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Abstract

Multivariate integration of high dimension s occurs in many applications. In many such
applications, for example in finance, integrands can be well approximated by sums of
functions of just a few variables. In this situation the superposition (or effective) dimension is
small, and we can model the problem with finite-order weights, where the weights describe the
relative importance of each distinct group of variables up to a given order (where the order is
the number of variables in a group), and ignore all groups of variables of higher order.

In this paper we consider multivariate integration for the anchored and unanchored (non-
periodic) Sobolev spaces equipped with finite-order weights. Our main interest is tractability
and strong tractability of QMC algorithms in the worst-case setting. That is, we want to find
how the minimal number of function values needed to reduce the initial error by a factor ¢
depends on s and ¢~ !. If there is no dependence on s, and only polynomial dependence on ¢!,
we have strong tractability, whereas with polynomial dependence on both s and £~! we have
tractability.

We show that for the anchored Sobolev space we have strong tractability for arbitrary finite-
order weights, whereas for the unanchored Sobolev space we have tractability for all bounded
finite-order weights. In both cases, the dependence on ¢! is quadratic. We can improve the
dependence on ¢! at the expense of polynomial dependence on s. For finite-order weights, we
may achieve almost linear dependence on ¢~! with a polynomial dependence on s whose degree
is proportional to the order of the weights.
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We show that these tractability bounds can be achieved by shifted lattice rules with
generators computed by the component-by-component (CBC) algorithm. The computed
lattice rules depend on the weights. Similar bounds can also be achieved by well-known low
discrepancy sequences such as Halton, Sobol and Niederreiter sequences which do not depend
on the weights. We prove that these classical low discrepancy sequences lead to error bounds
with almost linear dependence on n~!' and polynomial dependence on d. We present explicit
worst-case error bounds for shifted lattice rules and for the Niederreiter sequence. Better
tractability and error bounds are possible for finite-order weights, and even for general weights
if they satisfy certain conditions. We present conditions on general weights that guarantee
tractability and strong tractability of multivariate integration.
© 2003 Published by Elsevier Inc.
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1. Introduction

In mathematical modeling of many problems, it is observed that although the
number of input variables can be very large, functions mainly depend on groups of
just a few variables at a time. For instance, the functions arising in finance often
depend on groups of two or three variables, see [1,23,24], in the sense that a function
of x = (x1, x2, ..., x;) with large or very large s can be well approximated by

/=Y ) (1)

ucs{l,....s}, |ul=¢*

with a relatively small value ¢*. Here x,, is the |u|-dimensional vector of components
x; of the vector x for jeu, and f, is a function of |u| variables. This means that /' can
be represented as a sum of (;) functions, each of which is a function of at most g*

variables. It is often said that such a function f has superposition (or effective)
dimension ¢*. If ¢* is small, say 2 or 3, then f has small superposition dimension even
though its nominal dimension s can be arbitrarily large.

Assume for convenience that all f, in (1) have continuous mixed first partial
derivatives. Then f has continuous mixed first derivatives but the only non-zero
partial derivatives (Hjeua(—z,j)f are those for which |u|<¢". In this case, we should
embed f into a space H, of functions of superposition dimension ¢*. In this
paper we achieve this by choosing H; as the anchored or unanchored Sobolev space
equipped with finite-order weights whose order corresponds to the superposition
dimension; see Section 2 for formal definitions. Here we only mention that for any
us{l,...,s}, we assign a weight y,, that moderates the importance of the term f,.
As in [2], we say that the weights {y,,} are finite-order if there exists an integer ¢

such that
7su =0 for all s and for all u with |u|>g, (2)
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and say that the order is ¢* if ¢* is the smallest integer ¢ with this property. We
believe that finite-order weights capture the essence of many high-dimensional
problems of computational importance, and that in many cases ¢g* is small.

We study the problem of multivariate integration over the s-dimensional unit cube
for functions from the space Hj:

L(f) = / f(x)dx, YfeH,.
0,1

The dimension s can be very large. For instance, dimensions of hundreds or
thousands are common in computational finance, see [12]. For large s, classical
methods based on the Cartesian product of a one-dimensional integration
rule such as trapezoidal rule, Simpson’s rule, Gaussian rule, etc., are not
efficient due to the curse of dimensionality. That is, to guarantee that the
error is at most ¢ we must compute roughly ¢*/" function values, where r is the
smoothness of integrands from H. In our case r =1 and we have exponential
dependence on s.

In this situation the Monte Carlo (MC) and quasi-Monte Carlo (QMC)
algorithms become the only known viable numerical methods for high-dimensional
integration. These algorithms take the average of function values over selected points
as the approximation of the integral:

n—1

01 f) = Ol fiP) = S f(x0), 3)

k=0

where P, = {Xg,X],...,X,—1} is a set of random points for MC, and a set of
deterministic points for QMC. The advantage of MC is that for square-integrable
functions their convergence order O(n~'/?) is independent of the dimension s.
However, this rate of convergence is slow, and the implied factor in the big O
notation may depend exponentially on s, see [19].

Some QMC algorithms have proved to be very efficient for high-dimensional
integration, as reported in many papers, see for instance [12]. Furthermore, they
converge with the improved rate of convergence O(n~'*) for any positive § and with
the implied factor dependent on 6 and independent of s. This holds for weighted
Sobolev classes, and with even faster convergence possible for weighted Korobov
spaces of periodic smooth functions, see e.g., [2,18].

An important example of QMC algorithms is given by lattice rules, see [9,13]. For
example, a rank-1 lattice rule has the form

0lf) = k; f({5): @

where z = (z1, 22, ..., zs) is the generating vector with no factor in common with n,
and the notation {x} means the vector whose jth component is the fractional part of
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xj. A shifted rank-1 lattice rule has the form

0. =27 ({2+4}), )

where A€|0, 1)" is the shift.

Other important QMC algorithms are the rules based on digital nets, such as the
Sobol [20] or Niederreiter point sets [9]. The convergence order of lattice rules or
digital nets for functions from a Korobov or Sobolev class is of the form

O(n“(log, n)") for some a>1 and b of order s. The (log, n)" factor can be
overwhelming, and the implied factor can also depend exponentially on s, thus when
s is large the error bound is only useful for extremely large #.

It is important to know when and why QMC works or does not work for relatively
small n, i.e., in the non-asymptotic regime, especially for high dimensions. It is also
important to characterize function classes for which QMC is better than MC, and to
construct QMC point sets that are efficient for functions of such classes. Such
questions are studied in the field of information-based complexity, see [21] for a
survey.

