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Abstract

Let {Tt }t�0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hyper-
cyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in
the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent
hypercyclicity is also obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A continuous linear operator T :X → X on a topological vector space X is said to be
hypercyclic if there is a vector x ∈ X (called a hypercyclic vector) whose orbit under T ,
Orb(T , x) := {T nx: n ∈ N}, is dense in X.
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In [1] Ansari proved that all the powers of a hypercyclic operator T are also hypercyclic.
Moreover, they share the same hypercyclic vectors with T . Recall that Ansari [2] and Bernal-
González [8] showed that every infinite-dimensional separable Banach space admits a hyper-
cyclic operator. This result was also extended to the non-normable Fréchet case by Bonet and
Peris [9]. For more details about hypercyclic operators see the surveys [10,21,22].

In the continuous case, a one-parameter family T = {Tt }t�0 of continuous linear operators
in L(X) is a strongly continuous semigroup (or C0-semigroup) of operators in L(X) if T0 = I ,
TtTs = Tt+s for all t, s � 0, and limt→s Ttx = Tsx for all s � 0, x ∈ X. For further information
about C0-semigroups we refer the reader to the books [20,28].

A C0-semigroup T = {Tt }t�0 is said to be hypercyclic if Orb(T , x) := {Ttx: t � 0} is dense
in X for some x ∈ X. The investigation of hypercyclic semigroups was initiated by Desch, Schap-
pacher and Webb in [18]. So far, several specific examples of hypercyclic strongly continuous
semigroups have been studied, see for example [16,18,19,24,29]. In [7] Bermúdez, Bonilla and
Martinón proved that every separable infinite-dimensional Banach space admits a hypercyclic
semigroup. This result was extended to Fréchet spaces (�= ω) in [13].

Given T ∈ L(X), let us denote by HC(T ) the set of all hypercyclic vectors of T , and analo-
gously, denote by HC(T ) the set of hypercyclic vectors of a C0-semigroup T . It is easy to see
that if T = {Tt }t�0 is a C0-semigroup and some operator Tt in the semigroup is hypercyclic, then
the semigroup T itself is hypercyclic.

When one analyzes the converse situation (from the continuous to the discrete case), as a
consequence of an old result of Oxtoby and Ulam [27] it is possible to establish that, if x ∈
HC(T ), then there exists a residual set G ⊂ R+, such that x ∈ HC(Tt ) for all t ∈ G (see, e.g.,
[12]). The point here is whether G = R+. That is, if T = {Tt }t�0 is a hypercyclic C0-semigroup,
is every operator Tt , t > 0, hypercyclic? This problem was explicitly stated in [7].

Our main result is the solution to this problem in the affirmative. To do this we will adapt
an argument due to León-Saavedra and Müller [26] on rotations of hypercyclic operators. This
approach is not new: several authors have tried to use similar arguments to the ones in [26] for the
C0-semigroups context without success (e.g., [14,17,25]). The key point in the proof, proceeding
by contradiction, is to construct a pair of continuous maps f : HC(T ) → T and g : D → HC(T )

such that f ◦ g|T is homotopically nontrivial. Such a point has resisted previous attempts (notice
that the homotopy in [17] does not yield any contradiction, which results in a serious gap), and
it is finally solved here.

A new trend in hypercyclicity was recently opened by the work of Bayart and Grivaux. Moti-
vated by Birkhoff’s ergodic theorem, they introduced the notion of frequent hypercyclicity [5,6],
by quantifying the frequency with which an orbit meets open sets. To be precise, let us define
the lower density of a set A ⊂ N by dens(A) := lim infN→∞ #{n � N : n ∈ A}/N . An operator
T ∈ L(X) is said to be frequently hypercyclic if there exists x ∈ X such that, for every non-empty
open subset U ⊂ X, the set {n ∈ N: T nx ∈ U} has positive lower density. Each such a vector x

is called a frequently hypercyclic vector for T , and the set of all frequently hypercyclic vectors
is denoted by FHC(T ).

Analogously, if we define the lower density of a measurable set M ⊂ R+ by Dens(M) :=
lim infN→∞ μ(M ∩ [0,N])/N , where μ is the Lebesgue measure on R+, then a C0-semigroup
T = {Tt }t�0 in L(X) is said to be frequently hypercyclic if there exists x ∈ X such that for any
non-empty open set U ⊂ X, the set {t ∈ R+: Ttx ∈ U} has positive lower density. As before, we
denote by FHC(T ) the set of all hypercyclic vectors of T . In both cases, frequent hypercyclic-
ity is stronger than hypercyclicity. See also [4,11,23] for further details concerning frequently
hypercyclic operators and C0-semigroups.
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We prove that, if a C0-semigroup T = {Tt }t�0 is frequently hypercyclic, then every single
operator Tt �= I is frequently hypercyclic.

