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Abstract 

This study aimed to determine the spatiotemporal pattern of the water quality data and identifying the sources of pollution in the 
Klang River Basin. The self organizing map (SOM) combined with the K-means algorithm arranged the data based on the 
relationships of 25 variables. The data from 2006 to 2009 for 30 monitoring stations were classified into six clusters. Water 
pollution in this river basin originated primarily from urban runoff, construction sites, faulty septic systems and industrial 
activities. The application of machine learning approaches is highly recommended to extract valuable information from the data 
for a holistic river basin management.   
 
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

A great concern of protecting aquatic ecosystems has significantly increased in order to conserve the availability 
of the resources through sustainable development [1]. The Klang River Basin is considered as the most developed 
area in Malaysia with the highest rate of urban growth. The availability of clean water is decreasing due to 
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environmental degradation [2]. The challenges in river basin management can be eased by identifying the sources of 
pollution and trend of water quality conditions. Machine learning techniques are useful to solve real life problems 
involving the field of environmental sciences through data analysis, modelling and visualization [3]. Only linear 
structures can be correctly extracted from the data using the linear techniques, whereas water quality assessment is 
complex and fuzzy that needs correct methods to solve the non-linear relationship between assessment factor and 
quality grade [1].  

Self organizing map (SOM) is a type of unsupervised Artificial Neural Network (ANN). The component maps of 
SOM are capable of visualizing many of the additional non-linear relationships between the variables that cannot be 
expressed in the commonly used Principle Component Analysis (PCA) [1,4]. K-means clustering is often utilized 
after the process of the SOM network4. In this study, water quality data measured in the Klang River Basin were 
analyzed using the SOM coupled with K-means algorithm to determine the spatiotemporal pattern of the water 
quality data and to identify the sources of pollution. Besides being able to detect the characteristics of water quality 
conditions, optimized sampling and monitoring strategies are also possible for decision makers to manage river 
basins effectively and economically. 

2. Methodology 

2.1. Study area and data used 

Klang River Basin covers an area of 1288 km2. Klang River (3° 13′ 01.33″, 101° 40′ 54.92″) is approximately 
120 km length. The main river and its tributaries flow through the Federal Territory of Kuala Lumpur and part of the 
state of Selangor and eventually into the Straits of Malacca. The upper catchment that comprises the Selangor 
districts of Gombak and Hulu Langat is mountainous and still covered by tropical forest. The middle catchment is 
the populous urban areas within Kuala Lumpur. The lower catchment includes the Selangor districts of Petaling and 
Klang2. Half of the river basin has been developed for residential, infrastructure and utilities, 20% are permanent 
forest reserves, and other land uses include institutional, open space, community facilities, commercial, industrial 
and squatter. The rainfall peaks in April and November to December. The months with the lowest humidity are 
June, July and September. The average annual temperature ranges between 29 and 32 C. April to June recorded the 
maximum temperatures [5]. 

About 25 water quality variables were obtained from the Department of Environment (DOE), Malaysia 
encompassing dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), 
ammoniacal nitrogen (NH3-N), suspended solids (SS), dissolved solids (DS), pH, temperature, conductivity, salinity, 
turbidity, total solids (TS), nitrate (NO3

−), chloride (Cl−), phosphate (PO4
−), arsenic (As), chromium (Cr), zinc (Zn), 

calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), Escherichia coli (E. coli) and coliform. The 
data (bimonthly from January 2006 to November 2009) were collected from 30 monitoring stations. 