Here we study the worst-case error for f in the unit ball of H,. Tractability of
multivariate integration means that we need only polynomially many in s and ¢!
function evaluations to reduce the initial error by a factor & whereas strong
tractability means that the number of function values has a bound independent of s
and polynomially dependent on ¢~!. By the initial error we mean the worst-case error
when no function evaluations are allowed, which is just the norm of the integration
functional I; in H,. The tractability of multivariate integration has been extensively
studied recently. For example, non-constructive results can be found in [16,17] and
constructive results in [7,14,22,25].

Tractability usually does not hold in the Hilbert case for spaces such as classical
Sobolev or Korobov spaces where all variables play the same role, see [11]. To obtain
tractability we must have weights that moderate the importance of successive
variables or of different groups of variables. This corresponds to weighted spaces,
and in particular, we have weighted Sobolev or Korobov spaces. The first results
were for product weights, where each variable x; was moderated by the weight 7, ;,
sometimes with no dependence on s, i.e., 7, ; = 7;, and the groups of variables were
moderated by 7, = [[;c, 7y, ;> see [16] and the survey paper [10]. Usually, we have
tractability or strong tractability for spaces with product weights iff

sup 727:1%“7 <o or sup i:y < 0
. log2(1+s) P = S5] 9

respectively. For product weights the underlying function spaces H, are tensor
product Hilbert spaces, ie., Hy=H, 1 @ H;x® --- ® H;; with H, ; being a Hilbert
space of univariate functions. We stress that product weights do not always capture
well the spaces of functions with small superposition dimension.
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To describe the most general situation it is desirable to allow general weights y,,
that describe the relative importance of each distinct subset u of the variables, and
that may depend on the dimension s. General weights have been used previously for
Sobolev spaces in [7,8] and for Korobov spaces in [2]. Such an approach gives much
more freedom to study problems of different character. In particular, special choices
of the weights such as finite-order weights allow modeling of situations where only
some specific combinations of variables are important.

The anchored and unanchored Sobolev spaces considered here are defined for
general weights and are generalizations of spaces considered for product weights in
[3,5,8]. For the anchored spaces, we show strong tractability for arbitrary finite-order
weights, whereas for the unanchored Sobolev space, we show tractability for
bounded but otherwise arbitrary finite-order weights. The reason for these different
results can be explained by the difference between their initial errors. For the
anchored case, the initial error grows with the weights, see (11), and the ratio of the
worst-case error of an efficient QMC algorithm to the initial error is independent of
finite-order weights, and is bounded by an exponential function of the order ¢*. We
prove that exponential dependence on the order is present for any QMC algorithm.
However, as long as ¢* is relatively small, we can tolerate an exponential dependence
on ¢*. For the unanchored case, the initial error is always 1, independently of the
choice of weights, and the worst-case error of an efficient QMC algorithm is

polynomial in s only if the finite-order weights are bounded.

The results we mentioned above hold with tractability bounds depending on &72.

We can improve the dependence on ¢! at the expense of polynomial dependence on
s. For finite-order weights, we may achieve almost linear dependence on ¢! with a
polynomial dependence on s having degree proportional to g*.

We show also that the tractability bounds can be achieved by shifted lattice rules
with generators computed by a component-by-component (CBC) algorithm, see
[14,15] for product weights and [2] for general weights. We stress that the CBC
algorithm depends on the weights.

For given finite-order weights, the cost of computing the generator by the CBC
algorithm is polynomial in s and ¢~'. We stress that the shifted lattice rules from the
CBC algorithm are not fully constructive since for the computed generator we
only know that a good shift A exists but do not know how to efficiently compute a
good A.

Similar tractability bounds can also be achieved by well-known low discrepancy
sequences, such as Halton, Sobol and Niederreiter sequences, which have the
additional attraction that they do not depend on the weights. We prove that these
classical low discrepancy sequences lead to tractability error bounds with almost
linear dependence on ¢! and polynomial dependence on s for arbitrary finite-order
weights. We present explicit worst-case error bounds for the Niederreiter sequence as
well as for shifted lattice rules from the CBC algorithm.

We also present conditions on general weights, which are sufficient to obtain
tractability or strong tractability of multivariate integration in the anchored and
unanchored Sobolev spaces.
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The results on finite-order weights help to explain why QMC algorithms are so
efficient for high-dimensional integration. We hope that finite-order weights will also
lead to interesting tractability or strong tractability results for other multivariate
problems.

This paper is organized as follows. In Section 2, we introduce the anchored and
unanchored Sobolev spaces with general weights. In Section 3, sufficient conditions
on tractability and strong tractability are established for general weights. In
addition, the shifted lattice rules constructed by the CBC algorithm are used to
establish improved tractability or strong tractability error bounds, with possibly the
optimal convergence order O(n~'*) for arbitrary 6 >0. In Section 4 we study finite-
order weights. For such weights the shifted lattice rules constructed by the CBC
algorithm achieve tractability or strong tractability error bounds under weak
conditions, or even under no conditions on the weights. Lower bounds on the
normalized error are also studied. In Section 5, it is shown that QMC algorithms
based on some well-known low discrepancy point sets, such as the Niederreiter point
set, achieve the optimal convergence O(n~'*9) either independently of the dimension,
or polynomially dependent on the dimension, for the case of finite-order weights.

2. Weighted Sobolev spaces with general weights

Let H, be a Hilbert space of functions defined on [0, 1] with norm || - ||, . We
assume that I is a continuous linear functional in H,. Since our Hilbert spaces H;
must allow point evaluation of functions f € Hy, we restrict ourselves to reproducing
kernel Hilbert spaces.

Define the worst-case error of the algorithm Q,  (f; P,), with n>1, by its worst-
case performance over the unit ball of Hj:

e(Py; Hy) = sup{ |I;(f) = Ons(f3 Pn)| : f € Hy, HfHH,ygl b
For n = 0, we do not sample the function, and define the initial error as
e(0; Hy) = sup{|L(f)| : f e Hy, || |, <1} = |IL]]-

For ¢€(0,1), let n(e, Hy) be the smallest n for which there exists an algorithm
Ons(f; Py) such that e(P,; H) <ee(0; Hy). Multivariate integration in spaces Hj is
said to be QM C-tractable if there are non-negative numbers C, p and ¢ such that

n(e, Hy) <CePs? Vee(0,1) and Vs=1. (6)

The numbers p and ¢ are called - and s-exponents of Q M C-tractability; we stress that
they are not defined uniquely. Multivariate integration is said to be QM C-strongly
tractable if ¢ = 0 in (6). The infimum of the numbers p satisfying (6) with ¢ = 0 is
called the e-exponent of QM C-strong tractability.

