.2. For a 2-component link L, a1(L) = lk(L); see [15, p. 13]. For a knot K , V (2)(K ;1) = −6a2(K ); see [23,24].

The following is an immediate consequence of Eq. (3.1); cf. [2, (10d)], [28, Section 5].
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Fig. 4. Singular spatial graphs with trivial finite type invariant.

Fig. 5. Relations of a finite type invariant for singular spatial graphs.

Proposition 3.3. The value of a finite type invariant of each singular spatial handcuff graph in Fig. 4 is zero; in Fig. 4(a) the squares
contain the whole diagram away from the singular crossing.

Besides this, a finite type invariant satisfies other important equations.

Proposition 3.4. A finite type invariant satisfies the relations as shown in Fig. 5, where the equations signify the numerical equality of
values of the invariant on these singular spatial handcuff graphs.

The relation given in Fig. 5(a) is known as the 4-term relation in the case of a knot. The proof is the same as the knot
case; see [4], [6, 1.1.3]. The relations given in Figs. 5(b) and (c), which are called the vertex relations, are obtained from the
generalized Reidemeister move (V) in Fig. 2.

4. Chord diagram of a singular spatial handcuff graph

Let H be an oriented handcuff graph as in Fig. 1. Consider a singular spatial handcuff graph with n double points as
the mapping Φ : H → S3. Then join all the pairs of the preimages of every double point of Φ(H) with n dashed arcs.
The resulting configuration C is called the chord diagram of order n, or n-chord diagram, of the singular spatial handcuff
graph Φ(H); see [10, Section 4] for a theta curve. We say that Φ(H) respects the chord diagram C . Since a handcuff
graph is trivalent, Proposition 1.1 in [28] implies the following, which generalizes the case of knots; see Lemma 1 in [2],
Proposition 1 in [3]:

Proposition 4.1. Two singular spatial handcuff graphs with n double points become equivalent after an appropriate series of crossing
changes if and only if they respect the same chord diagram of order n.

In particular, any spatial handcuff graph becomes trivial after an appropriate series of crossing changes. Thus if v is a
finite type invariant of order zero, then v(Φ) = v(U ) for any spatial handcuff graph Φ , where U denotes the unknotted
spatial handcuff graph, that is, U is a planar handcuff graph in S3. Namely, we have:

Proposition 4.2. A finite type invariant of order zero for a spatial handcuff graph is a constant map.

The singular spatial handcuff graphs as shown in Figs. 4(a), (b) respect the chord diagrams shown in Figs. 6(a), (b),
respectively, where the squares contain the whole chord diagram away from the chord shown. We call such chord diagrams
inadmissible. A chord diagram is called admissible if it is not inadmissible.
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Fig. 6. Inadmissible chord diagrams.

Fig. 7. Relations for chord diagrams.

Let us suppose we have made a list of the distinct admissible chord diagrams of order j, α
j
i ; 1 � i � r j , j = 2,3, . . . ,

and chosen, for each α
j
i , a singular spatial handcuff graph M j

i respecting it. By Proposition 4.1, using a resolution tree, we
can calculate the value of a finite type invariant of a singular spatial handcuff graph; cf. [3, Proposition 2], [4, Proof of
Theorem 2.4]:

Proposition 4.3. Let v be a finite type invariant of order � m, and Φn a singular spatial handcuff graph respecting an admissible chord
diagram of order n, αn

p , n � m. Then

v
(
Φn) ≡ v

(
Mn

p

)
,

where “≡” means equality up to a Z-linear combination of v(M j
i ), 1 � i � r j , n + 1 � j � m. In particular, if m = n, then “≡” is “=”,

and so the v-value of a singular spatial handcuff graph with n double points depends only on its chord diagram.

5. Space of chord diagrams

We denote by D the Q-linear space spanned by chord diagrams for a handcuff graph, which is naturally graded by the
number of chords. We denote by Dn the subspace of D that is spanned by the chord diagrams of order n. We consider
the four kinds of relations in D and Dn as shown in Fig. 7; (FI) the framing independence relation, (4T) the 4-term relation,
(VE) the vertex-edge relation, and (RV) the relation induced from the generalized Reidemeister move (V). There is also the
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Fig. 8. The admissible chord diagram of order one, α1.

relation (3T), which is implied from the relations (4T) and (FI). We consider the quotient space of Dn modulo the relations
(FI), (4T), (VE), (RV), which we denote by An .