2.2. Two-level clustering 

A total of 720 entries (6 months x 4 years x 30 monitoring stations) for each water quality variable were gathered. 
After data pre-treatment, a two-level clustering approach was utilized. Creating a network using SOM in the 
first level to determine the relationships between the multiple water quality variables and to reduce them to 
a few independent variables. Observations with parallel water quality were then clustered in the second 
level by employing K-means algorithm. All statistical and mathematical calculations were made using the add-
ins applications for Microsoft Excel 2010. The SOM and K-means clustering were applied using GeoSOM version 
1.0 software, while the group characterization was applied using TANAGRA version 1.4.41 software. Attained  
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3. Results and discussion 

3.1. Self organizing map (SOM) interpretations 

The SOM maps were formed using an 11 x 12 hexagonal architecture with a Gaussian neighbourhood 
function based on the optimum number of neurons (m = 134). The learning algorithm was run consecutively 
by having variables act as input vectors in order to classify the observations/sampling events (monitoring 
stations – sample period) based on similar water quality characteristics. The training stage was selected with 
parameters as follows: 1000 (first phase) and 4000 (second phase) full data iterations, initial neighbourhood 
width, α = 0.05 (first phase) and 0.02 (second phase) and initial radius, R = 10 (first phase) and 3 (second 
phase). The relationships between the standardized variables [0, 1] can be indicated through the 
visualization of the component maps of selected variables (Fig. 1). The high neuron values relate to orange 
shades, whilst the lowest ones link to blue shades [3]. 

Fig.1. Component maps of selected water quality variables 
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Parallel colour gradients specify a positive correlation between variables, whereas anti -parallel gradients 
indicate an inverse correlation [4,6,7]. The strong positive correlated variables such as conductivity, salinity, 
DS, TS, Cl, Na, Mg, K and Ca have nearly identical map patterns. Other strong correlated variables include 
BOD – COD, E. coli – coliform and turbidity – SS.  Since the increase in shade is at the opposite side of the 
maps, DO was found negatively correlated with other variables particularly NH3-N and temperature. 
Complexity in every variable that has no clear correlation with other variables can be detected and included 
in the maps due to the capability of the SOM to express the non-linear relationships [4].  

3.2 Cluster structure of the water quality data  

The number on each hexagon of SOM hits map signifies the number of observations classified into each 
neuron (Fig. 2a). K-means map further defined the number of clusters into six (Fig. 2b) based on the 
reference vectors of the SOM. In order to recognize the spatiotemporal pattern, data that were classified into 
each cluster with respect of the stations on a bimonthly basis were considered. Over the periods of sampling, 
stations that were consistently classified into C1 are upstream stations: 1K24 (Gombak River), 1K28 (Batu 
River) and 1K10 (Klang River). Other stations that were frequently classified into this cluster especially in 
May (2006 – 2008), September (2008) and November (2007, 2008 and 2009) include the middlestream 
(1K18) and downstream (1K17) stations along the Gombak River. The middle stream of Batu River (1K20) 
was also alternately classified into this cluster. C1 is associated with the best water quality condition in this 
river basin with the highest levels of DO and pH. However, this cluster also contains high level of NO3

−. 
The extensive use of fertilizers for agricultural activities and faulty septic systems may be the sources of 
NO3

−. The high nutrient loading may be due to rainfall intensity when soil and nutrients are most vulnerable 
to erosion [8-10].  

Station 1K01, which is located near the estuary was the only station classified into C6. C6 represents the 
extremely high levels of conductivity, salinity, DS, TS, Cl, Na, Mg, K and Ca, and significantly high 
temperature, SS and Zn. The high availability of mineral salt components may be linked to natural sources 
such as atmospheric salt cycling and river bed erosion, and anthropogenic sources such as industrial 
wastewater [8].  

Indistinct spatial pattern to distinguish between C2 (less polluted), C3 (moderately polluted), C4 
(polluted) and C5 (highly polluted) was observed. Most data measured from January 2006 to September 
2007 were classified into C4 and followed by C3. The subsequent sampling periods (November 2007 to 
November 2009) contains data that were mainly classified into C2 and C5. C2 indicates the less polluted 
condition but with high level of NO3