In this paper we restrict ourselves to QMC algorithms, defined in (3), the study of
tractability for more general algorithms being left for future research. To simplify the
description, we will be using tractability and strong tractability as shortened versions
of QMC-tractability and QMC-strong tractability.
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Specifically, we consider the reproducing kernel Hilbert spaces, denoted by H(Kj),
with the reproducing kernel

Z ys,u H nj(xjvyj)v (7)

us{l,..., Jjeu

where
n(x, ) =3 B({x —y}) + (x =) (y — 3) + (%) + ;(») + my, (8)

and y,, are arbitrary non-negative numbers. We can also allow some y;, to be zero,
by taking the limiting case of positive y,,. In (7), we use the convention that the
product for u = () is taken as 1, and without loss of generality we assume that
A))sﬂ =1.

In (8), By(x) = x> — x +{ is the Bernoulli polynomial of degree 2, y; is a function

with bounded derivative in [0, ] such that fo p;(x) dx = 0, and the number m; is
given by

1
my= [ (g (0)? .

0
We are interested in the following two choices for the function y;(x) in (8):

® (A): w;(x) = max(x,a;) — 3x* — 1a; — 4, with arbitrary 4;€[0, 1].
® (B): w(x) = 0, j=1,...,s.
These two choices lead to two different kinds of Sobolev spaces:
® Choice (A) leads to an anchored Sobolev kernel, denoted by K; A, and is given by
(7) with
s = {

This reproducing kernel Hilbert space is called the anchored Sobolev space, and is
denoted by H(K;a). Note that n;(a;, ) = n;(x, a]) = 0. The point a = (ay, ..., ay)
is called the anchor. In this case, m; = a; — a; + 5. Clearly,

min(|x — aj|, |y — a;]) for (x —a;)(y —a;)>0,

©)

0 otherwise,

<Sm;j<s3.

W=

L
12
® Choice (B) leads to an unanchored Sobolev kernel, denoted by K g, and is given by
(7) with
ni(x,9) =3 B({x —y}) + (x —3) (v — 3)
since m; = 0. Note that fol n;(x,y) dy = 0 for all ye|0, 1].

This reproducing kernel Hilbert space is called the unanchored Sobolev space,
and is denoted by H(K;p).
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The anchored and unanchored Sobolev spaces defined above are generalizations
of the reproducing kernel Hilbert spaces considered in [3,5]. The difference is that we
now allow the weights y, , to depend not only on the dimension s, but also on each
group of variables u. When the weights y,, are product weights, i.e.,

Vou=]] 75 for some {7, ;}, "

JEu

then kernel (7) can be written as

S

KS(XaY) = H (1 + Vs,j ni(XI"y/))’
Jj=1

where here and elsewhere in the paper we use the obvious identity

H (bj +¢j) = Z H ka ¢ V bjceR.

jev usv kevwu Jjeu

The space H(Kj) is in this case the tensor product of spaces of univariate functions.
Such function spaces have been studied in many papers.

For general weights {y,,}, it can be checked, as in the case of product weights,
that the inner product in the space H(K;4) is

awf(x )8\ Ig(X )
-1 u) @ uy d—y
)= Z s dx,,
o) uc{l,...,s} 7‘A),l]" Xy 0x,

where |u| denotes the cardinality of u, x, denotes the |u|-dimensional vector of
components x; with jeu, and x_, denotes the vector X(;, . ,; moreover (X,,a_,)
denotes an s-dimensional vector whose jth component is x; if jeu and g; if j¢ u. For
u = (), we use the convention that f[o.l]wf(xﬁv a_g) dxy = f(a).

For the space H(K;p) with general weights, it can be checked, as in the case of
product weights, that the inner product is

a1 (x) 9"lg(x)
, — § —1 dx_u / - dX_u dX;,”
(f g) ‘9 ’)}S?“ /[;),l]" (/[(v)?]].ru axu [0,]]’\7‘”‘ axu

ucs{l,

with the term corresponding to u = 0 interpreted as [, ./ (X) dx [ 9(x) dx.
The difference between the inner products is that for terms indexed by u, the
components of x not in u are anchored at a for the space H(K,a) while the same
components are integrated over [0, 1] for the space H(K;p).
Obviously, I; is well defined for H(Kj), where here and later K represents either
the anchored Sobolev kernel K o or the unanchored Sobolev kernel K, . Due to the
linearity of Iy — Q,,, we have the error bound

115(S) = Ons(N)<e(Pu; HE S Nk, VI € H(K).
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As is well known, the square worst-case error can be written in terms of the
reproducing kernel

(P, H(K,)) = Ki(x,y) dxdy — = Z K (xx, x) dx
[0,1* [0,1)°

1 n—1
) > K, x1).
k=0
The square of the initial error ¢*(0; H(Kj)) is given by
CO:HK)) = [ Kxydxdy= > . ][m (11)

[0,1] uc{l,...,s} Jeu

In particular, for the unanchored Sobolev space H(K,p) the initial error is always
759 = | independently of the weights.

3. Tractability for general weights

In this section we study the existence of efficient QMC algorithms that achieve
tractability or strong tractability error bounds for weighted Sobolev spaces with
general weights. We also show that a suitable adaptation of the component-by-
component (CBC) algorithm for non-product weights proposed in [2] achieves
tractability error bounds.

3.1. Existence of efficient QMC algorithms

We first prove the existence of efficient QMC algorithms by an averaging
argument. Let K be the anchored Sobolev kernel Ko or the unanchored Sobolev
kernel K; . It is known that the square of the average worst-case error for the Hilbert
space H(Kj) given by

@27 = [ S HK) do

has the explicit expression

. 1
(€)= _< o K,(x,X) dx — Ki(x,y) dx dy) .

[O,I]ZA

In our case with K = K| this expression becomes

@r=l ¥ /NH(mj - X wIlm) (12)

us{l,...,s jeu ucs{l,...,s} jeu
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Using the mean value theorem, we easily deduce the following theorem. (Recall that
in the definition of tractability and strong tractability we compare the worst-case
error with the initial error, which is given by (11).)

Theorem 1. (A) Consider the anchored Sobolev space H(K;a) with an arbitrary
anchor a and arbitrary weights {y,,}. Then there exists a point set P, for which

1/2

1 1
e(Pn;H(Ks‘,A))g\/_ﬁ MCZ Vs,u H(mj+g> - Z ys,u Hmj

={l1,...,s} Jjeu us{l,...,s} jeu
Therefore, if

Zug{l,“.,s} Vsu Hjeu(m/ + 1/6)
< 00,
Zuz{L...,s} Vsu Hjeu ni;

sup
s=1,2,...
then the multivariate integration problem in spaces H(Kj p) is strongly tractable with ¢-
exponent at most 2.
(B) Consider the unanchored Sobolev space H(Kg) with arbitrary weights {y;,}.
Then there exists a point set P, for which
1/2

1
e(Pn;H(KS,B))g_ Z ysu6_‘u‘
Therefore, if

sup Do nab M <o,
s=12,...

then multivariate integration problem in spaces H(Kp) is strongly tractable with -
exponent at most 2.