There is a natural map Vn → A∗
n sending every finite type invariant of order n to the corresponding linear function

on An , which induces a monomorphism Vn/Vn−1 → A∗
n . Moreover, this map is surjective, that is, for a spatial handcuff

graph, the “Kontsevich Theorem” also holds; Jun Murakami and Ohtsuki [25] have shown the following (over the field of
complex numbers C, and for any spatial trivalent graph). However, we do not use that Vn/Vn−1 → A∗

n is surjective.

Proposition 5.1. The space Vn/Vn−1 is isomorphic to the space A∗
n of linear functions on chord diagrams of order n modulo the

relations (FI), (4T), (VE), (RV).

For the space An , we give some lemmas, which we will use in Section 6. Let α be a chord diagram of order n. If the
number of the endpoints of chords on the edge ei is ki (i = 1, 2, 3), then we call α a chord diagram of type (k1,k2,k3),
whence 2n = k1 + k2 + k3.

Lemma 5.2. Let α be an n-chord diagram of type (k1,k2,k3) with k3 > 0. Then α is a linear combination of the chord diagrams of
type (k1 + j,k2 + k3 − j,0) in An with 0 � j � k3 .

Proof. Using the relation (VE), α is a linear combination of the chord diagrams of type (k1 + 1,k2,k3 − 1) (or of type
(k1,k2 + 1,k3 − 1)). So by induction we obtain the result. �
Lemma 5.3. Let α be an n-chord diagram of type (k1,k2,k3). If either k1 = 0, k3 > 0 or k2 = 0, k3 > 0, then α = 0 in An.

Proof. Suppose that k1 = 0, k3 > 0. Using the relation (VE), we have:

α = . (5.1)

Since the last two chord diagrams are the same, we have α = 0 in An . �
For an order n chord diagram α of type (2n,0,0) (resp. (0,2n,0)), we denote by R1(α) (resp. R2(α)) the chord diagram

for a circle obtained from α by deleting the edges e2 and e3 (resp. e1 and e3).

Lemma 5.4. Let α, α′ ∈ Dn be of type (2n,0,0) (resp. (0,2n,0)). If R1(α) = R1(α
′) (resp. R2(α) = R2(α

′)), then α = α′ in An.

Proof. For example, this lemma claims that the following equality holds:

. (5.2)

Let us prove the first equality of Eq. (5.2). By the relation (VE) we have

. (5.3)

Since = 0 by Lemma 5.3, we obtain the result. �

6. Chord diagrams of order ��� 3

In this section, we give a spanning set for each of A1, A2, and A3.
There is only one admissible chord diagram of order one α1 as shown in Fig. 8, and so A1 is spanned by α1.

Lemma 6.1. The space A2 is spanned by the chord diagrams β1 , β2 , β3 as shown in Fig. 9.
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Fig. 9. Spanning set for A2.

Fig. 10. Spanning set for A3.

Fig. 11. Admissible chord diagrams of type (6,0,0).

Proof. By Lemma 5.2 the chord diagram of type (i, j,k) with k > 0 is a linear combination of the chord diagrams of type

(i′, j′,0) in A2. So A2 is spanned by the chord diagrams β1, β2, β3 together with β4 = . However, by

the relations (3T) and (VE) we have:

β4 = β3 + = β3, (6.1)

completing the proof. �
Lemma 6.2. The space A3 is spanned by the chord diagrams γi , i = 1, . . . ,6, as shown in Fig. 10.

The proof of Lemma 6.2 is divided into Sublemmas 6.3–6.8.

Sublemma 6.3. In addition to γ1 , there are 3 admissible chord diagrams of type (6,0,0), γ11 , γ12 , γ13 as shown in Fig. 11, which
satisfy in A3:

γ11 = γ12 = γ13; (6.2)

γ1 = 2γ13. (6.3)

Proof. Eq. (6.2) follows from Lemma 5.4. Using the relation (3T), we have

γ1 = γ11 + γ12 = 2γ13, (6.4)

completing the proof. �
Similarly, we have:
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Fig. 12. Admissible chord diagrams of type (0,6,0).

