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The focus of the present paper is the experimental investigation, the constitutive representation and the
numerical simulation of the amplitude dependence of filler-reinforced elastomers. A standard way to
investigate the dynamic properties of viscoelastic materials is via the dynamic modulus which is obtained
from stress signals due to harmonic strain excitations. Based on comprehensive experimental data, an
amplitude-dependent constitutive model of finite viscoelasticity is developed. The model is based on a
modified Maxwell chain with process-dependent viscosities which depend on additional internal state
variables. The evaluation of this thermodynamically consistent model is possible in both the time
domain, via stress-time signals, and in the frequency domain, via the dynamic modulus. This property
is very profitable for the parameter identification process. The implementation of the constitutive model
into the commercial finite element code ANSYS with the user-programmable feature (UPF) USERMAT for
large deformations in updated Lagrange formulation is presented. This implementation allows simulating
the time-dependent behaviour of rubber components under arbitrary transient loading histories. Due to
physical and geometrical nonlinearities, these simulations are not possible in the frequency domain. But,
transient FEM computations of large loading histories are sometimes not possible in an acceptable time.
In the context of the parameter identification the fundamental ideas are presented, how this problem has
been solved. Transient FEM simulations of real rubber components are also shown to visualize the prop-
erties of the model in the context of the transient material behaviour.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rubber-parts which are manufactured using filler-reinforced
elastomers are used in many industrial applications (Sjöberg,
2002; Coja and Kari, 2005). The most popular and best-known ones
come from the automotive industry and contain shock absorbers
(Garcia, 2006), suspension and engine mounts, tyres, seals or belts
for transmitting power, to name a few. In order to improve and
modify the physical properties of rubber-like materials, a wide
range of fillers like silica or carbon black is used (Heinrich and
Klüppel, 2004). The addition of appropriate filler particles to the
elastomers leads to additional cross-links and usually influences
the behaviour of the final product in a positive sense: increase in
stiffness and abrasion resistance or advances in the adhesion
behaviour of tyres (Bokobza, 2009). On the other hand, the added
filler material can cause complications during the production pro-
cess. The particles tend to agglomerate during mixing such that the
ll rights reserved.
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resulting material can become rather inhomogeneous. To avoid
this, further chemical additives are needed.

Under real operating conditions, typical rubber components are
loaded with complicated dynamic processes in combination with
constant preloads. During oscillating deformations, filled rubber
shows many nonlinear effects which are a result of the dynamic
breakage and recovery of the additional cross-links in the network.
On the level of the material, dynamic loadings can be generated
and studied using the experimental technique of dynamic mechan-
ical analysis (DMA). In this context, continuous changes or jumps
in the frequency (G’Sell and Jonas, 1981), the temperature (Khan
and Lopez-Pamies, 2002; Williams et al., 1955; Schwarzl and Zah-
radnik, 1980), the static preload and the dynamic amplitude (Pay-
ne, 1962a,b) are applied. Well-known inelastic phenomena of
filler-reinforced rubber are the frequency- and the amplitude-
dependence (Payne-effect) as well as the stress softening behav-
iour under large cyclic strains which is known as the Mullins-effect
(Buche, 1961; Hardwood et al., 1965; Mullins and Tobin, 1965). In
addition, jamming phenomena are observed as a reason of loading
history and amplitude dependence (Robertson and Wang, 2005,
2006). The dynamic material properties of rubber under multi-
modal loading processes, which are very similar to real operating
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Nomenclature

A tensors
detA determinant of A
AT transpose of A
AD deviator of A
F deformation gradient
C = FTF right Cauchy–Green tensor
B = FFT left Cauchy–Green tensor
U ¼

ffiffiffi
C
p

right stretch tensor
V ¼

ffiffiffiffi
B
p

left stretch tensor
R rotation tensor
E ¼ 1

2 ðC� 1Þ Green strain tensor
A ¼ 1

2 ð1� B�1Þ Almansi strain tensor
e ¼ 1

2 ðC
�1 � 1Þ Piola strain tensor

a ¼ 1
2 ð1� BÞ Finger strain tensor

T Cauchy stress tensor
S = (detF)T Kirchhoff stress tensor
TPK = SFT�1 first Piola–Kirchhoff stresseT ¼ F�1TPK second Piola–Kirchhoff stress
w specific free energy per unit mass
qR mass density
h thermodynamic temperature
s specific entropy per unit mass
qR heat flux vector

J volume ratio
Bl matrix connecting the changes in the linear

strain del and the nodal displacement vector dpeC material tangent operator – tensor of fourth order
G matrix connecting the displacement derivates to

the nodal displacementsbT matrix containing the Cauchy stress
F�1(�)FT�1 ‘push forward’ transformation
F(�)FT ‘pull back’ transformation
(�)R entity in the reference coordinate system
(�)C entity in the current coordinate system
L¼DþW¼ _FF�1 spatial velocity gradient
D¼1

2ðLþLTÞ¼DT symmetric part of velocity gradient
W¼1

2ðL�LTÞ¼�WT antisymmetric part of velocity gradient
DF incremental deformation gradient, F(t + Dt) =

DFF(t)
DH incremental displacement gradient
DL incremental velocity gradient
DD symmetric part of incremental velocity gradient
DW skew-symmetric part of incremental velocity

gradient
DR incremental rotation tensor
t,Dt time and time increment
x angular frequency

M. Rendek, A. Lion / International Journal of Solids and Structures 47 (2010) 2918–2936 2919
conditions, were measured and presented in Wrana and Härtel
(2008). In order to understand these effects in more detail it is
profitable to execute cyclic DMA tests with complicated amplitude
histories. Besides the standard DMA tests and the interpretations
via the dynamic modulus it is very helpful to record also the stress
and strain signals as function of time. This data allows observing
further transient effects and gives more insight into the dynamics
of the material.

The focus of this paper is concentrated to the amplitude depen-
dence of rubber which was originally observed in the sixties (Pay-
ne, 1962a,b). In comparison with the Mullins-effect which occurs
under large strain amplitudes, the Payne-effect takes place under
small strain amplitudes. If filler-reinforced rubber is cyclically de-
formed the Payne-effect comes to light in the form of a monoton-
ically decreasing storage modulus and a sigmoidal-shaped loss
modulus with increasing strain amplitude. On a molecular level,
the Payne-effect can be attributed to dynamic reversible break-
down and recovery processes of carbon black aggregate structures
(Payne and Whittaker, 1972). The influence of diverse parameters
like temperature, frequency or the degree of vulcanization on the
Payne-effect was studied in many publications. Constitutive mod-
els to represent the amplitude dependence of filled rubber were
published, for example, in Lion (2005) and Hoefer and Lion
(2009), or in Lion (2004) and Dorfmann and Be’ersheba (1995) con-
sidering fractional derivates. These approaches can be interpreted
as time domain formulations of the well-known Kraus model
(Kraus, 1966; Lion, 2005). The Kraus model describes the ampli-
tude dependence of the dynamic modulus in the frequency domain
but a time domain formulation which can be applied, for example,
for finite element simulations of rubber parts does not exist. An-
other interesting approach, the network junction model, was intro-
duced by Ouyang (2006) in this context. The formulation and the
finite element implementation of a constitutive model which can
take the amplitude dependence in both the frequency and the time
domain into account is the topic of this paper.

Since the equilibrium hysteresis of filled elastomers is com-
paratively small (Lion, 1996), their behaviour under infinitely
slow processes is nonlinear elastic in a good approximation. If
stress- or strain-controlled loadings with different rates are ap-
plied filled elastomers exhibit a pronounced rate-dependent
behaviour. This can be observed in the form of creep and relaxa-
tion curves or rate-dependent stress–strain characteristics. The
relaxation can be observed during dynamic loadings too (Sullivan
and Demery, 1982). The foundations of linear viscoelasticity on
the basis of the Boltzmann formulation were published, for
example, by Coleman (1961). Rheological constitutive models to
represent the nonlinear viscoelastic behaviour of rubber can be
found in many publications, for example, Baris and Edwards
(1993), Hasanpour et al. (2009), Haupt and Lion (2002), Holzapfel
(1996), Middendorf (2001) or Miehe and Keck (2000), Sedlan
(2001), Amin et al. (2006) to name a few. Numerical aspects of
the finite element implementation of finite viscoelasticity are dis-
cussed, for example, by Simo and Huges (2000) and Reese and
Govindjee (1998) or Miehe and Keck (2000) and Govindjee and
Simo (1992).

In the first section of the paper, dynamic tests on filled and un-
filled rubber are presented. Transient effects are evaluated and dis-
cussed in both the frequency and the time domain. In the
subsequent section, a general model of nonlinear finite viscoelas-
ticity with process-dependent viscosities is developed. Variable
viscosities are introduced to take the amplitude dependence into
account. In order to illustrate the idea of the model, one-dimen-
sional MATLAB simulations are carried out. In the Section 3, the
constitutive model with a nearly incompressible hyperelastic equi-
librium stress and a rate-, frequency- and amplitude-dependent
overstress is formulated. The implementation of the constitutive
model into the finite element code ANSYS via the subroutine USER-
MAT is explained and the co-rotational kinetics of this formulation
is discussed too. In Section 6, the material model is geometrically
linearised and transformed into the frequency domain in order to
identify certain material parameters. The scaling process of the
time in the context of the transient processes is shortly discussed.
Finally, some transient FEM simulations to demonstrate the abili-
ties of material model are shown and interpreted.