Note that if the anchor isa = (1, ..., 1), then Theorem 1(A) reduces to a result in
[8]. If the weights {y,,} are product, see (10), then Theorem 1 reduces to the results in
[3]; furthermore, if the product weights {7, ;} are independent of the dimension s,
i.e., y; ; =7, then Theorem 1 reduces to the results in [16] for the anchored space
with anchor a = (1, ..., 1), and reduces to results in [18] for the unanchored space.

3.2. Results for weighted Korobov spaces

Theorem 1 indicates the existence of a QMC algorithm whose convergence order is
n~'/2 which is known to be not optimal. To improve the convergence order we will
present a shifted lattice rule which allows us to obtain even an optimal order of
convergence. To do this, we need to recall some facts and results for weighted
Korobov spaces of periodic functions defined on [0, 1]*. The weighted Korobov space
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is a Hilbert space with the reproducing kernel

“ eZnih(x,fy,')
Kpxy =14 Y bl (z W) 1)

0#u={l,....s} Jeu \h=—w
Here o> 1 is a smoothness parameter, and f := {f,} is a weight sequence with non-
negative weights f3; ,. The prime on the sum indicates that the 7 = 0 term is omitted.
The inner product of the weighted Korobov space is

(fag) = Z roc(ﬁah)ﬂh) ma

heZ’

where Z* stands for s-dimensional integer vectors, f(h) denotes the Fourier
coefficient,

fih) = f(x)exp(—2mih-x)dx
(0,17
and
pm=1! if h =0,
Folp, — B ) .
ﬁ“i" Hjeuh |h]| if h#0,

with up = {j : h;#0}. The weighted Korobov space is denoted by H(K;z.,).

Multivariate integration for the space H(K; ) can be solved by a component-by-
component (CBC) algorithm, see [15] for product weights and [2] for general weights.
This algorithm constructs a generator of the lattice rule as follows:

Component-by-component (CBC) algorithm
Suppose n is a prime number and suppose the weights {p,} are given. The generator
z= (21,2, ..., %) is found as follows:

1. Set the first component z; to 1.
2. For t=2,3,....s and known z\,...,Z,_1, find Z,€ {1, ...,n — 1} such that the
square of the worst-case error,

A(P(1,%, .. 21, %) H(K g o)

1 n—1 0 eZnithj/n
S8y (s ) 1

k=0 0#uc{l,...,t} jeu \h=oo

is minimized, where P(1,Z, ..., Z,) is the rank-1 lattice point set with the generator
(1,22, ..., Z)).

The cost of the CBC algorithm is exponential in s for arbitrary weights. Indeed, we
have to sum 2’ — 1 terms as part of Step 2 of the algorithm. The total cost would
require O(s2°n) operations, making the algorithm impossible to use for large s and .
But the problem is much easier for some special weights, such as order-dependent
weights (where the weights depend on u only through the cardinality of u), or
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finite-order weights, see (2). In these cases, the cost of the CBC algorithm is
polynomial in s and n.

It is shown in [2] that for any t€[l,a) the lattice rule constructed by the CBC
algorithm satisfies

e(P(2); H(Kpa) <Cls,1)(n— 1), (15)
where C(s,7) is given by
/2
Clro={ > A" (16)

and {(x) = Z;ﬁlj‘x for x>1 is the Riemann zeta function.

3.3. Shift-invariant kernels of weighted Sobolev spaces

To use the CBC algorithm for weighted Sobolev spaces, we need to recall the
relationship between weighted Sobolev and weighted Korobov spaces. This is done
by using the concept of a shift-invariant kernel, see [8], defined as follows.

For an arbitrary reproducing kernel K, the associated shift-invariant kernel K*" is

Kh(x,y) = / K({x + A}, {y + A}) dA.
0,1)"

The kernel K*" is shift-invariant, i.e., for arbitrary A€ |0, 1)’

KM (xy) = K ({x+ A} {y +A}) vx,ye[0,1]"
It is shown in [8] that for a point set P,<[0,1]°, we have

[ P+ AsHK) s = (P HED)) (17)

o.11°

where P, + A = {{xx+A}, k=0,...,n—1}. By the mean value theorem, this
implies that there exists a shift Ae[0,1)" such that

e(P, + A; H(K)) <e(Py; H(K™)).
Thus e(P,; H(K*")) is an upper bound on the value of e(P, + A; H(K)) with a
properly chosen shift A

Consider first the unanchored Sobolev space H(K;g). Its associated shift-invariant
kernel can be easily found:

Ky(x,) = /[ Kol A}y A)) aa

=1+ > ]l BUx-»p

0#uc={l,...,s} JjEu

SIERED SRR | ) i

0#uc={l,...,s} jeu h=—ow

2mh (x—;)
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where
B _ Vsu
))s,u - (27_52)‘“‘ (18)
Here we used the fact that the Bernoulli polynomial of degree 2 can be expressed as
1 0 eZnihx

By(x) = xel0,1].

212 n
o0

This means that the shift-invariant kernel K;ﬁg of the unanchored Sobolev space is
just the reproducing kernel of the weighted Korobov space with the weights % =
{75} and o = 2, see (13), i.e.,

s

K = K, (19)

For the anchored Sobolev kernel K a(X,y), its associated shift-invariant kernel
can also be found after some computation

KAy =1+ > 5] 1B(x = y}) +mj]

0#uc={l,...,s} Jeu

=S HEK A1+ Y. A I PBx -] |, (20)

0Auc{l,...,s} Jjeu

where

1

A

yer o= Voo m;. (21)
Y )M (0 H(K ) weolT H !

Thus apart from the factor ¢?(0; H(K; A)), the shift-invariant kernel Kf}jA(x, y) is just
the Korobov reproducing kernel (13) for the weights f* = {yﬁu} and the parameter

o=2,1e.,

Ky = @(0:H(Kon)) Ky - )

s

The worst-case errors of any QMC algorithm in the spaces H (KS};) and H (K g ,)
are therefore related by

e(Pu; H(K))

O H K ) R @)

s

The initial error e(0; H(K;a)) is given by (11).
We summarize the analysis of this subsection in the following lemma.

Lemma 2. The shift-invariant kernel of the anchored Sobolev kernel K, or of the
unanchored Sobolev kernel K, p is related to the weighted Korobov kernel K> by (22)
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or (19), respectively, with the weights {f;,} given by

ﬁ o V;Au lf Kv - Kv,Av
S V?u if Ky= Ks,B-

3.4. Shifted lattice rules with high convergence order

We can now easily combine the constructive results for weighted Korobov spaces
from [3], see (15) and (16), with Lemma 2 and relation (17), to obtain the following
theorem.

Theorem 3. Let n be a prime number.