Fig. 13. Admissible chord diagrams of type (4,2,0) or (2,4,0).

Fig. 14. Admissible chord diagrams of type (5,1,0).

Sublemma 6.4. In addition to γ2 , there are 3 admissible chord diagrams of type (0,6,0), γ21 , γ22 , γ23 as shown in Fig. 12, which
satisfy in A3:

γ21 = γ22 = γ23; (6.5)

γ2 = 2γ23. (6.6)

Sublemma 6.5. In addition to γ5 , there are 7 admissible chord diagrams of type (4,2,0) or type (2,4,0), γ5i , i = 1, . . . ,7, as shown
in Fig. 13, which satisfy in A3:

γ5i = γ5 (i = 1, . . . ,7). (6.7)

Proof. Using the relations (VE) and (RV), we have

γ5 = + . (6.8)

Similarly, we can prove γ5 = γ51 = γ52. Next, using the relation (3T), we have γ5 = γ54. Similarly, we can prove γ51 = γ57,
γ52 = γ56, and γ53 = γ55. This completes the proof. �
Sublemma 6.6. In addition to γ3 , there are 4 admissible chord diagrams of type (5,1,0), γ3i , i = 1, . . . ,4, as shown in Fig. 14, which
satisfy in A3:

γ3i = γ3 (i = 1, . . . ,4). (6.9)
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Fig. 15. Admissible chord diagrams of type (1,5,0).

Fig. 16. Admissible chord diagrams of type (3,3,0).

Proof. Using the relation (4T), we have

γ5 − γ51 = − = −
= γ31 − γ32 = γ34 − γ3. (6.10)

Since γ5 = γ51 by Sublemma 6.5, we obtain γ31 = γ32, γ34 = γ3. Similarly, we obtain γ33 = γ34, γ32 = γ3. This completes
the proof. �

Similarly, we have:

Sublemma 6.7. In addition to γ4 , there are 4 admissible chord diagrams of type (1,5,0), γ4i , i = 1, . . . ,4, as shown in Fig. 15, which
satisfy in A3:

γ4i = γ4 (i = 1, . . . ,4). (6.11)

Sublemma 6.8. In addition to γ6 , there are 5 admissible chord diagrams of type (3,3,0), γ6i , i = 1, . . . ,6, as shown in Fig. 16, which
satisfy in A3:

γ61 = γ62 = γ6; (6.12)

γ63 = γ64 = γ65 = γ5 + γ6. (6.13)

Proof. By the relation (VE) and (RV), we have

γ61 = + = γ6. (6.14)

Similarly, we have γ62 = γ6, obtaining Eq. (6.12).
Next, by the relation (3T), we have

γ63 = γ61 + = γ61 + γ53 = γ6 + γ5, (6.15)

where we use Sublemmas 6.5 and 6.8. Similarly, we obtain γ64 = γ65 = γ6 + γ5. This completes the proof. �
Proof of Lemma 6.2. By Lemma 5.2, A3 is spanned by the chord diagrams of type (k,6 − k,0) with k = 0,1, . . . ,6. Then by
Sublemmas 6.3–6.8 the result follows. �



T. Kanenobu, K. Sugita / Topology and its Applications 159 (2012) 966–979 975
Fig. 17. Spatial handcuff graphs.

Table 1
Values of finite type invariants.

Handcuff graphs U H+ H− T1 T2 T1! T2! 42
1 52

1 T H1 T H2

λ 0 1 −1 0 0 0 0 2 0 1 1
a2[1] 0 0 0 1 0 1 0 0 0 1 0
a2[2] 0 0 0 0 1 0 1 0 0 0 1
λ2 0 1 1 0 0 0 0 4 0 1 1
V (3)[1]/18 0 0 0 −1 0 3 0 0 0 −1 0
V (3)[2]/18 0 0 0 0 −1 0 3 0 0 0 −1
λ3 0 1 −1 0 0 0 0 8 0 1 1
a3 0 0 0 0 0 0 0 0 −1 1 1
λa2[1] 0 0 0 0 0 0 0 0 0 1 0
λa2[2] 0 0 0 0 0 0 0 0 0 0 1

Fig. 18. Singular handcuff graphs of order 1 or 2.