Fig. 1. Frequency- and amplitude-dependence of Payne-effect; storage (L) and loss (R) modulus of filled ESBR with 50 phr carbon black.
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2. Experiments on filler-reinforced rubber compounds

As a standard approach to investigate the Payne-effect (ampli-
tude dependence), strain-controlled amplitude sweep tests were
carried out (Fig. 1). In these tests, the amplitude of a sinusoidal
strain excitation under constant preload and frequency is continu-
ously varied. The experiments were carried out with a DMA (Dy-
namic Mechanical Analysis) testing machine, repeated for
different frequencies and evaluated in terms of the storage and loss
moduli. The storage modulus determines that part of the stress re-
sponse which is in phase with the strain and the loss modulus that
part which is in phase with the strain rate. The experimental data
shows the transient region of the amplitude-dependent storage
and loss modulus of carbon black-filled rubber at different fre-
quencies. The curves of the storage modulus decrease significantly
with increasing strain amplitude (Fig. 1-L).

In comparison with this, the loss modulus shows a broad max-
imum in the region of intermediate amplitudes (Fig. 1-R). In the re-
gion of extremely small or large strain amplitudes, the material
exhibits amplitude-independent dynamic moduli or plateau areas.
The experimental observation of plateau areas of the Payne-effect
can also be found in Lion et al. (2009). In the current work, we con-
Fig. 2. Amplitude-independent behaviour of unfilled NR, storage and loss modulus.
centrate the focus on the transient areas. With increasing fre-
quency the softening effect is more pronounced because the
material is stiffer and more sensitive (Rendek and Lion, 2008). Cor-
responding to the smallest amplitude, the frequency dependence is
studied in more detail later when the material parameters are
identified. The experiments in Fig. 1 show a pronounced stiffening
of the material with increasing frequencies, cf. Wrana et al. (2000)
or Ramorino and Ricco (2003). For comparison with filled ESBR, the
same amplitude sweep at different frequencies was carried out
with unfilled natural rubber (NR). It is plotted in Fig. 2 and shows
an amplitude-independent dynamic modulus and weak frequency
dependence. These tests demonstrate that the amplitude depen-
dence of elastomers can be attributed to the filler or to interactions
between the filler and the rubber matrix. The frequency depen-
dence is influenced by the filler as well.

2.1. Reversibility of Payne-effect

The next point of discussion is the difference in the material
behaviour during increasing and decreasing amplitude changes
which can be observed in amplitude sweeps driven in increasing
and decreasing mode related to the dynamic amplitude (see Figs. 3
and 4).

As we see in Fig. 4, the dependence of the material behaviour on
the loading path is relevant in the investigated deformation range
above 0.1%. The differences in the values of the storage and loss mod-
ulus during increasing and decreasing strain amplitudes are caused
by the loading history and the internal dynamics of the material. This
effect is more pronounced in the storage modulus but less pro-
nounced in the loss modulus. Increasing and decreasing amplitude
sweeps build one loading cycle (Fig. 3-L). Between the loading cy-
cles, hold times of 900 s are introduced to allow a regeneration of
the microstructure. The value of 900 s was found to be sufficient
such that the regeneration under tension is nearly complete. The val-
ues of the dynamic modulus during the first cycle are significantly
bigger than those during the second and the following cycles
(Fig. 4). This type of cyclic softening behaviour is very similar to that
of the Mullins-effect (Mullins and Tobin, 1965) and occurs only at
virgin rubber specimens. The cycles from 2 to 5 show the same
curves of dynamic modulus and, thus, prove the reversibility of
the Payne-effect. Nevertheless, it should be remarked that the
amplitude dependence is different during increasing and decreasing
amplitudes: during the amplitude increase, the modulus is observed
to be larger than during the decrease. During the increase of the



Fig. 3. Prescribed dynamic loadings (amplitude sweeps) as functions of time to determine the reversibility of the Payne-effect with constant preload and hold times (L), up-
and down-sweep test with stepwise changing preload (R).

Fig. 4. Reversibility of the Payne-effect, storage (L) and loss (R) modulus of filled ESBR with 50 phr carbon black under constant preload as plotted in Fig. 3-L.
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amplitude, the weakest physical bonds are breaking instanta-
neously and during the decrease they recover with a temporal delay.

2.2. Influence of preload

In order to determine the influence of the static preload on the
Payne-effect, amplitude sweeps at different preloads were carried
out. The loading process is depicted in Fig. 3-R. Fig. 5 shows the re-
sponse of the dynamic modulus belonging to the sweeps with
increasing amplitudes. The first sweep is not considered because
it was done to precondition the specimen. The curves of the storage
modulus in Fig. 5 exhibit a significant influence on the preload in
the full range of strain amplitudes. Growing preloads produce lar-
ger stress amplitudes which are directly transferred to the dynamic
modulus. The sensitivity of the loss modulus to the preload is less
pronounced and can be ignored in a first approximation.

2.3. Observation of the Payne-effect in time domain

In order to investigate the amplitude dependence of filled
elastomers, i.e. the reversible softening behaviour of the dynamic
modulus under growing strain amplitudes (Payne, 1965), cyclic
DMA tests under harmonic tension, shear or compression deforma-
tions are usually carried out. Mostly, the experimental data are
evaluated in the frequency domain in terms of the dynamic mod-
ulus. In this case, both the higher frequency contributions which
are caused by geometrical or physical nonlinearities and the tran-
sients in the response of the material are not observable. Thus, in
addition to the behaviour in the frequency domain the present sec-
tion is focussed to the time-dependent behaviour of the stress and
strain signals recorded during the DMA tests (Fig. 1).

Fig. 6 shows the signals during the amplitude sweep at a fre-
quency of 60 Hz. Prior to the real tests, the specimens were condi-
tioned to eliminate the Mullins-effect. For the sake of brevity, the
mechanical conditioning process is not plotted. It is observed, that
the stress amplitudes decrease significantly during a certain time
after the amplitude change. The material which is deformed in
such a way becomes softer with increasing amplitudes which cor-
responds to the Payne-effect in the time domain. The observed
softening and recovery effects can be physically interpreted as pro-
cess-induced reversible changes in the microstructure of the mate-
rial. The influences of the excitation frequency on the



Fig. 5. Influence of the preload on the Payne-effect, storage (L) and loss (R) modulus of filled ESBR with 50 phr carbon black. The loading is plotted in Fig. 3-R.

Fig. 6. Recorded tensional strain signal (L) and stress response (R) of filled reinforced ESBR by standard amplitude sweep test at 60 Hz and 25 �C.
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microstructural relaxation behaviour and the intensity of the stress
softening are studied in Fig. 6-R and Fig. 7-L. In comparison with
the stress signal of filed ESBR (Fig. 7-L), unfilled NR (Fig. 7-R) exhib-
its completely different behaviour: the stress amplitudes of un-
filled NR are constant after the amplitude changes.

The amplitude-dependent softening effect is also detectable on
the stress–strain hysteresis loops. In Fig. 8, the hysteresis loops
belonging to the stress signals in Fig. 7 are plotted as functions
of strain. The dynamic stiffness, defined as the average slope of
the hysteresis loops, varies with the strain amplitude and is grow-
ing with decreasing amplitude. This phenomenon is particularly
pronounced in the case of carbon black-reinforced ESBR (Fig. 8-
L). Unfilled rubber shows clear hyperelastic behaviour (Fig. 8-R).

2.4. DMA multi-step experiments

Another method to study the Payne-effect in the time domain
is a multi-step test. It consists of a sequence of time intervals of
sufficiently long duration in which the strain amplitude is con-
stant. During the standard amplitude sweep the hold times at
constant strain amplitudes are definitely too small. In the following
tests, the amplitude is constant for 2700 s and then changes.
Looking at the corresponding stress signals in Fig. 6-R, it is
observed that the microstructure relaxations are definitely not
finished. As a result of the multi-step test in Fig. 9, the amplitude-
dependent dynamic modulus is a time-dependent function. In
the region of increasing strain amplitudes (left of centre in
Fig. 9-L and -R), the dynamic modulus has become constant after
relative short times and its asymptotic values become stepwise
smaller. But in the region of decreasing amplitudes (right of cen-
tre in Fig. 9-L and -R) the relaxation of the modulus is not fin-
ished for the smaller strain amplitudes and its end values raise
stepwise. The benefit of this test is to get the information about
finished or unfinished microstructural relaxations after the ampli-
tude jumps. The stationary values of the dynamic modulus ob-
tained from the multi-step test in Fig. 9 match with the
modulus values belonging to the same strain amplitude and fre-
quency (10 Hz) from the amplitude sweep test in Fig. 1. The effect
of the loading path dependence (see Fig. 4) which has been
cleared in Section 2.3 is observed in the area of small dynamic
amplitude too. Differences in the stationary values of the dynamic
modulus at the same dynamic amplitude at the start and the end



Fig. 7. Recorded tensional stress response of carbon black-filled ESBR (L) and unfilled NR (R) at 10 Hz and 25 �C from standard amplitude sweep test.

Fig. 8. Hysteresis loops from standard amplitude sweep tests at 10 Hz, carbon black-filled ESBR (L) and unfilled NR (R).