(A) Let P» be the lattice point set with the generator constructed by the CBC
algorithm with the weights yﬁ” and parameter o. = 2. Then there exists a shift Ae[0,1)°
such that for any t€|l,2)

/2

e(PnA + A; H(KSA)) A/t |ul -1/2
A < 2(2 — 1)
(0 1 (Kon) > G (-1

O#uc{l,...,s}

(B) Let PB be the lattice point set with the generator constructed by the CBC
algorithm with the weights y?_ﬁ and parameter o. = 2. Then there exists a shift Ae[0,1)"
such that for any t€(1,2)

/2

e(PE + A; H(K,p)) < S o) o) -1
O#uc{l...,s}

From the last theorem there follows the following tractability theorem.

Theorem 4. (A) Consider the anchored Sobolev space H(K;a) with an arbitrary
anchor a. Assume that for some t€[1,2) and some q=0, we have

_ 1 —1/z 1 T
(57 Sue g [ 2E2/0@2) " +m)
sup <o
s=12,... Zug{l,“.,s}y&,ll Hjeum/
Then if ¢ = 0 we have strong tractability and the e-exponent is at most 2 /7, and if ¢>0
we have tractability with ¢-exponent 2/t and s-exponent q.

(B) Consider the unanchored Sobolev space H(K;p). Assume that for some t1€[1,2)
and some ¢ =0, we have

sp (570 30 e M@/t ) <.
s=1,2,... ug{l,....‘\'}
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Then if ¢ = 0 we have strong tractability and the e-exponent is at most 2/, and if ¢>0
we have tractability with e-exponent 2/t and s-exponent q.

Proof. Part (B) follows immediately from Theorem 3. To prove Part (A), we know
from Theorem 3 there exists a shift Ae[0,1)* such that
e(PY 4+ Ay H(KA))
e(0; H(K;))

<Cals,r) (= 1)
with
/2

Cals.t)=| > (i)Yo

Let W, =2{(2/7) (2712)71/1. Inserting expression (21) for yf:u into the expression for
C4(s,7) and then using Jensen’s inequality, we have

1/z
1
et |2, (X L)

ucs{l,... v:usSv jevwu

1 T
< e | D WY e |
s (2 A T
(s Ten20(2/7) 22) ™ )7y
Zuys.u Hjeu m;

From this inequality the rest follows immediately. [

T

Theorems 3 and 4 state that for arbitrarily large s, shifted lattice rules with the
generator constructed by the CBC algorithm and a suitable shift achieve a
convergence order n~ /%, If 7 can be arbitrarily close to 2, we may achieve almost the
same convergence as for the univariate case, which is #~!, and the difficulty of the s-
dimensional integration is roughly the same as for the univariate one.

We stress that the CBC algorithm described above is not fully constructive, since
we only know that there exists a shift for which the generator computed by the CBC
algorithm leads to desired error bounds. The simultaneous construction of both a
lattice vector and a shift with a polynomial cost is given in [14] for the anchored
Sobolev space with a = 1 and for product weights. However the proven convergence
rate for this construction is only 7n~'/2. The construction of a shift vector preserving
better rates of convergence is open, and left for future research.

4. Tractability for finite-order weights

The theorems of the previous section are for general weights. In particular, we may
apply them to the finite-order weights defined in (2). As we shall see, the tractability
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conditions greatly simplify for finite-order weights, and there are some (positive)
surprises.

4.1. Existence of efficient QMC algorithms

We now show that for the anchored Sobolev spaces, strong tractability holds for
arbitrary finite-order weights. For the unanchored Sobolev space we get tractability,
not strong tractability, and only under the additional (reasonable) assumption that
the finite-order weights are uniformly bounded.

Theorem 5. (A) Consider the anchored Sobolev space H(K;a). For arbitrary finite-
order weights of order g*, there exists a point set P, such that

1/2
e(PnyH(KsA)) 1 < 1 > 1 . 12
— T <——=| max 1+—1)—1 < 30 _ )12
e(O;H(Ks,A)) \/ﬁ u: |u|<g* jeu 6m] \/ﬁ( )

Hence, the minimal number n(e, H(K,a)) of function evaluation needed to reduce the
initial error by a factor ¢ with a QMC algorithm is bounded by

n(e, H(K;a))<[e (37 = 1)].

Thus for arbitrary finite-order weights we have strong tractability with e-exponent at
most 2.

(B) Consider the unanchored Sobolev space H (K g). If the finite-order weights {7, }
of order q* satisfy y,,<I"" for all s and for all u={1, ..., s}, then there exists a point
set P, such that

e(Py; H(K;p)) < Gls)n 12,
where
¢ 1/2 ;2
G(s) = (r* ; <;>6f> = (r")"? ((q*;imq*)”z(l +0(s™).
Hence,
n(e, H(K,p)) <[ 2G*(s) 1.
Thus we have tractability with e-exponent 2 and s-exponent q*.

Proof. For the anchored Sobolev space H(K;a), we have from (11) and Theorem
1(A) that there exists a point set P, for which

—1
e2<Pn;H(KY,A)K”ST&(O;H(K?,A)),
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where
_Zu: Ju|<q* Vs,u Hjeu (m/ + 1/6)
’ Zu: lu<q* Vs H/‘eu m;
_Zu: lu|<q* Vs,u( Hjeu mj)( H/eu(l +6;11_1j))

B Zu: lul<q* Vs H/'eu m

1
< maxy |u<q H(l +6m>'
i

jeu

Since 1/ 12<mj<%, we have p, <39 independently of s and independently of the
weights 7, ,. Thus there exists a point set P, such that

(P H(K,0)) 1 < 1 > 1
B VA< max 1+—) —1|<=(37 —1).
20 k) < U5, I

Therefore, we have strong tractability with ¢-exponent at most 2.
We now prove the second part. For the unanchored Sobolev space H(K;p) we
have from Theorem 1(B) that there exists a point set P, for which

1 1
ez(Pn; H(KY,B)) < - Z Vs,u67|u‘ <= Z F*67‘u‘

02U, ...s) " o<lul<g
I /s
=— Z( )6/ =G (s)n",
n =\/

where

GX(s) = I /i-;<;>6/ —r (qs >6f1"(1 ros ) =1 (qf)%u + o).

Thus there exists a QMC algorithm such that
e(Py; H(K,p)) < G(s)n '/,

Noting that the initial error for the unanchored space is 1, we have tractability with
e-exponent 2 and s-exponent ¢*. This completes the proof. [

4.1.1. Lower bounds

For the anchored Sobolev space we have strong tractability for arbitrary finite-
order weights. However, the error bounds as well as the minimal number
n(e, H(K; o)) of function values depend exponentially on ¢*. Hence, if the order ¢*
is large, the corresponding minimal number may be huge. We now show that the
exponential growth is indeed present for some finite-order weights of order ¢*, and
this holds for any QMC algorithm, or equivalently for any point set P,.