From now on, X stands for an F -space over K, where K denotes the field of either real or
complex numbers; by an F -space we mean a metrizable and complete topological vector space.
Let U0(X) be a base of open balanced neighbourhoods of the origin in X. Within this context,
any C0-semigroup T = {Tt :X → X}t�0 is locally equicontinuous, i.e., for any t0 > 0, the family
of operators {Tt : t ∈ [0, t0]} is equicontinuous. This fact will be used repeatedly throughout the
paper. We would like to point out that there is no simplification in the proofs if we assume that
X is a Banach space, and that our results remain valid for general topological vector spaces X if
we assume that T = {Tt }t�0 is locally equicontinuous.

2. Hypercyclic operators and semigroups

We begin this section with some technical results. The first one is an adaptation to F -spaces
of a result of Costakis and Peris [15], using ideas of Wengenroth [30]. See also [13].

Lemma 2.1. Let T = {Tt }t�0 be a hypercyclic semigroup in L(X). Then Tt −λI has dense range
for all t > 0 and λ ∈ K.

Proof. Fix arbitrarily λ ∈ K and t0 > 0. We assume L := (Tt0 − λI)(X) �= X, and consider
the quotient map q :X → X/L, which satisfies q ◦ (Tt0 − λI) = 0. Inductively, this yields q ◦
T n

t0
= λnq for all n ∈ N. Consider x ∈ HC(T ), and define M := q(Orb(T , x)) = {λnq(Tsx):

n ∈ N0, s ∈ [0, t0]}, which is dense by the definition of q . Now we distinguish two cases.
The case |λ| � 1. Since {Tsx: s ∈ [0, t0]} is bounded in X, M must be bounded, so that it

cannot be dense. A contradiction.
The case |λ| > 1. Fix an arbitrary y ∈ L with q(y) �= 0. There exists an r > 0 such that

q(Trx) �= 0. We pick U ∈ U0(X/L) satisfying q(Trx) /∈ U . The equicontinuity of {Ts : s ∈ [0, t0]}
yields the existence of V ∈ U0(X) such that q(Tt (V )) ⊂ U , t ∈ [0, t0]. Fix t ′ > r with Tt ′x ∈ V .
We write t ′ = mt0 − t + r , for some m ∈ N and t ∈ [0, t0]. Since |λ| > 1, we have λmq(Trx) /∈ U .
On the other hand,

λmq(Trx) = q(Tmt0+rx) = q
(
Tt (Tt ′x)

) ∈ q
(
Tt (V )

) ⊂ U,

which is a contradiction. �
An easy consequence of the previous lemma is the following.

Corollary 2.2. Let T = {Tt }t�0 be a hypercyclic semigroup in L(X). If t > 0, (λ1, λ2) �= (0,0)

and x ∈ HC(T ), then λ1x + λ2Ttx ∈ HC(T ).

Theorem 2.3. Let T = {Tt }t�0 be a hypercyclic semigroup in L(X), and let x ∈ HC(T ). Then
x ∈ HC(Tt0) for every t0 > 0.

Proof. Without loss of generality, we may assume that t0 = 1. Indeed, we can consider the semi-
group T̃ = {T̃t }t�0 in L(X), with T̃t := Ttt0 for every t � 0. Clearly, x ∈ HC(T̃ ) and T̃1 = Tt0 .

Let T := {z ∈ C: |z| = 1} denote the unit circle, D := {z ∈ C: |z| � 1} the closed unit disc,
and let R+ := {t ∈ R: t � 0}.
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We define the map ρ : R+ → T by ρ(t) := e2πit . For every pair u,v ∈ X let

Fu,v :=
{
λ ∈ T: ∃(tn)n ⊂ R with lim

n
tn = ∞, lim

n
Ttnu = v, and lim

n
ρ(tn) = λ

}
.

Our proof is divided into several steps.

Step 1. If u ∈ HC(T ), then Fu,v �= ∅ for all v ∈ X. Since u is hypercyclic for T , we can find
an unbounded increasing sequence {tk}k in R+, such that Ttku converges to v. By passing to a
subsequence, if necessary, we may assume that (ρ(tk))k is convergent. Its limit is an element
of Fu,v .

Step 2. If limk vk = v, λk ∈ Fu,vk
, and limk λk = λ, then λ ∈ Fu,v . (In particular, Fu,v is a closed

set for each u,v ∈ X.) Indeed, for each k we select tk > k such that limk(Ttku − vk) = 0 and
limk |ρ(tk) − λk| = 0. It is easy to see that limk Ttku = v and that limk ρ(tk) = λ.