Fig. 9. Multi-step tension test at 10 Hz on carbon black-filled ESBR, storage modulus (L) and loss modulus (R). The fat curves represent the strain amplitude as function of
time.

M. Rendek, A. Lion / International Journal of Solids and Structures 47 (2010) 2918–2936 2923



Fig. 10. 1D Maxwell chain with process-dependent viscosities and nonlinear equilibrium stress.

1 rh = Gradh.
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of the tests can be interpreted as loading path history influence of
the material.

3. Constitutive modelling based on finite viscoelasticity

Besides the phenomena presented in the previous section, rub-
ber-like materials also exhibit pronounced hyperelastic behaviour
under large quasistatic deformations and viscoelastic behaviour
(e.g. creep, relaxation and rate-dependent stress–strain curves) un-
der time-dependent loading processes. The concept of finite non-
linear viscoelasticity which is based on three-dimensional
Maxwell elements provides a good basis for the constitutive repre-
sentation of the experimentally observed phenomena. Examples,
based on this or similar concepts, can be found by Coleman
(1961), Reese and Govindjee (1998), Holzapfel (1996), Simo and
Huges (2000) or Liu (2007), Laiarinandrasanaa et al. (2003). In or-
der to consider further nonlinear effects it is convenient to extend
the constitutive models with additional internal variables. In the
case of viscoelastic media, process-dependent viscosities are fre-
quently introduced (Haupt and Lion, 2002; Lubliner, 2006). Max-
well element-based approaches modified in such a way were
successfully applied to simulate the Payne-effect in the frequency
domain with good agreement to experimental data by Hoefer
and Lion (2009) or, earlier, by Lion (1996). Another, but similar,
concept which uses internal variables and fractional differential
equations to simulate the Payne-effect is presented in Lion and
Kardelky (2004). The influence of the preload on the Payne-effect
is neglected in this paper because this effect becomes more signif-
icant, if the static deformation is larger that about 60% (Fig. 5). A
constitutive approach which considers this influence can be found,
for example, in. Ji-Hyun Cho (2006) and Suwannachit and Nacken-
horst (2010).

3.1. One-dimensional amplitude-dependent Maxwell chain

In order to formulate the three-dimensional constitutive model
for finite deformations, the main ideas are motivated in the follow-
ing discussion on the basis of a one-dimensional approach. The
framework of a one-dimensional amplitude-dependent Maxwell
chain is depicted in Fig. 10, in which the total stress is decomposed
into the sum of a rate-independent equilibrium stress and a rate-
dependent overstress (Eq. (1)). The nonlinear hyperelastic material
behaviour is considered in the equilibrium stress and the viscoelas-
tic behaviour in the overstress. The amplitude dependence is taken
into account with process-dependent viscosities of the dashpots.
The equilibrium stress is defined as the partial derivative of a strain
energy function and depends on the total strain. The overstress is
formulated as the sum of partial overstresses belonging to a series
of Maxwell elements in parallel. The constitutive equations for the
partial overstresses have the form of linear elastic stress–strain
relations which depend on additional internal variables. This
approach is sufficient to describe the experimental data, because
the strain amplitudes acting on the springs of the Maxwell ele-
ments remain relatively small during dynamic excitations.

r ¼ req þ
Xn

k¼1

rovk ¼ qR
ow
oe
þ
Xn

k¼1

ckðe� einkÞ ð1Þ

The elastic strains of the Maxwell elements are given by the differ-
ences between the total strain and the inelastic strains belonging to
the dashpots. The constitutive equations for the inelastic strains
will be derived from the Clausius–Duhem inequality.

3.2. Process-dependent inelastic strain and thermodynamical
consistency

As a general rule, rheological-based constitutive models are
thermodynamically consistent for arbitrary deformation processes
and the evaluation of the Clausius–Duhem inequality can be used
to derive the evolution equations for the inelastic strains or other
internal state variables. For the Maxwell chain sketched in
Fig. 10, the stored free energy, see, e.g. Krawietz (1986), can be
written as expressed by Eq. (2):

qRw ¼ qRweq þ qRwov ¼
1
2

Ee2 þ
Xn

k¼1

1
2

ckðe� einkÞ2
 !

ð2Þ

The one-dimensional form of the Clausius–Duhem inequality,
abbreviated as CDI, is defined in Eq. (3). More details about the
CDI and thermodynamic considerations with respect to material
theory can be found in Müller (1973) or Lion (2000).

�qR
_wþ r _e� qRs _h� 1

h
qR � rh P 0 ð3Þ

The quantities qR, w, s, h, qR, rh are the mass density, the specific
free energy and the entropy per unit mass, the thermodynamic tem-
perature, the heat flux vector and the gradient of temperature.1 For
isothermal processes, h = const., _h ¼ 0, rh = 0 is considered. In com-
bination with the ansatz w = w (e,eink, . . .) the CDI reduces to Eq. (4):

r _e� qR
_w P 0

r� ow
oe

� �
_e�

Xn

k¼1

ow
oeink

_eink P 0
ð4Þ

In the case of the rheological Maxwell chain and the free energy
function as formulated in Eq. (2), the dissipation inequality leads
to the following expression:

r� Eeþ
Xn

k¼1

ckðe� einkÞ
 ! !

_eþ
Xn

k¼1

ckðe� einkÞ _eink P 0 ð5Þ

In order to satisfy Eq. (5) for arbitrary strain rates, its factor has to
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vanish such that the constitutive equation for the stress, Eq. (6), is
obtained. Since the remaining terms in Eq. (5) have to be equal to
or greater than zero, the expressions for the inelastic strain rates
in Eq. (7) are obtained.

r ¼ Eeþ
Xn

k¼1

ckðe� einkÞ ¼ req þ rov ð6Þ

In combination with the process-dependent viscosities gk(Hk) > 0,
Eq. (7) leads to a non-negative dissipation and satisfies the CDI,
which is the proof of the thermodynamical consistency of the con-
stitutive model. This relation is the constitutive equation of a non-
linear dashpot.

_eink ¼
ck

gkðHkÞ
ðe� einkÞ ¼

1
gkðHkÞ

rovk; gkðHkÞ > 0 ð7Þ

Eqs. (6) and (7) can represent the relaxation behaviour of rubber-
like elastomers. In many papers, these two equations are combined
to obtain one differential equation for the partial overstress:

_rovk ¼ ck _e� ck

gkðHkÞ
rovk ¼ ck _e� 1

Zk
rovk ð8Þ

Eq. (8) can be solved for gk = const. in the form of a convolution
integral.

3.3. Representation of amplitude dependence

The amplitude dependence is considered via process-dependent
viscosities as given in Eq. (9):

gkðHkÞ ¼
g0

k

Hk
ð9Þ

Inserting Eq. (9) into Eq. (7) and defining Zk ¼ g0
k=ck with g0

k ¼ const:
as relaxation time under very small strains of the Maxwell element,
the inelastic strain rate, Eq. (10), is obtained.

_einkðtÞ ¼
ck

gkðHkÞ
ðe� einkÞ ¼

HkðtÞ
Zk
ðe� einkÞ ð10Þ

The relation between the amplitude dependence and the relaxation
effects of the microstructure is modelled by the dimensionless func-
tion Hk(t). It is defined by Eq. (11) and depends on the internal var-
iable qk which is defined by Eq. (12). The rate of the change in the
dynamic modulus is controlled by the gain factors dk.
Fig. 11. Example of cyclic strain excitation with stepwise changing amplitud
This approach allows a scaling of transient processes and leads
to reduced computation times compared to real loading times
without loosing information. If dk = 0 is assumed for all Maxwell
elements, we have Hk = 1 such that the model becomes ampli-
tude-independent.

HkðtÞ ¼ 1þ dkqkðtÞ ð11Þ

_qkðtÞ ¼
1
kk
ðk _eðtÞk � qkÞ ð12Þ

The constants kk in the evolution equations for the variables qk can
be interpreted as relaxation times of the microstructure. However,
the experimental data shows that the changes in the stress ampli-
tude are faster when the strain amplitude increases than when it
decreases (see Fig. 6). The same effect is observed in the multi-step
test in Fig. 9. This implies that the quantity kk should depend on the
deformation process. The amplitude dependence is driven by the
absolute value of the strain rate which is very sensitive to ampli-
tude changes (Rendek and Lion, 2009a,b). A principle numerical
simulation of a multi-step test to present the amplitude depen-
dence of the stress is plotted in Fig. 12. The loading process is de-
picted in Fig. 11-L. After time intervals of 30 s, stepwise increases
in the strain amplitude from 1% to 20% were inserted. The right-
hand side of Fig. 11 shows the evolution of the functions Hk(t). In
the case of harmonic strains with constant amplitude and frequency
x together with the assumption of 2p/x < <kk, we have qk � const.
and Hk � const.; if the strain amplitude tends to zero, qk � 0 and
Hk � 1 hold. If a process with changing amplitude is applied, the
variables qk or Hk are measures for the amplitude and control the
stress response (Fig. 12-L). Mostly, the stress signal is evaluated
via the dynamic modulus (Fig. 12-R); the computation of the mod-
ulus is described in detail, e.g. by Menard (1999) or Lion (2004). As
it is seen, the dynamic modulus decreases with increasing strain
amplitude. The same behaviour is quantitatively observed in the
multi-step test (see Fig. 9).