We provide a lower bound on the worst case error of any QMC algorithm in the
space H(K;a), and conclude that the minimal number n(e, H(K;4)) of function
values must depend exponentially on ¢*. The proof technique used in the next
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theorem is based on the reproducing kernel being pointwise non-negative, as in [16].
This assumption is obviously true for the anchored Sobolev space since K;(x,y)>1
for all x,ye[0, 1]°. For the unanchored Sobolev space, the kernel takes also negative
values, and therefore we are unable to provide a corresponding lower bound in
this case.

Theorem 6. Consider the anchored Sobolev spaces H(K,a) with an arbitrary anchor
a=(ay,...,as). There are finite-order weights {y, ,} of arbitrary order g* <s such that
for any point set P, we have

ez(Pn'H(KsA)) 8 d
S SA S —2epn=1—2(2) n,
2(0; H(Kyp)) (9) "

where
. 8Smax3(a;.. 1 — a; AN /N7
Cq* = min H deZ (af’ aj)e (_) 7(_) '
us{l.sh lul=g 5oy 27(aj —aj)+9 9 9
Hence,
1—&2 1-&/9\7
H(Kn)>—> 2> (),
nie, HKsa) 25 =>— (8)

which depends exponentially on q*.

Proof. Since the kernel K; 4 (x,y) is always positive, see (9), we may use Lemma 4 of
[16]. This lemma states that
ez(Pn; H(KV,A))

— DS > — nA? 24
2(0; H (K, n)) s (24)
where

72 (x)
A2 — S
T e € (03 H(Kop)) Koa (X, X)

(25)
with
hs(x) = / KY,A(Xv y) dy
0,1

Clearly,

KS,A (X,X) = Z Vsu H ‘x/ - 4aj|.

ucs{l,...,s} jeu
By direct computation we have

hs(x) = veu 1T 1 = ailw; ()], (26)

ucs{l,...,s} JEu
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where
1 —x;/2 —a;/2 if x;>a;,
W) = {x_//2 +a;/2 if x;<a;.
For ug{l, ., s}, define
=700 [T b=l and by =707 TTlkg — @] 2w; ().

Jjeu Jjeu

From (26), using Cauchy’s inequality we have

2
h%(X) = Z as,ubs,u
ucs{l,...,s}
< D @, Y b,
ucs{l,...,s} ucs{l,...,s}
- AA(X7X) Z b%u
ucs{l,...,s}
Based on this and (25) we find
< b,
A?s max Zu (L)

xef0,1] €(0; H(K; ))

Zug{l ..... s} Vs H]Gu“x/ a/| sz(xf)]
X

xe 0.1 Zug{l,...,s} Vsu Hjeu m;
< Zug{l ..... St Vsu Hjeu I/V/

h Zuc{l ...... s} Vs Hieu mj7
where
2 8(1 — a]
W= max [|x; —a;|w;(x;)] = max .
’ x;€[0,1]
Recall that for the anchored space H(K; x) we have m; = /2 aj + %. As functions of

1.

a;, both W; and m; are symmetric with respect to a; = 5;

J?Q ::44444§224444— 4 8 j ::1 S
) g eee g

m; 27(aj2 —a; + 99|’

moreover, for a;e[l

2 1,

The minimal value of this ratio is obtained for ¢; = § and the maximal one for a; = 1.

We are ready to define the finite-order weights for which Theorem 5 holds. As
always y,9=1. Let u* be a subset for which ¢, is attained, ie., ¢, =
[Te, 8max’(a;, 1 —a)/(27(a; — a;) +9). Then we take the weights y,,. = f§ for
some >0 and y,, = 0 for all other u. From (27) we have

L+ Bl W

g P e 7
1 + ﬁl—[jeu* m;
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Take f so large' that
M@ 11 i 2, (28)
T B Lewm e ™
Then
22 €27, 2(9)7).
From (24) we have that

ez(Pn; H(KV,A))
e2(0; H(K; A))

as claimed. 0O

8 q
21—n/1§>1—2ncq*>1—2<9> n,

Combining this theorem with Theorem 5, we see that for the anchored Sobolev
spaces and some finite-order weights of order ¢*<s, the minimal number
n(e, H(K; o)) of function values is bounded for any anchor a by
3 1

&2

1—¢/9 q
28 (§> <n(e, H(Ksa)) <

Moreover, for any anchor a in which the first ¢* components have the value %, the
minimal number is bounded by
—¢ 39— 1

1—&2 /97
- < ) S, < .
3 (4) n(e, H(K;a)) 3

These bounds depend exponentially on ¢*. Theoretically, if ¢* is large the minimal
number of function values is huge. For example, for s>g¢* = 300, ¢ :% and the
anchor (4, ...,1), we have

n(y, H(Ka)) 2337 >1.5x 10"
However, for many practical problems ¢* is small, say, ¢* <3 or 5. In such cases, we
may tolerate exponential dependence on g*.

4.2. Shifted lattice rules with higher convergence order

The next theorem, which is a corollary of Theorem 3, shows that lattice rules
constructed by the CBC algorithm for finite-order weights achieve tractability or
strong tractability error bounds with high order of convergence under the same
conditions on the weights as in Theorem 5.

Theorem 7. Let n be a prime number.
(A) Consider the anchored Sobolev space H(K; a) with arbitrary finite-order weights

{su} of order q*. Let P2 be the lattice point set with the generator found by the CBC

! Clearly, the number 2 in (28) can be replaced by any number greater than 1.
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algorithm using the weights f,, = yﬁu, see (21), and parameter oo = 2. Then there exists
a shift Ae[0,1)* such that for any te(l,2),

o< (=OE))

57 e -1 /2
X ((q*)') (1+0(s  )n—1)""",

with the implied constant independent of s. When t = 1 the 1 + O(s™") factor is absent,
and the bound is independent of the dimension s.
Hence, for arbitrary finite-order weights of order q*, we have strong tractability with
e-exponent at most 2, and tractability with e-exponent 2/t and s-exponent ¢*(1 — 1/1).
(B) Consider the unanchored Sobolev space H(K;p). Assume that finite-order
weights {y,} of order q* are uniformly bounded by I'*. Let P be the lattice point set

with the generator found by the CBC algorithm using the weights B, = yfu, see (18),
and parameter o. = 2. Then there exists a shift Ae[0,1)° such that for any t€(l,2),

1/2 .
. r (2L(2/7)s)" " . Ly
e(P? + A; H(K,p)) < <(2n2)qx> (T (1+0(s ) (n— 1),

with the implied constant independent of s.
Hence, for arbitrary bounded finite-order weights of order q*, we have tractability
with e-exponent 2/, and s-exponent q*.

