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Quantifying Protein Diffusion and Capture on Filaments
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ABSTRACT The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of micro-
tubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative
theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament’s
end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a
consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins
and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described
within a Michaelis-Menten framework. Together, one-dimensional diffusion and capture beats the (three-dimensional) Smolu-
chowski diffusion limit for the rate of protein association to filament ends.
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The catalytic activity of enzymes is often restricted to spe-
cific binding sites. The ends of microtubules (MTs) for
example are binding sites for a plethora of MT-associated
proteins (MAPs) (1). At MT ends, MAPs can catalyze
biochemical processes (2), or serve as substrates for other
enzymes. This makes an efficient association of MAPs to
MT tips important. Experiments suggest that one-dimen-
sional diffusion of MAPs on MTs facilitates tip-targeting
(3,4). This idea goes back to the concept of ‘‘reduction in
dimensionality’’ suggested by Adam and Delbrück (5) and
has been largely applied (6,7). However, a quantitative un-
derstanding of tip-binding mediated by diffusion on the fila-
ment and subsequent capture at the tip has remained elusive
(3,8–16).

Here we show that capturing at the tip is crucial for tip-
localization of proteins. We present a theory where diffusion
and capture is accurately quantified with an effective associ-
ation rate constant and provide a result that depends only on
experimentally accessible parameters. For proteins that are
enzymatically active at filament ends, our theory predicts
that diffusion and capture leads to an enhancement of the
enzymatic reaction velocity due to stronger tip-localization.
We observe that the reaction velocity in dependence of the
enzyme concentration closely follows a Michaelis-Menten
curve and quantify the contribution of one-dimensional
diffusion to tip-localization and enzymatic processes down-
stream thereof.

To model the diffusive motion of proteins on a filament,
we consider a one-dimensional lattice of length lwith lattice
spacing a ¼ 8.4 nm (Fig. 1 A). The lattice corresponds to a
single protofilament of a stabilized MT in the absence of dy-
namic instability. Proteins perform a random walk on the
lattice with a hopping rate e, the diffusion constant is D ¼
ea2. Each site can be occupied by only one protein, as the
system is an exclusion process (17). Proteins attach to and
detach from the lattice at rates uonc and uoff, respectively,
where c is the concentration of proteins in solution. The
tip of the MT is represented by the first lattice site in our
model. To account for its particular structure, different on-
and off-rates are assumed there, expressed as konc and koff.
Proteins that bind to the tip are captured, i.e., not allowed
to hop on the lattice, but still may detach into solution.
This important condition is a critical difference between
our model and previous approaches ((3,16); and see also
the Supporting Material).

The central goal of this letter is to quantify the relative
contributions of diffusion and capture (tip-attachment after
diffusion on the lattice) and end-targeting (attachment after
diffusion in solution) (Fig. 1 B) to tip-localization. To
this end we calculated the probability to find a protein at
the end of a protofilament (the tip density rþ). In the
absence of diffusion and capture, the Langmuir isotherm
is obtained,

rþðcÞ ¼ c

K þ c
; (1)

where K ¼ koff/kon is the dissociation constant of the protein
at the tip. However, as noted previously (3,4), such a model
is incomplete as it does not account for the additional
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FIGURE 1 (A) Schematic of a microtubule

(MT) with diffusive tip-binding proteins. In

the bulk of the lattice, proteins attach to

empty sites and detach. Proteins hop to

neighboring sites but obey exclusion. At

the plus-end, particles are captured.

(B) Illustration of direct tip-attachment

from solution and via diffusion and cap-

ture. (C) Proteins bind reversibly at the

plus-end. While a protein is attached there,

a reaction is catalyzed at rate kcat. To see

this figure in color, go online.
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protein flux along protofilaments mediated by diffusion and
capture. We have analyzed this flux by stochastic simula-
tions of the model (Fig. 1). Surprisingly, we find that over
a broad range of concentrations c, the additional protein cur-
rent to an unoccupied reaction site JD effectively obeys first-
order kinetics, i.e., JD ¼ kDonc (Fig. S2 in the Supporting
Material). This observation implies that despite the
complexity of the diffusion-reaction process one approxi-
mately retains the functional form of the Langmuir
isotherm. Accounting for the diffusion-capture contribution
to the rate of protein attachment leads to an effective disso-
ciation constant,

Keff ¼ koff
��

kon þ kDon
�
: (2)

We have calculated the diffusion-capture rate kDon analyti-
cally, by exploiting the observed approximate linear reac-
tion kinetics. We find

kDon ¼ uonD=a
2

uoff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uoffD

�
a2

q : (3)

Refer to the Supporting Material for a detailed derivation of
Eqs. 1–3. Together, Eqs. 1–3 comprise an effective theory
for the association of proteins to the tip, which accounts
for direct end-targeting as well as the diffusion-capture pro-
cess. With Eq. 3, we are able to quantitatively predict the
relative contribution of diffusion and capture to tip-binding
for different proteins that diffuse on filaments. The results
are shown in Fig. 2: 90–99% of molecules bind to the tip
through one-dimensional diffusion, given they follow diffu-
sion and capture.