The identification of the material parameters, E, ck, gk, dk, kk on
the basis of the formulation of the model in the frequency domain
is discussed later in Section 5.

3.4. Three-dimensional finite strain formulation

The three-dimensional formulation of the constitutive model is
based on Eq. (13) and motivated from the one-dimensional ap-
proach in Eq. (1). The Second Piola–Kirchhoff stress tensor which
acts on the reference configuration is additively decomposed into
e (L) and evolution of the functions Hk(t) for each Maxwell element (R).



Fig. 12. Principle simulation of the amplitude-dependent stress response (L) and the computed dynamic modulus (R).
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the hyperelastic equilibrium stress and the rate-dependent
overstress.

eT ¼ eTeq þ
Xn

k¼1

eTovk ¼ 2
oweq

oC
þ
Xn

k¼1

eTovkðe; einkÞ ð13Þ
3.5. Compressible hyperelastic equilibrium stress response

The equilibrium stress is described by a nearly incompressible,
isotropic model of hyperelasticity of the Neo-Hookean type. Nearly
incompressible materials exhibit more pronounced isochoric
deformations under large deflections than volumetric ones which
hold for many elastomers. The physical reason for the choice of
the nearly incompressible approach is the difference of about three
orders of magnitude in the numerical values of the bulk and shear
moduli. In the kinematic description of nearly incompressible
materials the deformation gradient is multiplicatively split into
volumetric and isochoric parts as defined by Eq. (14) (cf. Kaliske
and Rothert, 1997; Holzapfel, 1996):

F ¼ FvolF ¼ J
1
3 1

� �
J�

1
3 F

� �
ð14Þ

Under this assumption, the right Cauchy–Green tensor decomposes
as specified in the following equation:

C ¼ CvolC ¼ J
2
3 1

� �
J�

2
3 C

� �
ð15Þ

The volume ratio J is defined in the following equation:

J ¼ det F ¼
ffiffiffiffiffiffiffiffiffiffiffi
det C
p

; J ¼ det F ¼
ffiffiffiffiffiffiffiffiffiffiffi
det C

p
¼ 1 ð16Þ

This concept is popular in computational mechanics, because it
avoids numerical complications during the solution of finite ele-
ment structures. A suitable representation of the strain energy func-
tion for the nearly compressible isotropic Neo-Hooke material is
given by Eq. (17). The scalar p is the hydrostatic pressure which is
defined as p = �(J � 1)/d:

qRweq ¼ qRwvolðJÞ þ qRwisoðI1ðCÞÞ ¼ pðJ � 1Þ þ l
2
ðI1ðCÞ � 3Þ ð17Þ

The isochoric part of Eq. (17) depends only on the first invariant of
I1ðCÞ the isochoric right Cauchy–Green tensor C:2
2 1 is the unit tensor, 1 � C = C11 + C33 + C33 is the trace in Cartesian coordinates.
I1ðCÞ ¼ trðCÞ ¼ tr J�
2
3C

� �
¼ J�

2
31 � C ¼ J�

2
3I1ðCÞ ð18Þ

The final representation of the nearly incompressible Neo-Hookean
strain energy function is given by Eq. (19).

weqðCÞ ¼
1
d

ffiffiffiffiffiffiffiffiffiffiffi
det C
p

� 1
� �2

þ l
2
ðdet CÞ�

1
31 � C� 3

� �
ð19Þ

On the basis of the strain energy specified in Eq. (19) the Second Pi-
ola–Kirchhoff stress in Eq. (21) is derived according to Leibnitz’ rule
of differentiation, o(1 � C)/oC = 1,o(det C)/o C = (det C)C�1:

eTeq ¼ 2
oweq

oC
¼ eTeqðvolÞ þ eTeqðisoÞ ð20Þ

eTeq ¼
4
d

ffiffiffiffiffiffiffiffiffiffiffi
det C
p

� 1
� � 1

2
ffiffiffiffiffiffiffiffiffiffiffi
det C
p ðdet CÞC�1

� �
þ l �1

3
det Cð Þ�

4
3 det Cð ÞC�1ð1 � CÞ þ ðdet CÞ�

1
31

� �
eTeq ¼ l J�

2
31þ 2

d
ð J � 1ÞJ � l

3
J�

2
3ð1 � CÞ

� �
C�1 ð21Þ

For the FEM implementation of the constitutive equations, the
stress relation is formulated with respect to current configuration.
To this end, Eq. (21) is transformed to the current configuration
according to the well-known ‘push forward’ transformation as de-
fined in Eq. (22). As a result, the Cauchy stress tensor of the equilib-
rium part of the material model (Eq. (23)) is obtained.

Teq ¼
1
J

FeTeqFT ð22Þ

In Eq. (23), the tensor B = FFT is the left Cauchy–Green tensor.

Teq ¼ l J�
2
3J�1Bþ 2

d
ð J � 1Þ � l

3
J�

5
3 1 � Bð Þ

� �
1

Teq ¼
2
d
ð J � 1Þ1þ l J�

5
3 B� 1

3
trðBÞ1

� � ð23Þ
3.6. Overstress response

One possibility of a geometrical nonlinear generalisation of the
model for the partial overstresses is given by Eq. (24) under consid-
eration of Eq. (9). The motivation comes from the one-dimensional
formulation which is near specified in Eq. (8) (Haupt and Lion,
2002).
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S
r

ovk
¼2ckD�HkðtÞ

Zk
Sovk; S

r

ovk
¼ _Sovk�LSovk�SovkLT ; D¼1

2
ðLþLTÞ

ð24Þ

The transformation of Eq. (24) to the reference configuration is car-
ried out according to the ‘pull back’ transformation eTovk ¼
F�1SovkFT�1 under the assumption of the relations between the
strain rate tensor D and the derivative of the Piola strain tensor3

D ¼ �F _eFT . The corresponding relation in the form of the partial Sec-
ond Piola–Kirchhoff overstress reads as follows:

_eTovk ¼ �2ck _e� HkðtÞ
Zk

eTovk ð25Þ

In order to obtain equivalent differential equations for internal vari-
ables of the strain type the Piola strain tensor is decomposed
according to Eq. (26). The new internal variables are denoted as eink

and can be named as inelastic Piola strains. Considering the one-
dimensional formulation specified in Eq. (10), the rate of the Piola
strain can be expressed follows:

_e ¼ _eel þ _eink ¼ ð _e� _einkÞ þ
HkðtÞ

Zk
ðe� einkÞ ð26Þ

Inserting Eq. (26) into Eq. (25) we obtain the following expression:

_eTovk þ
HkðtÞ

Zk

eTovk ¼ �2ckð _e� _einkÞ � 2ck
HkðtÞ

Zk
ðe� einkÞ ð27Þ

From Eq. (27) it can be concluded that the partial overstresses of the
second Piola–Kirchhoff type must depend on the inelastic Piola
strains as given by the following equation:eTovk ¼ �2ckðe� einkÞ ð28Þ

Similar to the equilibrium stress, the formulation of the overstress
with respect to the current configuration is needed too. The total
overstress with transformed partial overstress is given in Eq. (29).
Since rubber is nearly incompressible, i.e. J � 1, and the weak com-
pressibility is taken into account in the equilibrium stress, it is not
necessary to distinguish between the Cauchy overstress Tov and the
weighted Cauchy overstress Sov = J Tov. But in the case of compress-
ible viscoelastic materials this distinction is essential such that Eq.
(24) as well as all the consequences have to be reformulated using
the isochoric strain rate tensor D ¼ ð _FF�1 þ FT�1 _FTÞ=2 (see Eq. (14)).

Tov ¼
Xn

k¼1

Tovk ¼ �
Xn

k¼1

2ck

det F
FeFT � FeinkFT
� �

ð29Þ

The scalar equations for the scaling functions Hk and the internal
variables qk can be assumed to be similar to those in the one-
dimensional formulation (Eqs. (11) and (12)). Only the absolute va-
lue of the scalar strain rate in Eq. (12) is replaced by the norm of the
symmetric part of the spatial velocity gradient kDk.

HkðtÞ ¼ 1þ dkqkðtÞ ð30Þ

_qkðtÞ ¼
1
kk
ðkDk � qkÞ ð31Þ
3.7. Norm of strain rate

For the following considerations, the relation between the rate
of the Cauchy–Green tensor and the strain rate tensor D is needed.
The corresponding relation, Eq. (32), operates on the current
configuration.