7. Finite type invariants of order ��� 2

First, we give a table of spatial handcuff graphs in Fig. 17 (cf. [21,22]), and their invariants in Table 1, where T1!, T2! are
mirror images of T1, T2, respectively. We will use them in Sections 7 and 8.

Let M1, M2
i (i = 1,2,3) be the singular spatial handcuff graphs as shown in Fig. 18 respecting the order one or two

chord diagrams α1, βi , respectively.
Using the Vassiliev skein relation (3.1), we have:

[ v(M1) v(M2
1) v(M2

2) v(M2
3) ]

= [ v(U ) v(H+) v(H−) v(T1) v(T2) ]

⎡
⎢⎢⎢⎣

−1 −1 −1 −2
1 0 0 1
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎦ , (7.1)

where H+ , H− , T1, T2 are spatial handcuff graphs as shown in Fig. 17.
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Theorem 7.1.

(i) Let v be a finite type invariant of order � 1 for a spatial handcuff graph. Then

v(Φ) = A + Bλ(Φ), (7.2)

where A = v(U ) and B = v(M1).
(ii) The space V1/V0 has a basis {λ}.

Proof. Since there is only one admissible chord diagram of order one, α1 (Fig. 8), by Proposition 4.3, we have

v(Φ) = v(U ) + pv
(
M1) (7.3)

for some integer p. Then by Eq. (7.1), we have

v(Φ) = (1 − p)v(U ) + pv(H+), (7.4)

and so we have

λ(Φ) = (1 − p)λ(U ) + pλ(H+) = p. (7.5)

This completes the proof. �
Theorem 7.2.

(i) Let v be a finite type invariant of order � 2 for a spatial handcuff graph. Then

v(Φ) = A + Bλ(Φ) +
∑

i=1,2

Cia2[i](Φ) + C3λ(Φ)2, (7.6)

where

A = v(U ), B = v
(
M1) − 1

2
v
(
M2

2

)
, Ci = v

(
M2

i

)
(i = 1,2), C3 = 1

2
v
(
M2

3

)
.

(ii) The space V2/V1 has a basis {a2[1],a2[2], λ2}.

Proof. From Proposition 4.3 and Lemma 6.1, we have

v(Φ) = v(U ) + [ v(M1) v(M2
1) v(M2

2) v(M2
3) ]

⎡
⎢⎣

p
q1
q2
q3

⎤
⎥⎦ (7.7)

for some integers p, qi . Then

⎡
⎢⎣

λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 2

⎤
⎥⎦

⎡
⎢⎣

p
q1
q2
q3

⎤
⎥⎦ , (7.8)

and so we have

v(Φ) = v(U ) + [ v(M1) v(M2
1) v(M2

2) v(M2
3) ]

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

− 1
2 0 0 1

2

⎤
⎥⎦

⎡
⎢⎣

λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2

⎤
⎥⎦ , (7.9)

obtaining (i). Since Eq. (7.8) assures that a2[1], a2[2], λ2 are linearly independent in V2/V1, we obtain (ii). �
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Fig. 19. Singular handcuff graphs of order 3.

8. Finite type invariants of order ��� 3

Let M3
i (i = 1, . . . ,6) be the singular spatial handcuff graph as shown in Fig. 19 respecting the chord diagram γi of

order 3.
Using the Vassiliev skein relation (3.1), we have:

[ v(M3
1) v(M3

2) v(M3
3) v(M3

4) v(M3
5) v(M3

6) ] = hZ , (8.1)

where

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(U )

v(H+)

v(H−)

v(T1)

v(T2)

v(T1!)
v(T2!)
v(42

1)

v(52
1)

v(T H1)

v(T H2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 3
0 0 −1 −1 0 −3
0 0 0 0 0 −1
1 0 −1 0 0 0
0 1 0 −1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.2)

with H+ , H− , T1, T2, 42
1, 52

1, T H1, T H2 being spatial handcuff graphs as shown in Fig. 17. Here X T means the transpose
of X .