Tip-localization due to diffusion and capture as predicted
by our theory has important implications for enzymatically
active proteins. We extended the model to investigate enzy-
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matic reactions at the MT tip, where the protein-tip complex
catalyzes a product at rate kcat (Fig. 1 C). In detail, we as-
sume that the protein does not leave the tip after catalyzing
a reaction, but only through detachment into solution. These
model assumptions are consistent with filament polymer-
izing enzymes that act processively, such as XMAP215
for MTs (9,10), and VASP (15) and formins (18) for actin
filaments. The assumption of a constant length l in our
model is excellent if the rate of diffusion is fast compared
to the polymerization rate.

With the above model assumptions, the reaction velocity
v is determined by the tip density, v ¼ rþkcat. We can apply
our previous results, Eqs. 1–3, to obtain

vðcÞ ¼ kcat rþðcÞ ¼ kcatc

Keff þ c
: (4)

The above equation is reminiscent of a single-molecule
Michaelis-Menten equation (19,20) when Keff is reinter-
preted as the Michaelis constant and substrate and enzyme
concentrations are interchanged. In this way, our theory con-
stitutes an effective Michaelis-Menten theory, accounting
for end-targeting and diffusion and capture. Instead of solv-
ing a complex many-body problem, it suffices to apply a
mathematical framework that is analogous to (single-mole-
cule) Michaelis-Menten kinetics. The details of diffusion
and capture are accurately included in the effective on-rate

keffon ¼ kon þ kDon:

This result is in accordance with experimental results for

several enzymatically active proteins where Michaelis-
Menten curves were observed for the reaction speed de-
pending on the enzyme concentration (8,9). Inspired by
the processive (de)polymerase activity of (MCAK)
XMAP215, we assume that enzyme and substrate are not
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FIGURE 3 (A) Comparison of the reaction velocity with (solid)

and without (dashed) lattice diffusion and with and without

capturing at the tip (circles, simulation data; lines, analytic re-

sults). (B) Reaction velocity v in dependence on the protein con-

centration c. Analytic results (lines) are confirmed by simulation

data (circles). Parameters are L ¼ 1000, uoff ¼ koff ¼ 1 s�1, kcat ¼
10 s�1uon¼ kon¼ 0.01 s�1 nm�1, and c¼ 1 nM. To see this figure

in color, go online.

FIGURE 2 The model predicts the relative

contribution to tip localization of proteins

due to diffusion and diffusion and capture

(color code and solid lines), kD
on/(k

D
on D

kon) with kon ¼ uon (dashed line for actin:

a ¼ 6 nm). Proteins that are captured at the

filament end (solid symbols) and proteins

where evidence for capturing is lacking

(open symbols) are shown. Proteins that

in addition have a direct enzymatic

activity at the filament end are XMAP215

(9,10), MCAK1 (3), and MCAK2 (8) on MTs,

and VASP on actin filaments (15; S.D. Han-

sen and R.D. Mullins, University of Califor-

nia San Francisco School of Medicine,

personal communication, 2014). There

exist also proteins that diffuse on MTs

without enzymatic activity at MT ends, but with roles downstream of tip-localization, e.g., in the protein network of MT tips (1):

Ndc80 (11), CLIP-170 (12), NuMA, PRC1, EB1 (13), and Aurora-B (14). To see this figure in color, go online.
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decomposed in the reaction step. However, it is straightfor-
ward to include a decomposition in the theory: the corre-
sponding effective dissociation constant would read

Keff ¼ �
koff þ kcat

��
keffon :

Our analytical results, Eqs. 2–4, agree well with simula-
tion results of the stochastic model, as shown in Fig. 3, A
and B. We find that the diffusion and capture mechanism
dramatically increases keffon and thereby reduces the effec-
tive dissociation constant typically by more than one
order of magnitude, e.g., for XMAP215 we find Keff z
10�2 K (see Table S1 in the Supporting Material for
parameter values). In the case of long dwell-times u�1

off

and fast diffusion e, Keff reduces to a particularly simple
form

Keff ¼ �
koff

�
uon

�. ffiffiffiffiffiffiffiffiffiffiffiffi
e
�
uoff

q
; (5)

where the denominator is the square-root of the average
number of diffusive steps a protein performs on the filament.

Note that one-dimensional diffusion without capturing
(16) does not lead to a particle flux on the filament
(Fig. S4), and hence the reaction velocity is not increased
(Fig. 3 A). Further, the particle flux might be limited by
the length of the filament: below a threshold length lc (which
is smaller than typical in vivo lengths of MTs), we observe a
length-dependent behavior of the reaction velocity (Fig. S3),
where our theory is not valid.

Our analysis reveals diffusion and capture as an efficient
mechanism to circumvent the diffusion limit for the rate of
end-targeting: Smoluchowski’s theory of three-dimensional
diffusion physically limits the rate of direct tip-attachment
from solution (21). As shown here, one-dimensional diffu-
sion along a filament and subsequent capture at the filament
end overcomes this limitation. This has been shown experi-
mentally for MCAK (3). Our work provides an applicable
theory for reaction kinetics facilitated by diffusion and cap-
ture: specific parameter values for diffusion, tip-association,
and dwell times can be accounted for (see Eqs. 3 and 4).
Employing a broader perspective, our results may also be
Biophysical Journal 108(4) 787–790
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applicable to other systems where one-dimensional diffu-
sion is important (6), including transcription factor binding
on DNA (22).
SUPPORTING MATERIAL

Supporting Materials and Methods, four figures, and one table are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

00063-6.
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