D ¼ 1
2

FT�1 _CF�1 ð32Þ
3 The Piola strain tensor is defined as e ¼ 1
2 ðC

�1 � 1Þ.
The norm of the strain rate tensor D is defined by square root of the
scalar product with itself.

kDk2 ¼ D � D ¼
X3

i;j¼1

DijDij ð33Þ

Using Eqs. (32) and (33), the following result is obtained:

kDk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðDDÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

tr FT�1 _CF�1FT�1 _CF�1
� �r

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ðC�1 _CÞ2
� �r

ð34Þ
4. FEM – implementation of the amplitude-dependent model

The material model introduced above was implemented into
the commercial FEM code ANSYS in an updated Lagrangean formu-
lation (Crisfield, 1998). The implementation of user-written consti-
tutive models can be realised with the subroutine USERMAT (cf.
ANSYS, 2007), which is in the focus of the current section. This sub-
routine is based on a co-rotational formulation of stresses and
strains as formulated by Felippa (2000), Souza (2000), Hughes
and Wingets (1980), Seifert et al. (2006), or Simo and Huges
(2000). For the implementation of the developed model this ap-
proach was not used in the proposed original form. In our proce-
dure, all element quantities are initially computed in the current
configuration with respect to the reference coordinate system
and then rotated to the current coordinate system. The rotation
tensor is computed from the polar decomposition of the deforma-
tion gradient. This is a standard approach for applications working
with large-strains and rotations which is the case of rubber-like
materials. The relations for the equilibrium and overstress tensors
of Cauchy type, which are given in Eqs. (35) and (36) at the time
step tn+1 = tn + Dt, are computed using the kinematic relations at
the same time. To simplify the nomenclature, n + 1 is written in-
stead of tn+1. The symbol j(n+1) means that the all quantities on
the right-hand side of Eqs. (35) and (36) are evaluated at the time
tn+1.

Teqðnþ 1Þ ¼ 2
d
ð J � 1Þ1þ l J�

5
3 B� 1

3
trðBÞ1

� �� �				
ðnþ1Þ

ð35Þ

Tovkðnþ 1Þ ¼ �2ck

J
ðFekFT � FeinkFTÞ

� �				
ðnþ1Þ

ð36Þ

The incremental solution procedure makes both the implementa-
tion and the integration of the differential equations for the rates
of the state variables (Eq. (31)) and the inelastic Piola strains (Eq.
(26)) very comfortable (Hossain et al., 2008; Hossain et al., 2009).
Eqs. (37) and (38) are the incremental solutions of Eqs. (26) and
(39) with the Euler-Backward algorithm in the recursive form.

einkðnþ1Þ¼ Zk

ðZkþHkðnþ1ÞDtÞeinkðnÞþ
Hkðnþ1ÞDt

ðZkþHkðnþ1ÞDtÞeðnþ1Þ

ð37Þ

Hkðnþ 1Þ ¼ 1þ dkqkðnþ 1Þ ð38Þ

qkðnþ 1Þ ¼ kk

kk þ Dt
qkðnÞ þ

Dt
kk þ Dt

kDðnþ 1Þk ð39Þ
4.1. Norm of strain rate

The rate of the right Cauchy–Green tensor which occurs in the
equation for the norm of the strain rate tensor (Eq. (34)) was calcu-
lated via the analytical Euler-Backward differentiation formula in
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the form of _Cðnþ 1Þ ¼ ðCðnþ 1Þ � CðnÞÞ=Dt. As a result of the calcu-
lation, Eq. (40) depends on the tensor C�1 at current time step and
on C at the previous step.

kDðnþ 1Þk ¼ 1
2Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðð1� C�1ðnþ 1ÞCðnÞÞ2Þ

q
ð40Þ

The expression under the square root of Eq. (40) can be reformu-
lated in order to save computation time:

ð1� C�1ðnþ 1ÞCðnÞÞ2

¼ 1� 2C�1ðnþ 1ÞCðnÞ þ ðC�1ðnþ 1ÞCðnÞÞ2 ð41Þ
trðð1� C�1ðnþ 1ÞCðnÞÞ2Þ
¼ 3� 2trðC�1ðnþ 1ÞCðnÞÞ þ trððC�1ðnþ 1ÞCðnÞÞ2Þ

Eq. (42) is the final relation to compute the norm of the strain rate
tensor which is optimized for the FEM implementation procedure.

kDðnþ 1Þk ¼ 1
2Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2trðC�1ðnþ 1ÞCðnÞÞ þ trððC�1ðnþ 1ÞCðnÞÞ2Þ

q
ð42Þ
4.2. Tangent operator in the FEM code ANSYS

Implicit incremental solution procedures in the context of finite
element analyses require the tangent stiffness matrix. From the
principle of virtual work on the element level the linearised tan-
gent stiffness matrix for the updated Lagrangean formulation is de-
rived, see (Crisfield, 1998).

K ¼ KM þ KG ¼
Z

V0

BT
l
eCBl dV0 þ

Z
V0

GTbTGdV0 ð43Þ

The first term in Eq. (43) KM is the material stiffness matrix and sec-
ond term KG the geometrical stiffness matrix. In the context of the
FEM implementation of user-defined material models the first term
is in the focus. The matrix Bl connects the changes in the linear
strain tensor and the nodal displacement vector. The fourth-order
tensor eC is the material tangent operator which is important for
the ANSYS-subroutine USERMAT. Its formulation depends on the
kinematic relations of the constitutive model to be implemented.
The updated Lagrangean material stiffness matrix, relevant for the
FEM code ANSYS, has to be derived from the objective Jaumann rate
of the total Kirchhoff stress strain relation in form given in Eq. (44).

S
�
¼ eCD ð44Þ
4.3. General formulation of the objective material tangent operator

In the following, the derivation of the objective tangent opera-
tor as specified by Eq. (44) on the basis of a model of finite elastic-
ity is presented. To this end, we start with a stress–strain relation
in the reference configuration and calculate its time rate (Eq. (45)).
In the case of linear elasticity, the tangent operator equals the
fourth-order elastic modulus tensor. But in more general cases,
the tangent operator with respect to the reference configuration
is the partial derivative of the second Piola–Kirchhoff stress (Eq.
(46)) with regard to the right Cauchy–Green tensor.eT ¼ eTðCÞ
_eT ¼ oeT

oC
_C ¼ 2

oeT
oC

_E ð45Þ

CR ¼ 2
oeT
oC

ð46Þ

To transform Eq. (45) to the current configuration, Eq. (32) in combi-

nation with S
r
¼ F _eTFT were used; the left-hand side of Eq. (47) is the
Oldroyd rate of the Kirchhoff stress. Using the linear tensor transfor-
mation BTCA = (A � B)T14C as applied, for example, by Hartman (2003)
or Ehlers (1999), Eq. (48) is the reformulation of Eq. (47). In this way,
the strain rate tensor can be separated. The factor of the tensor D in Eq.
(48) is the fourth-order material tangent operator in the spatial con-
figuration, see also in Hartman and Haupt (1999).

S
r
¼ FCRFT DFFT ð47Þ

S
r
¼ FT � FT
h i

T14 CR½F� F�T14 D ð48Þ

Considering the definition of the contravariant Oldroyd stress rate
(Eq. (49)), the time rate of the Kirchhoff stress can be derived.
Inserting Eq. (48) in combination with the decomposition of the
velocity gradient into Eqs. (49) and (50) is obtained. For the velocity
gradient and its symmetric and antisymmetric parts the following
relations are valid: L ¼ DþW; D ¼ DT ;W ¼ �WT

S
r
¼ _S� L S� SLT ð49Þ

_S ¼ FT � FT
h i

T14 CR½F� F�T14 þ ½S� 1�T14 þ ½1� S�T14

h i
DþWS

� SW ð50Þ

As a consequence of these calculations, Eq. (51) is the required rela-
tion between the Jaumann rate of the Kirchhoff stress and the strain
rate tensor. The factor of the strain rate D is a tensor of the fourth
order and can be interpreted as the objective material tangent
operator.

S
�
¼ _Sþ SW�WS

S
�
¼ FT � FT
h i

T14 CR½F� F�T14 þ ½S� 1�T14 þ ½1� S�T14
h i

D ¼ eCD ð51Þ

For the FEM implementation of the model in the subroutine USER-
MAT the tangent operator at the time step n + 1 containing the Cau-
chy stress (Eq. (52)) is required. This can be achieved by setting
S = (detF)T in Eq. (51) as follows:

eCðnþ 1Þ ¼ FT � FT
h i

T14 CR½F� F�T14

h
þ det F ½T� 1�T14 þ ½1� T�T14

� �i			
nþ1

ð52Þ

The additive decomposition of the stress tensor in Eq. (13) leads to a
corresponding decomposition of the material stiffness operator into
the sum of equilibrium and overstress parts (Eq. (53)).

eC ¼ eCeq þ
Xn

k¼1

eCovk ð53Þ
4.4. Overstress part of material stiffness matrix

The partial overstress as specified in Eq. (28) can be formulated
as function of the right Cauchy–Green tensor (see Eq. (54)). From
the mathematical point of view, the partial overstress is a tensor
function multiplied with a constant material parameter.

eTovk ¼ �ck C�1 � C�1
ink

� �
ð54Þ

Applying Eqs. (46)–(54), the following expression is obtained:

CRovk ¼ 2
oeTovk

oC

¼ 2 C�1 � C�1
ink

� �
� oð�ckÞ

oC
� ck

o C�1 � C�1
ink

� �
oC

24 35 ð55Þ

For the partial derivatives in Eq. (55), the following relations hold:
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oC�1

oC
¼ �ðC�1 � CT�1ÞT23 ¼ �ðC�1 � C�1ÞT23 ð56Þ

oð�ckÞ
oC

¼ 0

Finally, the material tangent operator of the partial overstress in the
reference configuration is obtained as:

Covk ¼ 2
oeTovk

oC
¼ 2ckðC�1 � C�1ÞT23 ð57Þ

Taking Eq. (52) into account and computing the sum of the partial
overstresses produced from all Maxwell elements, the final form
of the objective tangent operator of the overstress is obtained as:

eCov nþ 1ð Þ ¼
Xn

k¼1

2ck FT � FT
h i

T14 C�1 � C�1
� �

T23 ½F� F�T14

n"
þ det F Tk � 1½ �T14 þ 1� Tk½ �T14

� �oi			
nþ1

ð58Þ
4.5. Equilibrium part of material stiffness matrix

One way to formulate the objective tangent operator is based on
Eq. (52) as derived in Section 4.3. Another method is the direct cal-
culation of the Jaumann derivative from the stress–strain relation
and the separation of the strain rate tensor D, which is done in this
section. As a first step, we formulate the hyperelastic relation of the
equilibrium stress, Eq. (23), in the form of the Kirchhoff stress
using S = J T.