Step 3. If u,v,w ∈ X, λ ∈ Fu,v , and μ ∈ Fv,w , then λμ ∈ Fu,w . Given U ∈ U0(X) and ε > 0,
take U ′ ∈ U0(X) such that U ′ + U ′ ⊂ U . Find t1 such that Tt1v − w ∈ U ′ and |ρ(t1) − μ| < ε.
Pick V ∈ U0(X) and t2 > 0 satisfying Tt1(V ) ⊂ U ′, Tt2u − v ∈ V , and |ρ(t2) − λ| < ε. Then

Tt1+t2u − w = Tt1(Tt2u − v) + (Tt1v − w) ∈ Tt1(V ) + U ′ ⊂ U, and∣∣ρ(t1 + t2) − λμ
∣∣ = ∣∣ρ(t1)ρ(t2) − λμ

∣∣ �
∣∣ρ(t1) − μ

∣∣ · ∣∣ρ(t2)
∣∣ + |μ| · ∣∣ρ(t2) − λ

∣∣ < 2ε.

Hence λμ ∈ Fu,w .
Fix now x ∈ HC(T ). By Steps 1, 2 and 3, Fx,x is a nonempty closed subsemigroup of T.

Firstly, suppose that Fx,x = T. Then, given y ∈ X, by Steps 1 and 3 we get Fx,y = T. In partic-
ular 1 ∈ Fx,y , which yields the existence of a sequence (tn)n ⊂ R+ tending to infinity such that
limn Ttnx = y and limn ρ(tn) = 1. Write tn as tn = kn + εn with kn ∈ N and εn ∈ [−1/2,1/2].
Then limn εn = 0. Let U ∈ U0(X). We fix U ′,V ∈ U0(X) with U ′ + U ′ ⊂ U and Ts(V ) ⊂ U ′,
0 � s � 2. Let n ∈ N be large enough such that Ttnx − y ∈ V and T1−εny − T1y ∈ U ′. Then we
have

Tkn+1x − T1y = T1−εn(Ttnx − y) + (T1−εn − T1)y

∈ T1−εn(V ) + U ′ ⊂ U ′ + U ′ ⊂ U.

Hence T1y ∈ Orb(T1, x). Since T1 has dense range and y ∈ X is arbitrary, then x is hypercyclic
for T1.

For the rest of the proof we assume that Fx,x �= T, and we will show that it leads to a contra-
diction.

Step 4. There exists some k ∈ N such that, for each y ∈ HC(T ), there is λ ∈ T satisfying Fx,y =
{λz: zk = 1}. It turns out that there is k ∈ N such that Fx,x = {z ∈ T: zk = 1}. Indeed, given
z ∈ Fx,x , the set {zn: n ∈ N} is either dense in T or finite. Since it is contained in the closed
semigroup Fx,x �= T, it should be finite. Now, given y ∈ HC(T ), λ ∈ Fx,y , and μ ∈ Fy,x , by
Step 3, λFx,x ⊂ Fx,y , and μFx,y ⊂ Fx,x , then #(Fx,y) = #(Fx,x). This implies that Fx,y = λFx,x .
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Step 5. There is a continuous function h : D → T, whose restriction to the unit circle is homo-
topically nontrivial. A contradiction.

Let us recall that two maps f,g :X → Y are homotopic if there is a continuous map H :X ×
[0,1] → Y such that H(x,0) = f (x) and H(x,1) = g(x), x ∈ X. f is homotopically trivial if it
is homotopic to a constant map. If f is homotopically trivial, then so are all its restrictions. Any
continuous map f : D → Y is homotopically trivial. We say that a continuous map g : T → T has
index n (n ∈ Z), if it is homotopic to the map z → zn. Any continuous map g : T → T has some
index, and it is homotopically trivial if and only if it has index 0. We refer the reader to, e.g., [3].

Consider the function f : HC(T ) → T as f (y) := λk , where λ ∈ Fx,y . Clearly, by Steps 2
and 4, f is well defined and continuous. Besides, f (x) = 1 and, since x ∈ HC(T ), then Ttx ∈
HC(T ) for every t � 0 by Corollary 2.2. Therefore it easily follows that e2πit ∈ Fx,Tt x and
f (Ttx) = e2πitk for every t � 0.