Proof. For fixed t€([l,2), define

csau = ys,u H mfv

Jjeu
W, =20(2/7)(2n>) """,
W 1/t\q"
My = max H L — | < (14 w1277
u 1<\u|<q* jeu m//f

From Theorem 3 there exists a shift Ae[0,1)* such that

e(Py + A; H(K,a))
e(0; H(K;A))

<Ca(s,7)(n—1)"?

with
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From the proof of Theorem 4 we know that

Cals ><<oHl<z<>>( > [Jon +m}”>> -

s ul<q* Jeu
Hence,
T
Ci(s,r)g% Z el H 1+ Wl//r <UMTH(s,7),
e (07H(KsA)) w Jul<q ' jeu m; !

where, using ¢*(0; H(KA)) = Y, y<q Csu» We have

1/7\"
Eu: |u| <q* Csu

H(s,7) =
( ) ) Zu: lu| <q* Csu

Using Holder’s inequality with t we obtain

T/t (1-1/7)
(Zu: Ju| < q* CS,“) (Eu: |u| <q* 1)

Zu: Ju| <g* Csu

-(50)) - () oo

Using the bound on .#,, we conclude the first part of the proof.
We now prove the second part. From Theorem 4 there exists a shift A€ [0, 1)* such
that for any t€(1,2),

H(s, 7)<

e(Pg + A; H(K, )< Cg(s,7)(n—1)""2,

where

. (z o (a (g))“')

/2
(oo

p#uc={l,....s}

S 2
< (r*)l/z(_l (/)Wf)

(el g
e ) @ |
as claimed. 0O

M=

N

N———
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The factors Ca(s,7) and Cg(s, 1) in Theorem 7 for t = 1 are very close to or even
the same as those in Theorem 5.

For 7 =1, the convergence order of shifted lattice rules is n~'/?> and the error
bounds are independent of the dimension s for the anchored Sobolev spaces, and
polynomially dependent for the unanchored Sobolev space. For 7> 1, the rate of
convergence of shifted lattice rules is improved to n~%/? but the error bounds depend
polynomially on the dimension s for both the anchored and unanchored Sobolev
spaces.

We stress that Theorem 7 holds for arbitrary finite-order weights in the case of the
anchored Sobolev spaces, and for arbitrary but bounded finite-order weights in the
case of the unanchored Sobolev spaces. Better results than those presented in
Theorem 7 are possible to obtain if we assume stronger conditions on the finite-order
weights as in Theorem 4.

5. Tractability using low discrepancy sequences

Lattice rules constructed by the CBC algorithm have good theoretical properties.
However, these lattice rules depend on 7 as well as on the weights, since we minimize
the worst-case error which depends on both n and the weights, see also [14]. In
general, when the weights change, the lattice rules also change. These properties may
make those rules inconvenient for applications, since for different problems even for
fixed n we may need different weights and therefore different lattice rules. It may be a
challenging problem to construct a ““universal’ lattice rule which is ““‘good’” for all, or
at least for many, choices of weights.

An alternative approach is to fix a sequence of point sets {P,} forn =1,2, ..., and
then to investigate the worst case error bounds for Sobolev spaces with different
weights.

It is natural to take the point sets to be the leading n terms of one of the well-
known low discrepancy sequences such as Halton, Sobol or Niederreiter. This
approach has been already proposed in [7,22]. We use this approach for both general
and finite-order weights, choosing to study explicitly the Niederreiter sequence. We
make use of a lemma proved in [22], involving the L, -star discrepancy of projections
of P, = {Xo,X1, ..., X,_1 }. We recall that the L, -star discrepancy of P, is defined by

D*(P,) = sup |disc(x; P,)],
xe(0,1)*

where disc(x; P,) is the local discrepancy given by

disc(x; P,) = % {n: x,€[0,x)}] — H x5,  xe[0,1]".
=1

Lemma 8. Let b be a prime and let P, be the first n points of the s-dimensional
Niederreiter sequence in base b which is based on the first irreducible polynomial over

the finite field Fy,. Let P! be the projection of P, on the lower-dimensional space [0, l]‘"‘.
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Then for any non-empty subset u={1, ..., s}, the L, -star discrepancy of P satisfies
* ( pU 1 : .
Di(P,) < [1(Coj1og,(j + b) log, (bm),
Jeu

where Cy is a constant independent of n, u and s.
Using this lemma, we will prove the following theorem.

Theorem 9. Let H(K;) be the anchored Sobolev space H(K;a) with an arbitrary
anchor a, or the unanchored Sobolev space H(K,g). Let P, be the point set consisting
of the first n points of the s-dimensional Niederreiter sequence in base b. Then

1 . .
(P”’H(K))\nz > v [ [Crilogy(j+ b) log, (bn)), (29)
0#uc{l,....s} jeu

where Cy = 2Cy is a constant independent of n and s.

Proof. For simplicity, we first consider the anchored Sobolev space with the anchor
a=(1,...,1). The corresponding kernel is, see (7) and (9),
KS,A(va) =1+ Z Vsu H min( —x;,1 yj)'
OFus{l,....s} jeu

The square of the worst-case error is in this case equal to the square of the weighted
Ly-discrepancy, see [16], and is equal to

(P, H(K,p)) = Z y/[ ; disc?((x,,1); P,)) dx,. (30)
0,1]"
Obviously,
/ |, dise?((xu, 1); Py) dx, <[D(P)),
(0,1]*
where P! is the projection of P, on [0, 1]'"‘. From Lemma 8 we have

/ disc® (x4, 1); Py) dxl,Siz [T [Cojlog,(j + b) log, (bn)].
[0_1]\"\ n

Jjeu

Thus from (30) it follows that

1 . .
¢ (Pui H(Ks0)) <5 > [ [Cojlogy(j+ b) log,(bn)),
0#uc{l,...s} jeu

which proves the result for the case a = (1, ...,1).