Seq ¼
2J
d
ðJ � 1Þ1þ l J�

2
3 B� 1

3
trðBÞ1

� �
ð59Þ

Then, the time rate of the Kirchhoff stress is calculated.

_Seq ¼
2_J
d
ðJ � 1Þ þ 2J_J

d

 !
1� 2

3
l J�

5
3 _J B� 1

3
ð1 � BÞ1

� �
þ l J�

2
3 _J _B� 1

3
ð1 � _BÞ1

� �
ð60Þ

On the basis of the velocity gradient L ¼ _FF�1 and its additive
decomposition, the rate of the left Cauchy–Green tensor is
reformulated.

_B ¼ ðFFTÞ� ¼ _FFT þ F _FT ¼ LBþ BLT ¼ ðDþWÞBþ BðD�WÞ
¼ DBþ BDþWB� BW ð61Þ

The relation for the material time derivative of the scalar field
J = detF is given in Eq. (62). The fact that the trace of antisymmetric
tensors is zero was also taken into account.

_J ¼ J trðLÞ ¼ J D � 1 ¼ 0 ð62Þ

Inserting Eqs. (61) and (62) into Eq. (60) leads to Eq. (63) which is
used to compute the Jaumann rate of the Kirchhoff stress.

_Seq¼
4 J�2

d
1�2

3
l J�

5
3 B�1

3
ð1 �BÞ1

� �� �
JD �1

þl J�
2
3 DBþBDþWB�BW�1

3
ð½DBþBDþWB�BW� �1Þ1

� �
ð63Þ

Eq. (63) can be simplified using the following property of the trace
operator:

ðWB� BWÞ � 1 ¼ trðWB� BWÞ ¼ trðWBÞ � trðWBÞ ¼ 0 ð64Þ

In the case of a Neo-Hookean model for the equilibrium stress (see
Eq. (59)), the last two terms of the Jaumann rate (see Eq. (66)) can
be reduced:
SeqW�WSeq ¼ l J�
2
3ðBW�WBÞ ð65Þ

According Eqs. (63)–(65) the Jaumann rate of the Kirchhoff stress
reads as follows:

S
�

eq ¼ _Seq þ SeqW�WSeq

S
�

eq ¼
4 J � 2

d
1� 2

3
l J�

5
3 B� 1

3
1 � Bð Þ1

� �� �
JD � 1 ð66Þ

þ l J�
2
3 DBþ BD� 1

3
ð½DBþ BD� � 1Þ1

� �
In order to separate the strain rate tensor D from the other terms,
the last terms on the right-hand side of Eq. (66) are reformulated
as given in Eq. (67):

ð½DBþ BD� � 1Þ1 ¼ ðtrðDBþ BDÞÞ1 ¼ 2trðDBÞ1
¼ 21ðB � DÞ ¼ ½1� B�D ð67Þ

DBþ BD ¼ 1DBþ BD1 ¼ B� 1T
h iT14

Dþ 1� BT
h iT14

D

Using the relation BT CA ¼ ðA� BÞT14 C, Eq. (66) can be rewritten
such that the strain rate tensor is separated:

S
�

eq ¼
Jð4 J � 2Þ

d
½1� 1�D� 2

3
l J�

2
3½1� B�Dþ 2

9
l J�

2
3trðBÞ½1

� 1�Dþl J�
2
3 B� 1½ �T14 þ 1� B½ �T14
� �

D� 2
3
l J�

2
3½1� B�D ð68Þ

In Eq. (69), the fourth-order tensor from Eq. (68) is separated. It is
the equilibrium part of the tangent operator. It can be shown that
Eq. (69) is equal to the formulation proposed by Bonet and Wood
(1997).

eCeq ¼ l J�
2
3ð½B� 1�T14 þ ½1� B�T14 Þ � 2

3
l J�

2
3ð½1� B� þ ½1� B�Þ

�
þ Jð4 J � 2Þ

d
þ 2

9
l J�

2
3trðBÞ

� �
½1� 1�

�				
nþ1

ð69Þ

The total objective tangent operator which is needed for the ANSYS
implementation of the developed constitutive model is given by the
sum of Eqs. (58) and (59) as given in Eq. (53).

4.6. Primary framework of the stress update in USERMAT

The kinematic formulation of the ANSYS-subroutine USERMAT
(ANSYS, 2007) is based on a co-rotational formulation. This ap-
proach is based on an old idea: the separation of rigid body and
purely deformational motions in continuum mechanics (Veubeke,
1976). This means that the stress is computed on the basis of al-
ready rotated quantities. The specification of co-rotational frames
can be found, for example, in Felippa (2000), Souza (2000), Hughes
and Wingets (1980) or Seifert and Maier (2008) and Simo and Hug-
es (2000). This approach consists of two steps for the stress update.
During the time increment Dt all kinematic relations working on
the element level are rotated and then updated. The first step is
the rotation of all quantities to the current spatial coordinate sys-
tem. The rotation of the Cauchy stress tensor TR(n), accepted in the
previous time step, to the current coordinate system is given by Eq.
(70). DR is the incremental rotation tensor between the two time
steps.

TCðnÞ ¼ DRTRðnÞDRT ð70Þ

The computation of DR is based on the incremental displacement
gradient DH which is related to the incremental deformation gradi-
ent DF between the two steps, i.e. F(n + 1) = DFF(n) with DF ¼
1þ DH and kDHk � 1. Under these assumptions, the approxima-
tions (DF)�1 = 1 � DH, DB = 1 + DH + DHT, DV = 1 + (DH + DHT)/2,
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DL ¼ D _FðDFÞ�1 ¼ D _H, DD ¼ ðD _Hþ D _HTÞ=2 as well as DW ¼ ðD _H�
D _HTÞ=2 hold. On the basis of the polar decomposition of the incre-
mental deformation gradient DF = DVDR the incremental rotation
tensor DR = DV�1DF is computed as described, for example, by
Haupt (2000) or Crisfield (1997):

DR ¼ 1� 1
2

DHþ DHT
� �� �

ð1þ DHÞ ¼ 1þ 1
2

DH� DHT
� �

ð71Þ

Since kDHk � 1 is assumed, the quadratic term has been neglected
in Eq. (71). The approximation of the incremental spin tensor
DW ¼ ðD _H� D _HTÞ=2 leads to the following approximation of the
incremental rotation tensor:

DR ¼ 1þ DWDt ð72Þ

Inserting Eq. (72) into Eq. (70) leads to Eq. (73) for the rotated stress
tensor TC(n) at the previous time step in the current coordinate
system.

TCðnÞ ¼ TRðnÞ þ TRðnÞðDWÞTDt þ DtðDWÞTRðnÞ
þ ðDWÞTRðnÞðDWÞTDt2 ð73Þ

Since the quadratic term is small it is neglected in the following. The
rotation of the entities is an internal process which is running auto-
matically in the FE-software. In the case of small strains, the USER-
MAT-subroutine gives back the Henckys’ strain tensor and the
strain increment in the corresponding coordinate system. Thus,
the user has only to formulate and to code the equations for the
stress increment. This makes the implementation fairly easy.

DT ¼ eCDe with De ¼ DDDt ð74Þ

The second step is the calculation of the stress increment on the ba-
sis of the tangent operator and the appropriate, rotation-free, strain
increment. The updated total stress is the sum of the stress incre-
ment and the rotated stress from the previous time step.

TCðnþ 1Þ ¼ TCðnÞ þ DT ð75Þ

Inserting Eqs. (73) and (74) into Eqs. (75) and (76) is obtained. It al-
lows interpreting the tangent operator eC with regard to the Jau-
mann derivative calculated with the incremental spin tensor.

TCðnþ 1Þ ¼ TRðnÞ þ TRðnÞðDWÞT þ ðDWÞTRðnÞ þ eCDD
� �

Dt

¼ TRðnÞ þ _TRðnÞDt ð76Þ

The property DW = �DWT of skew-symmetric tensors was taken
into account. In Section 4.2 in Eq. (44), the Jaumann derivative of
the Kirchhoff stress tensor was calculated.

T
�

R ¼ _TRðnÞ � DW TRðnÞ þ TRðnÞDW ¼ eCDD ð77Þ
Fig. 13. Incremental update of the stress and stiffness tensors. B is the material configur
time t + Dt with the current frame.
4.7. Updating algorithm for amplitude-dependent viscoelasticity
(USERMAT)

To implement materials models for large deformations with
complex evolution equations into FE-codes, the co-rotational for-
mulation as described previously is too complicated. Thus in the
following, another algorithm is applied. In this approach, the stress
update, the tangent operator and the internal variables are calcu-
lated in the coordinate system of the reference configuration. Then,
the tangent operator and the stress are rotated to the current coor-
dinate system. Schematically is the update process depicted on
Fig. 13.