Theorem 8.1.

(i) Let v be a finite type invariant of order � 3 for a spatial handcuff graph. Then

v(Φ) = A + Bλ(Φ) +
∑

i=1,2

Cia2[i](Φ) + C3λ(Φ)2

+
∑

i=1,2

Di V (3)[i](Φ)/18 + D3λ(Φ)3 + D4a3(Φ) +
∑

i=5,6

Diλ(Φ)a2[i − 4](Φ), (8.3)

where

A = v(U ); (8.4)

B = v
(
M1) − 1

v
(
M2

2

) − 1
v
(
M3

6

); (8.5)

2 6
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Ci = v
(
M2

i

) − 1

4
v
(
M3

1

)
(i = 1,2); (8.6)

C3 = 1

2
v
(
M2

3

); (8.7)

Di = −1

4
v
(
M3

1

)
(i = 1,2); (8.8)

D3 = −1

6
v
(
M3

6

); (8.9)

D4 = v
(
M3

5

); (8.10)

Di = −1

4
v
(
M3

i−2

) − v
(
M3

5

)
(i = 5,6). (8.11)

(ii) The space V3/V2 has a basis {V (3)[1], V (3)[2], λ3,a3, λa2[1], λa2[2]}.

Proof. From Proposition 4.3 and Lemmas 6.1 and 6.2, we have

v(Φ) = v(U ) + mx, (8.12)

where

m = [ v(M1) v(M2
1) v(M2

2) v(M2
3) v(M3

1) · · · v(M3
6) ] , (8.13)

x = [ p q1 q2 q3 r1 · · · r6 ]T (8.14)

with p, qi , r j rational numbers; notice Eqs. (6.3) and (6.6). Then using Table 1 and Eq. (8.2), we have:

I = Y x, (8.15)

where

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2

V (3)[1](Φ)/18
V (3)[2](Φ)/18

λ(Φ)3

a3(Φ)

λa2[1](Φ)

λa2[2](Φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0
0 −1 0 0 −4 0 0 0 0 0
0 0 −1 0 0 −4 0 0 0 0
1 0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.16)

and so we have

v(Φ) = v(U ) + mY −1 I, (8.17)

with

Y −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

−1/2 0 0 1/2 0 0 0 0 0 0
0 −1/4 0 0 −1/4 0 0 0 0 0
0 0 −1/4 0 0 −1/4 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 −1 −1

−1/6 0 0 0 0 0 −1/6 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.18)

obtaining (i). Since Eqs. (8.15) and (8.16) assure that V (3)[1], V (3)[2], λ3, a3, λa2[1], λa2[2] are linearly independent in
V3/V2, we obtain (ii). �

Theorems 7.1, 7.2, 8.1 imply the following, which is the main theorem of [29]:
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Corollary 8.2. The spaces A1 , A2 ,A3 have the bases as follows:

A1 = 〈α1〉; (8.19)

A2 = 〈β1, β2, β3〉; (8.20)

A3 = 〈γ1, . . . , γ6〉. (8.21)

Given a spatial handcuff graph Φ , let Dt(Φ) be the 2-component link obtained from Φ by deleting the connecting
edge e3. Then Dt is a morphism from the object of spatial handcuff graphs to the object of ordered 2-component oriented
links; see Example 2.4 in [27]. We define a linear map �n : Vn(S1 � S1) → Vn by �n(v) = v ◦ Dt, where Vn(S1 � S1) is
the space of finite type invariant of order � n for an ordered 2-component oriented link. Then from Theorem 5.2 in [14]
we have the following corollary; see also Theorem 3.1 in [12]. Note that V (3)(K ;1) = (3/4)P (3)

0 (K ;1) for a knot K , where

P (3)
0 (K ;1) is the third derivative of the 0th coefficient polynomial of the HOMFLYPT polynomial of K at t = 1; see [20], [13,

(5.9)].

Corollary 8.3. If n � 3, then �n is an isomorphism.

This means that a finite type invariant of order � 3 for a spatial handcuff graph is determined by the link consisting of
the two loops, and is not affected by the connecting edge e3. So we are interested in the following question.

Question 8.4. Is �n an isomorphism for n � 4?
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