We will find g : D → HC(T ) such that h := f ◦ g is the desired function which will give the
contradiction. We first define g : T → HC(T ), and then extend it to D. To do this, since f is
continuous at x, we find U ∈ U0(X) such that |f (y) − 1| < 1 if y ∈ HC(T ) and y − x ∈ U . We
now fix t0 > 1 satisfying Tt0x − x ∈ U . Let us define g : T → HC(T ) by

g
(
e2πit

) :=
{

T2t t0x if 0 � t < 1/2,

(2t − 1)x + (2 − 2t)Tt0x if 1/2 � t < 1.

Clearly, g is well defined and continuous. By Corollary 2.2, we have g(T) ⊂ HC(T ). Since U is
balanced, g(e2πit ) − x ∈ U , for 1/2 � t < 1. This implies |f (g(e2πit )) − 1| < 1, 1/2 � t < 1.
Moreover f (g(e2πit )) = e4πitt0k , 0 � t < 1/2, which yields that the index of f ◦g at 0 is between
[t0]k and ([t0] + 1)k (depending on the difference t0 − [t0]).

We extend the function g to D by defining g(z) := (1 − |z|)x + |z|g(z/|z|) for each z �= 0,
and g(0) = x. Clearly, this extension is also continuous on D, and g(z) ∈ HC(T ) for every z ∈ D

since g(z) is a non-zero linear combination of x and Ttx, for some 0 < t � t0 (Corollary 2.2).
To sum up, we have a continuous function h := f ◦ g : D → T, such that its restriction to the

unit circle is homotopically nontrivial, a contradiction. �
3. Frequently hypercyclic operators and semigroups

In this section we prove the analogous result for the stronger concept of frequent hyper-
cyclicity. We first need a technical lemma concerning the frequently hypercyclic vectors of a
C0-semigroup T .

Lemma 3.1. Let T = {Tt }t�0 be a frequently hypercyclic semigroup in L(X), and let x ∈
FHC(T ). For every k ∈ N, y ∈ X, and U ∈ U0(X)

Dens

({
t ∈

⋃
n∈N

[n − 1/k,n): Ttx − y ∈ U

})
> 0.

Proof. Clearly, Tj/kx ∈ HC(T ) for every j = 0, . . . , k − 1, and even more, Tj/kx ∈ HC(T1)

by Theorem 2.3. Fix U,U ′ ∈ U0(X) such that U ′ + U ′ ⊂ U , and y ∈ X. Then there are some
nj ∈ N such that Tnj +j/kx − y ∈ U ′, j = 0, . . . , k − 1. Besides, there is some V ∈ U0(X) such
that Ts(V ) ⊂ U ′ if s � N0 := max{nj : j = 0, . . . , k − 1} + 1.
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Since x ∈ FHC(T ), we have Dens({t ∈ R
+: Ttx − x ∈ V }) > 0. So there are C > 0 and

N1 ∈ N such that μ({t � N : Ttx − x ∈ V }) � CN for every N � N1.
For every N ∈ N, let us define L := {t � N : Ttx − x ∈ V }. In addition, for every j =

0, . . . , k−1, we define the sets Ij := ⋃
n[n+j/k,n+ (j +1)/k), Lj := L∩Ij , and the mapping

fj : R+ → R+ as fj (t) := t +nk−j−1 + (k − j − 1)/k. These mappings satisfy that fj (t) ∈ Ik−1
for every t ∈ Lj , and

Tfj (t)x − y = Tnk−j−1+(k−j−1)/k(Ttx − x) + (Tnk−j−1+(k−j−1)/kx − y)

∈ Tnk−j−1+(k−j−1)/k(V ) + U ′ ⊂ U.

Finally, for N � N0 + N1 we have

μ
({t � 2N : Ttx − y ∈ U and t ∈ Ik−1}

)
� μ

(
k−1⋃
j=0

fj (Lj )

)
�

k−1∑
j=0

μ
(
fj (Lj )

)
/k

=
k−1∑
j=0

μ(Lj )/k = μ(L)/k � CN/k.

Hence Dens({t ∈ Ik−1: Ttx − y ∈ U}) > 0, and we are done. �
Theorem 3.2. Let T = {Tt }t�0 be a frequently hypercyclic semigroup in L(X), and let x ∈
FHC(T ). Then x ∈ FHC(Tt0) for every t0 > 0.