The new implementation framework is based on the deforma-
tion gradient. It is provided by the USERMAT-subroutine in the
material coordinate system of the reference configuration
(E1,E2,E3) and given at the times t and t + Dt. The main difference
to the standard implementation is that all kinematic variables, the
tangent and the stress are at first computed in the material coordi-
nate system of the reference configuration and then rotated to the
current frame. The material point X is described in the material
coordinate system of the reference configuration. At the time t or
the step n, it is at a certain location in the ‘‘previous” current con-
figuration and at the time t + Dt this point is in the ‘‘new” current
state and can be parameterized in the new coordinate system
(e1,e2,e3). The rotation tensor R between these two systems is
computed from the polar decomposition of the deformation gradi-
ent. Eq. (35) determining the equilibrium stress and Eq. (36) the
overstress are used in the iterative solution procedure to compute
the stress increments in the material coordinate system. Accord-
ingly, the sum in Eq. (13) is used to compute the total stress incre-
ment. It is rotated to the current coordinate system according to
Eq. (78).

DTC ¼ RDTRRT ¼ ðRT � RTÞT14DTR ¼ ðR � RÞT23DTR

¼ Q
4

DTReQDTR

ð78Þ

The matrix Q is the reduced 6 	 6 rotation matrix of second-order
belonging to the rotation tensor of the fourth-order Q

4
. This reduc-

tion is feasible because the stress tensor is symmetric and a maxi-
mum of 36 elements is needed to formulate the most general
linear transformation.

DeCC ¼ Q
4

DeCRQ
4

T ¼ ðR � RÞT23DeCR ðR � RÞT23
� �T

¼ ðR � RÞT23DeCRðRT � RTÞT23DeCR¼
^ QDeCRQ T ð79Þ

Eq. (53) and its elements as specified in Eqs. (58) and (69) define
the consistent tangent operator in the implementation framework.
Similar to the stress tensor, the tangent operator is also rotated to
ation at the time t with the reference frame and S the material configuration at the



Table 1
Workflow of implementation based on deformation gradient.
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the correct coordinate system according to Eq. (79). The scalar
internal variables qk (Eq. (39)) and the inelastic strain tensors eink

(Eq. (37)) are declared as state variables and are updated after each
converged substep. The summary of the computation procedure
during the iteration is given in Table 1.
5. Material parameter identification

The constitutive equations contain a set of parameters repre-
senting the material properties which must be determined by
experiments. The formulation of the constitutive model is possible
in both the time and the frequency domain. The possibility to iden-
tify the material parameters on the basis of the stress-time signals
or dynamic modulus curves is provided. The identification process
based on the dynamic modulus is faster and the identified material
constants are valid in wider ranges of frequencies and amplitudes.

5.1. Material model in the frequency domain

The topic of this section is the formulation of the constitutive
model presented in Section 3 in the frequency domain. Under the
assumption of harmonic strain-controlled excitations with suffi-
cient small amplitudes and a superimposed static preload, all vari-
ables oscillate with the same angular frequency x (higher
frequency contributions are assumed to be small). In addition, it
is assumed that the internal state variables qk or the functions
Hk(t) which are determined by Eqs. (30) and (31) are nearly con-
stant during a period of oscillation of the dynamic strain. This is
the case, when the time constants kk in Eq. (31) are large in com-
parison with the period of oscillation of the dynamic strain excita-
tion, see, e.g. Lion (2004). Under these assumptions, the method as
described in Lion et al. (2009) can be applied in order to linearize
the constitutive model. The result of this process is a complex dy-
namic modulus tensor of the fourth order:4

G
4

0ðxÞ ¼ 4ðF0 � F0ÞT23
@2weq

@C2

					
C0

FT
0 � FT

0

� �T23

þ
Xn

k¼1

2ixckZk

1þ dkqkðtÞ þ ixZk
1
4
�1

3
1� 1

� �
ð80Þ

It depends on the frequency x of the dynamic strain excitation, the
deformation gradient F0 of the static preload and the internal vari-
ables qk which are introduced to represent the amplitude depen-
dence and are modelled by Eq. (31). The stress tensor belonging
4 The constant i ¼
ffiffiffiffiffiffiffi
�1
p

is the complex unit.
to the statically-preloaded configuration is given by the following
expression:

T0 ¼ 2F0
@weq

@C

				
C0

FT
0 þ G

4

0ðxÞDElineixt ð81Þ

The first term in Eq. (81) is the so-called static stress which is not of
interest for the following argumentation. The second term describes
the oscillating part of the stress and is determined by the dynamic
modulus tensor. In the case of incompressible material behaviour
and dynamic tension/compression loadings, the dynamic strain
amplitude tensor DElin is deviatoric and reads as follows:

DElin ¼ De e1 � e1 �
1
2
ðe2 � e2 þ e3 � e3Þ

� �
ð82Þ

Evaluating the right-hand side of Eq. (81) under consideration of
Eqs. (80) and (82) and assuming the static preload to be small, i.e.
F0 � 1, the uniaxial dynamic modulus is given by the following sca-
lar expression:

E
ðxÞ ¼ 4
k0

@2weq

@C2

					
k0

þ 2
3k0

Xn

k¼1

2ixckZk

1þ dkqkðtÞ þ ixZk
ð83Þ

In the case of the applied Neo-Hooke model, the influence of the
static preload to the local slope of the equilibrium stress–strain
curve is small up to about 30% static strain. In Fig. 5 it can be seen,
that the dynamic modulus is nearly independent on the static strain
if the static preloads are smaller than 50%. The first part of Eq. (83)
can be interpreted as the frequency independent static stiffness of
the equilibrium stress–strain curve. Splitting the complex modulus
Eq. (83) into real and imaginary parts leads to the expressions for
the storage and the loss modulus:

E0ðx; tÞ ¼ 4
k0

@2weq

@C2

					
k0

þ 2
3k0

Xn

k¼1

2ZkgkðZkxÞ2

ð1þ dkqkðtÞÞ
2 þ ðZkxÞ2

ð84Þ

E00ðx; tÞ ¼ 2
3k0

Xn

k¼1

2gkxð1þ dkqkðtÞÞ
ð1þ dkqkðtÞÞ

2 þ ðZkxÞ2
ð85Þ

For time-dependent transient processes, for example harmonic
strain-controlled excitations with stepwise changing amplitudes,
the numerical solution of the differential equation for the internal
variables, Eq. (31), must be calculated and inserted into Eqs. (84)
and (85). But, if the transient behaviour after an amplitude change
(e.g. in Fig. 1) is not of interest, the stationary solution of Eq. (31)
can be taken into the account as published, e.g. in Rendek and Lion
(2009a,b). It is a linear function of the dynamic strain amplitude;
see also in Lion (2004).

Due to the structure of the model, the identification process is
based on two steps. At first, sufficient small strain amplitude of
about 0.1% is applied such that the dynamic moduli are time-
and amplitude-independent. In this case, we have Hk(t) � 1 and
qk(t) � 0. Thus, the material parameters ck, gk and l can be deter-
mined by means of the frequency sweep in Fig. 14-L. In the second
step, the constants dk and kk in Eqs. (30) and (31) describing the
amplitude dependence are identified on the basis of the multi-step
experiment at 10 Hz (Fig. 14-R). To identify the time- and ampli-
tude-dependent modulus it is necessary to solve the evolution
equations, Eq. (31), for the variables qk. To reduce the extremely
long simulation times for the parameter identification of the
time-dependent behaviour, the time-axis of the test shown in
Fig. 14-R was compressed by a factor of 180. Then, the hold times
of 2700 s from the DMA test (Fig. 9) at constant amplitudes were
reduced to 15 s. The advantage of this scaling is the reduction of
the computation times, particularly with regard to long-term sim-
ulations in the time domain. In both steps, the parameter identifi-



Fig. 14. Identification process for 12 Maxwell elements: identification of the parameters ck, gk describing the frequency dependence and static stiffness 4@2weq=k0@C2jk0

describing the equilibrium behaviour (L); identification of the amplitude- and time dependent material parameters dk, kk (R).
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cation implies the solution of a nonlinear least-squares problem
with optimization:

min
l;gk ;ck ;dk ;kk

1
2

E0OPT



 

2
2 ¼

1
2

X
i

E0DMAðxiÞ � E0SIMðxiÞ
� �2 ð86Þ

For quantitative sufficient parameter identification results with
numerical values of the residual norm below 0.1% only 12 nonlinear
Maxwell elements were needed. The parameters are listed in Ta-
ble 2. Since the quality of the approximation is sufficient it is not
necessary to incorporate more Maxwell elements and hence more
material parameters into the constitutive model.

If the frequency range of interest which is relevant for a given
technical application is smaller, a smaller number of Maxwell ele-
ments are needed to represent the experimental data. To reduce
the waviness of the simulated loss modulus curve, a larger number
of Maxwell elements should even be used. We made good experi-
ence with about three Maxwell elements per decade in the fre-
quency range but this leads to a pronounced increase in the
computing time. For these reasons, the number of Maxwell ele-
ments which is used to represent the material behaviour is always
a compromise between accuracy and computing time. In this pa-
per, 12 Maxwell elements were used to describe the material
behaviour over 15 decades in the frequency domain. If the dynamic
behaviour of a real elastomer structure should be simulated with
Table 2
Identified material parameters of filled ESBR with 50 phr carbon black (12 nonlinear
Maxwell elements).