−. Data associated with C2 were mostly from stations along the Klang (1K02 – 
1K09 and 1K25), Kuyoh (1K15), Damansara (1K11 – 1K13), Ampang (1K23) and Gombak (1K17 and 1K18) 
rivers. The data were mainly measured in November 2007 – September 2008 and all months in 2009 excluding July. 
C3 contains mostly data from station 1K27 at the Bunos River (constantly from January 2006 – March 2007).  Data 
from other stations were also alternately classified into this cluster, especially stations along the Klang (1K08 and 
1K25), Gombak (1K17 and 1K18), Damansara (1K11 and 1K13), Kuyoh (1K15) and Keroh (1K30) rivers. The 
most frequent data classified into this cluster were measured in January (2006 and 2007) and November (2006). 
This cluster comprises moderate levels of BOD, DO, Fe and NO3

−. 

 
Fig. 2. Maps produced from the two-level clustering: (a) SOM hits map; (b) K-means map 
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C4 encompasses mostly data from stations along the Jinjang (1K22 and IK29) and Kerayong (1K16 and 1K26), 
Klang (1K02 – 1K09), Batu (1K19), Penchala (1K14), Keroh (1K21 and 1K30) and Damansara (1K11 and IK12), 
Ampang (1K23) and Kuyoh (1K15) rivers. Data measured in March, July and September (2008 and 2009) and May 
(2008) were frequently classified into this cluster. C4 represents the high levels of NH3-N, PO4

3− and 
temperature. C5 is highly linked to stations along the Kerayong (1K26), Penchala (1K14), Keroh (1K21 and 1K30), 
Jinjang (1K22 and 1K29) and Bunos (1K27) rivers. Most data measured in the driest month of 2009 (July) were 
classified into this worst water quality condition with the highest levels of PO4, NH3-N, BOD, coliform, Fe, 
COD, E. coli, temperature and As and the lowest level of DO.  

Aside from urban runoff, domestic wastes, sewage treatment plants, septic tanks, the polluted rivers also 
received effluent discharge and wastes from industrial area. Districts with major industrial activities include 
Petaling, Klang, Gombak (Selayang and Seri Gombak) and Hulu Langat (Kajang and Ampang). Squatter 
settlements that exist along the riverbanks (particularly the Klang, Kerayong, Keroh and Jinjang rivers and 
followed by the Batu, Gombak and Ampang rivers that flow through Kuala Lumpur) may as well ra ise the 
water pollution level. The temporal pattern proves that the water quality conditions were highly influenced by land 
use modifications and seasonal variation. Surface runoff will be directed into waterways during heavy rainfall  
[11]. In some places, pollutants might be washed out with heavy rainfalls. However, most of the urban 
development in the Klang River Basin has taken place on the region that is prone to flooding. Construction 
and deforestation have led to the increase in impervious surface area. These developed environments do not 
allow the rain to infiltrate into the ground. Such alterations can affect the quality of water by the high transit 
speed and high volume of stormwater runoff [10]. In dry season, worse water quality conditions can be 
observed. This may be associated with high temperature that can reduce the DO concentrations and increase 
the amount of pollutants [7,12,13,14]. 

4. Conclusion 

The complex relationships of 25 physicochemical and biological variables have been simplified using the 
SOM. The water quality dataset were then classified into six clusters in the next level by applying the K-
means algorithm. The deteriorating river water quality in the hotspot areas was primarily due to rapid urbanization. 
Besides the more commonly recognized point sources that include direct discharge from industrial areas and sewage 
treatment plants, water pollution in this river basin was mainly initiated from the non-point sources such as urban 
runoff, construction sites and faulty septic systems. Sustainable development is compulsory when economic growth 
alone does not provide better lives but needs a healthy environment. In order to improve the weaknesses of river 
basin management, this research proposes employment of advance techniques using available data. Rather than 
applying the conventional methods of benchmarking schemes, machine learning algorithms suggest better solution 
for pattern recognition. This can provide reliable results for decisions to be made after identifying the sources of 
problem that deteriorating the quality of environment. Further work will aim at identifying the optimal prediction 
models for water quality conditions in this river basin based on different statistical models using linear and non-
linear multivariate. 
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