Proof. Without loss of generality, we may again assume that t0 = 1 as in the proof of Theo-
rem 2.3. Fix y ∈ X, U ∈ U0(X), and select k ∈ N, U ′ ∈ U0(X), such that U ′ + U ′ ⊂ U and
Tty − y ∈ U ′ for every 0 � t � 1/k. Since T is strongly continuous there is some V ∈ U0(X)

such that Tt (V ) ⊂ U ′ for every 0 � t � 1/k. By the previous lemma, we know that Dens({t ∈⋃
n∈N

[n − 1/k,n): Ttx − y ∈ V }) > 0.
If t ∈ [n − 1/k,n) for some n ∈ N and Ttx − y ∈ V , then we define ηt := [t] + 1 − t . Each ηt

satisfies 0 < ηt � 1/k, and t + ηt ∈ N. So

Tt+ηt x − y = Tηt (Ttx − y) + (Tηt y − y) ∈ Tηt (V ) + U ′ ⊂ U.

Hence

dens
({n ∈ N: Tnx − y ∈ U}) � Dens

({
t ∈

⋃
n∈N

[n − 1/k,n): Ttx − y ∈ V

})
> 0. �

Acknowledgment

The paper was written during the second author’s stay at the Universitat Politècnica de Valèn-
cia. He would like to express his gratitude for warm hospitality and perfect working conditions
there.



348 J.A. Conejero et al. / Journal of Functional Analysis 244 (2007) 342–348
References

[1] S.I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (2) (1995) 374–383.
[2] S.I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (2) (1997) 384–390.
[3] M. Aubry, Homotopy Theory and Models, Birkhäuser-Verlag, Basel, 1995.
[4] C. Badea, S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences and linear dynamics, Adv. Math.,

in press.
[5] F. Bayart, S. Grivaux, Hypercyclicité: le rôle du spectre ponctuelunimodulaire, C. R. Math. Acad. Sci. Paris 338

(2004) 703–708.
[6] F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358 (2006) 5083–5117.
[7] T. Bermúdez, A. Bonilla, A. Martinón, On the existence of chaotic and hypercyclic semigroups in Banach spaces,

Proc. Amer. Math. Soc. 131 (8) (2003) 2435–2441.
[8] L. Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (4) (1999) 1003–

1010.
[9] J. Bonet, A. Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (2) (1998) 587–595.

[10] J. Bonet, F. Martínez-Giménez, A. Peris, Linear chaos on Fréchet spaces, Internat. J. Bifur. Chaos Appl. Sci.
Engrg. 13 (7) (2003) 1649–1655.

[11] A. Bonilla, K.G. Grosse-Erdmann, Frequently hypercyclic operators, Ergodic Theory Dynam. Systems, in press.
[12] J.A. Conejero, Operadores y semigrupos de operadores en espacios de Fréchet y espacios localmente convexos,

PhD thesis, Universidad Politécnica de Valencia, 2004.
[13] J.A. Conejero, On the existence of transitive and topologically mixing semigroups, Bull. Belg. Math. Soc. Simon

Stevin, in press.
[14] J.A. Conejero, A. Peris, Every operator in a hypercyclic semigroup is hypercyclic, manuscript, 2003.
[15] G. Costakis, A. Peris, Hypercyclic semigroups and somewhere dense orbits, C. R. Math. Acad. Sci. Paris 335 (2002)

895–898.
[16] R. deLaubenfels, H. Emamirad, V. Protopopescu, Linear chaos and approximation, J. Approx. Theory 105 (1) (2000)

176–187.
[17] W. Desch, W. Schappacher, Discrete subsemigroups of hypercyclic C0-semigroups are hypercyclic, Ergodic Theory

Dynam. Systems 26 (2006) 87–92.
[18] W. Desch, W. Schappacher, G.F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory

Dynam. Systems 17 (1997) 1–27.
[19] H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350

(1998) 3707–3716.
[20] K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., vol. 194,

Springer-Verlag, New York, 2000.
[21] K.G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (3) (1999) 345–381.
[22] K.G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat.

Ser. A Mat. 97 (2) (2003) 273–286.
[23] K.G. Grosse-Erdmann, A. Peris, Frequently dense orbits, C. R. Math. Acad. Sci. Paris 341 (2005) 123–128.
[24] T. Kalmes, On chaotic C0-semigroups and infinitely regular hypercyclic vectors, Proc. Amer. Math. Soc. 134 (2006)

2997–3002.
[25] T. Kalmes, J. Wengenroth, personal communication.
[26] F. León-Saavedra, V. Müller, Rotations of hypercyclic and supercyclic operators, Integral Equations Operator The-

ory 50 (2004) 385–391.
[27] J.C. Oxtoby, S.M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (4)

(1941) 874–920.
[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci.,

vol. 44, Springer-Verlag, New York, 1992.
[29] V. Protopopescu, Y. Azmy, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci. 2

(1992) 79–90.
[30] J. Wengenroth, Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc. 131 (6) (2002) 1759–

1761.