4@2weq=k0@C2jk0
¼ 2:84 d = 0.001 (near incompressible)

ck (MPa) gk (MPa s) kk (s) dk (–)

c1 = 3.2825 g1 = 0.0791 k1 = 208.0396 d1 = 9.5834
c2 = 1.4997 g2 = 2.3326 k2 = 11.1762 d2 = 28.9479
c3 = 2.4369 g3 = 0.4517 k3 = 111.6479 d3 = 11.3158
c4 = 0.7705 g4 = 0.1427 k4 = 96.6838 d4 = 6.6054
c5 = 4.5348 g5 = 0.0086 k5 = 245.4763 d5 = 11.8292
c6 = 5.6670 g6 = 0.0009 k6 = 394.8773 d6 = 25.9584
c7 = 1.7240 g7 = 123.57 k7 = 1.1461 d7 = 170.413
c8 = 1.3004 g8 = 2.0097 k8 = 3.1922 d8 = 18.3577
c9 = 1.4179 g9 = 421.45 k9 = 1.1362 d9 = 703.421
c10 = 0.988 g10 = 0.011 k10 = 188.54 d10 = 8.1464
c11 = 1.377 g11 = 1265 k11 = 1.0000 d11 = 999.99
c12 = 2.427 g12 = 25.31 k12 = 2.7444 d12 = 138.61
FEM, for example in the frequency range between 1 Hz and
20 Hz, then three Maxwell elements are sufficient. But in this case,
the parameters of the elements have to be identified anew such
that the storage and loss moduli in Fig. 14 L are approximated only
in this range.
6. FEM simulation of cyclic loaded parts under constant preload

6.1. Rubber block loaded with harmonic displacement with stepwise
changing dynamic amplitude

To illustrate the properties and the main benefits of presented
material model, transient FEM simulations of a rubber block with
a hole in the centre were carried out.

Such a part could be used, for example, as an engine vibration
isolator. The bottom plate is fixed in all directions. The top plate
moves in the vertical Y-direction with a transient displacement
function with changing dynamic amplitudes (Fig. 15-L). The static
preload is 20% in tension and the excitation frequency of 1 Hz. The
displacement amplitude was switched three times, every 25 s dur-
ing the computation time corresponding to 1%, 5%, 10% and 15%
global dynamic strain amplitude. The material parameters of the
12 nonlinear Maxwell elements for this simulation were identified
in Section 5 (Table 2) and contain all information about the mate-
rial including time reduction. Total computation time of the FEM
simulation is reduced by the same scaling factor as used in the
identification procedure. Thus, the FEM simulation of about 100 s
duration corresponds to a real loading process of 180 	 100 s.
Looking at the stress response (Fig 16-L) of a given material point
of the rubber block with the hole, the experimentally observed
softening effect from the DMA test (Fig. 6) is represented by the
constitutive model.

For the purpose of an easier post-processing and a well-defined
physical understanding of the dynamic behaviour of the block, the
dynamic modulus was computed on the basis of the stress signal
scaled with the amplitude of the local strains De (Fig. 17). The
curve of the time-dependent dynamic modulus shows the ex-
pected stepwise decrease with increasing dynamic strain ampli-
tude. This result corresponds to the Payne-effect in the time
domain and was observed in the DMA step-tests plotted in Fig. 9.

The effect of different microstructural relaxation times during
the different deformation amplitudes can be seen by the simula-



Fig. 15. Displacement-controlled loading function (L) and internal state variables qk(t) at each Maxwell element (R).

Fig. 16. Stress in Y-direction in the hole-area of the part (L); corresponding hysteresis loops (R).

Fig. 17. Stress allocation on the part (L); computed dynamic modulus in the hole-area (R).
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tions too (Fig. 17-R). The positions of critical strains and stresses in
the rubber block can be detected directly in the post-processor be-
cause the local dynamic modulus is influenced by these quantities
(Fig. 17-L). As a matter of fact, the area around the hole of the rub-
ber block is the most critical location. According to the computed
modulus in Fig. 17-R, the local stiffness is about four times smaller
during large cyclic deformations than during small ones. This
knowledge can be supportively used in the context of material or



Fig. 18. Maximum Mises stress, allocation at 1 Hz (L) and at 10 Hz (R).
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shape optimizations of bushings or shock elements. Further appli-
cations of transient simulations can be found in the big area of
multibody simulation in the automotive industry. In this context,
the dynamic reaction forces from suspension bushings or engine
mounts contain basic information for further works, like durability
or NVH analyses.
6.2. Shock absorber loaded with harmonic displacement with stepwise
changing frequency

In the following example, the stress response of a shock absor-
ber under vibrations of the engine, during which the rotation speed
changes, was computed. This process is simulated with a sinusoi-
dal displacement-controlled excitation under compression with a
changing frequency from 1 Hz to 10 Hz after 10 s. Since the weight
of the engine induces a preload to the shock absorber, a static pre-
load of 6% is superimposed to the harmonic load with 3% ampli-
tude. These values are related to the height of the shock absorber
in the undeformed state. The material parameters are the same
as in the simulation above. The displacement-controlled dynamic
excitation and the simulated frequency-dependent stress response
at a given location of the shock absorber are plotted in Fig. 19. A
pronounced relaxation of the mean stress and a superimposed
change in the stress amplitude is observed. In the case of the smal-
ler frequency of 1 Hz, the relaxation of the mean stress is faster and
the stress amplitude is smaller than in the case of the higher fre-
quency of 10 Hz. This indicates the stiffening of the material with
Fig. 19. Displacement loading function (L); Y-compon
growing frequency as observed in the frequency sweep tests
(Fig. 14). Fig. 18 depicts the stationary Mises stress distribution
at the time of 9 s under 1 Hz and at 19 s under an excitation fre-
quency of 10 Hz.

7. Conclusions

� To investigate both the stationary and the transient nonlineari-
ties of the dynamic modulus in the context of the Payne-effect
comprehensive DMA-experiments were carried out. In order
to separate the Mullins-effect from the effects of interest a con-
ditioning of specimens with a mechanical deformation process
was applied. The conditioning process is a strain-controlled
amplitude sweep test with sufficient high maximum amplitude
(equal to or larger than the maximum strain amplitude in the
experiments of interest). During the DMA tests, the time-depen-
dent force and elongation signals were recorded and post-pro-
cessed by standard methods. In the case of filler-reinforced
rubber, the stress signals are strongly influenced by the ampli-
tude-history of the deformation input. Standard DMA-experi-
ments under stationary conditions, i.e. under constant strain
amplitude and frequency, are sufficient to quantify the ampli-
tude dependence of filled elastomers. But they are not sufficient
to study the transient behaviour of the material, for example
under increasing or decreasing amplitude jumps. To study this
behaviour, multi-step experiments with stepwise changing
strain amplitudes were run. The corresponding stress–strain
ent of the stress response in the critical area (R).
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hysteresis loops clearly exhibit the amplitude dependence:
changes in the strain amplitude lead to pronounced changes
in the mean stiffness of the stress–strain curves. In the case of
spontaneous strain amplitude changes, it is observed that the
dynamic modulus is not constant but exhibits a time-depen-
dent behaviour. This can be explained by microstructural relax-
ation effects.
� With the knowledge about the material behaviour of filled rein-

forced rubber in the mind, a new constitutive model of finite
viscoelasticity which is motivated by rheological elements
was developed. The formulated model is thermodynamically
consistent and provides a good basis for modelling thermody-
namic effects in future projects. In the case of elastomers, the
dissipative heating can also be modelled; see, e.g. Lion (1997),
Luo et al. (2005) and Rendek and Lion (2008). More details
about the simulation of dissipative heating-up processes and
the proof of the thermodynamical consistency of the model
are discussed in Rendek and Lion (2010). Considering the con-
cept of internal state variables, the experimentally observed
nonlinearities like amplitude dependence and microstructural
relaxation are modelled. The formulation of the constitutive
equations was oriented with regard to an efficient and simple
FEM implementation. The solution procedure, implemented
into the FEM-program ANSYS, was used to solve the differential
equations of the constitutive model in the context of boundary
value problems.
� To implement the constitutive equations into the FEM code AN-

SYS a new implementation framework connected to the inter-
face of the subroutine USERMAT was developed. In this
framework, the updates of the stress tensor and the tangent
operator were at first computed in the current configuration
with respect to a material reference frame. Then, they were
transformed to the new rotated frame.
� For FEM simulations of real parts, the underlying material must

be characterised. To develop an efficient parameter identifica-
tion process, the constitutive model was transformed to the fre-
quency domain. This is only admissible under special
assumptions but provides the possibility to carry out the iden-
tification in both the time and the frequency domain. In the case
of the identification in the frequency domain, the identified
parameters allow to describe the material behaviour in a fairly
wide range of frequencies and amplitudes. In the time domain,
this is only possible with an enormous amount of computation
time. Finally, some transient FEM simulations were carried out
in order to demonstrate the ability of the constitutive model to
describe the dynamic behaviour of real structures.
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