For an arbitrary anchor a = (ay, ...,qa,), the proof is similar. It is useful to
introduce some notation from [6]. The unit cube [0,1]" is partitioned into 2%
quadrants (some of them possibly degenerate) by the planes x; = a; for j =1, ...,s
Given x in the interior of one of these quadrants, let B(x;a) denote the box with one
corner at x and the opposite corner given by the unique vertex of [0, 1]* which lies in
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the same quadrant as x. Let B, (X,;a,) be the projection of B(x;a) on [0, 1]". Instead
of (30), we now have, see [5,6],

EEHEN) = 3 v [ Rxia)dx, (31)
' } = Jo,1

with
1
Ru(xm au) = Z |PZ mBu(xu; au)l - VOI(BM(Xm au)) = (Qn,s - I)XB,,(xuza,,)7
where g denotes the indicator function for the set S. Clearly,

/ Ri(x,;a,)dx, < sup R2(x,a,)
0,17 x.€[0,1)"

1 2

< sup {— 1P [ Y| — Voluxmyu))}
Xu <Y, n

< 4D (P12,

The last step follows from the relation of the extreme discrepancy to the L., -star
discrepancy, see [9]. It then follows from (31) and Lemma 8§ that

1 . .
¢ (Pu; H(Kya)) gﬁ Z Vsu H [2Cyjlog,(j + b) log, (b n)]*.
0#uc{l,....s} jeu

We now consider the unanchored Sobolev space H(K;p). It is known, see e.g.,
[5,16], that the worst-case error e(P,; H(K;p)) is the norm of the worst-case
integrand &(x) = I,(K,p(X,-)) — Ons(K;B(X,-)). By computing its norm, we find that
(31) is now replaced by

2
ez(Pn§ H(KJ,B)) = Z ys,u/ " (/ u Iéu(xu; a,) dau) dxy, (32)
g Joae \Joae

0#uc{l,...,
where
Ru(xu;au) = ( H rj(xj,aj)>Ru(xu;a,,)
Jeu
and
1 if Xj<daj,
rj(xj,aj) = 0 if Xj = 4,
-1 if xj>aj.

In verifying (32) it may help to observe that for fixed x[0, 1)° the quantity R, (x,;a,)
is a piecewise-constant function of a,.
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Similarly to the above argument, we now use

2
/ (/ ﬁu(xu;au)dau> dx, < sup sup Ri(xu;a,,)
[0.1]" 0.1 x€[0,)" a,ef0,1)

1 2
< swp {31220 bl = Vol |

Xu <Y,
< 4M(Dr(P)).
It follows from (32) and Lemma 8§ that

Veu || 12Co)loga(j + b) log, (bn))’.
O#uc{l,... s} jeu

1
ez(Pn;H(KY,B))<

|
g

This completes the proof. [

We are ready to prove that the QMC algorithm using the Niederreiter sequence
achieves a tractability or strong tractability error bound for finite-order weights.

Theorem 10. Let P, be the point set of the first n points of the s-dimensional
Niederreiter sequence in base b.
(A) Consider the anchored Sobolev space H(Ka) with an arbitrary anchor a.

® For arbitrary finite-order weights {y,,} of order q*, we have
e(P;H(K,n)) _ Cos” log (s +b) log] (bn)
e(0; H(Ka)) n ’

where C, is a constant independent of s and n.
Hence, we have optimal convergence order, and tractability with e-exponent
arbitrarily close to 1, and s-exponent arbitrarily close to q*.
® [f the finite-order weights {y,,} of order q* satisfy

Zug{l,...,x}, \u|<q*ys,u Hjeu[j 10g2(] + b)]z <o
Zug{l....ﬁs}, lul<q* Vsu Hjeu m; ,

M = sup (33)

s=12,...

then for arbitrary 6 >0 there exists a constant Cs independent of s and n such that
e(Pn; H(K\‘A))
e(0; H(K;a))

Hence, we have strong tractability with ¢-exponent of strong tractability 1.

—1490
<Csn +o,

(B) Consider the unanchored Sobolev space H(K; ).
® [For arbitrary bounded finite-order weights {y,,} of order q* we have
e(P; H(K,p)) < Css? logd (s +b)log? (bn)n™',

where Cs is a constant independent of s and n.
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Hence, we have optimal convergence order, and tractability with e-exponent
arbitrarily close to 1, and s-exponent arbitrarily close to q*.
® [f the finite-order weights {y,,} of order q* satisfy

sup Z Vs,u H [] Ing(] + b)}z <0,

$=h2e Nus{losh i< Jeu
then for arbitrary 6>0 there exists a constant Cj independent of s and n such that
—1+6
e(Py; H(Kp))<Csn™ ™.

Hence, we have strong tractability with e-exponent of strong tractability 1.

Proof. Consider the anchored Sobolev space H(K;a). The square of the initial
error is

O HEKA)) = > v [[ - (34)

ucs{l,...,s} JEu

For arbitrary finite-order weights {y;,} of order ¢*, from Theorem 9 we have

& (Py; H(Kyp)) < 1 20<lu<qVsu LjeulCrilog(j+b) log, (bn)]?
(0; H(K;n)) — 2 o<lu<q Vs Ljeu m
- 129 Yo<pui<q Vs [lieu[Crilogy(j +b) log, (bn)]?
o Zo<\l,\<q*“/s,u
124

< max [11C1J10g,(j + b) log, (bn))*

Jeu

124 . .

< —(slogy(s +5))*" (log,(bn))*" .
Therefore,

e(Py; H(K;A))

<2 \/3¢ 9 I 100d q -1
2(0: H(Kon) <27 V37 Cl 7 logy (s+ b)log] (bn)n™",

as claimed.
Now consider finite-order weights of order ¢* satisfying (33). Clearly, bound (29)
in Theorem 9 can be rewritten as

& (Pu; H(KA)) < % > H [C1jlog,(j + b) log, (bn)]®

% q (e logz(bnﬂ”z{m 11 [jlogz(j+b)]2}

JEu

(35)
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For an arbitrary 6 >0 define

Cilog,e ¥ |
X ( %5 @n|.

It now follows from (34), (35) and (33) that for the anchored case we have

) < 1 zq*: [C 1 (b )]2/ Z\u\:/{ys,u Hjeu[j logz(] + b)]2}
A0 H(Kn) 0 ogy (bn
e2(0; H(Ksn)) 1?4 1108, Y o<ui<q Vsu LLicu ™

M 2 Bsul <~ 28 log, (bn)]*
<= I '< :

n2 ; [Cl ng (bn)] nz ; (2/)‘

Bs. 5
< Bl cxplps tog, (bn)] = Can 22,

n2

where Cs = \/Bs.b°. The case of the unanchored Sobolev space can be proven
similarly. [

Similar results to those in Theorem 10 can be established for the Halton and Sobol
sequences. Indeed, let P, be the first n points of the s-dimensional Halton sequence
based on the first s prime numbers, see [4]. Then it is proved in [7] that

s puy | : .
D (Pn)gz H [CH] Ing(] + 1) Ing(EVI)],

Jjeu

for any non-empty subset u= {1, ..., s}, with Cy being independent of u and s. For
the Sobol sequence based on the first primitive polynomial, see [20], a similar bound
is proved in [22], namely

1 o .
D'(P) < [ [Csobsloga(j + 1) log, logs(j + 3) log, (2n)]

Jjeu

with Cso, independent of u and s. These bounds are similar to the bound for the
Niederreiter sequence. Therefore similar tractability and strong tractability results to
those in Theorem 10 hold for the Halton and Sobol sequences.
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