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Abstract 

Carbozyme, Inc. has developed a biomimetic technology that promises significant cost and performance advantages over amine- 

scrubbing systems for the capture of CO2 from combustion flue gases. CO2 capture requires that the apparatus be able to accept a 

wide variety of gas streams, generate a stream acceptable to a pipeline operator, and do so at competitive cost and energy bases. 

A baseline engineering and economic comparison showed the Carbozyme technology to be an improvement over MEA. A 

predictive model of the Carbozyme permeator system was validated during a preliminary test of a 0.5-m2 permeator in which 

85% removal of CO2 from a 15.4% CO2 feed stream was achieved. Upon fabrication, the next-scale permeator will be shipped to 

the Energy & Environmental Research Center for testing on coal combustion flue gas.  
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1. Introduction 

The contribution of greenhouse gases (GHG), in particular carbon dioxide (CO2), to global warming is well 

recognized. Hydrocarbon fuels, coal in particular, are an essential part of the fuel market basket and will be well into 

the future. Today, electricity generation contributes >40% of the United States’ CO2 emissions and coal accounts for 

83% of the electric power sector’s CO2 emissions. [1] The pulverized coal (PC) power plant fleet, both existing and 

greenfields must include CO2 capture for GHG management. The key to achieving this goal is the development of 

cost-efficient CO2 captures technologies with minimal impact on cost of electricity (COE) by imposing the lowest 

possible parasitic load for the capture process. CO2 capture – enrichment and compression to pipeline pressure – is 
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the single most expensive and energy-intensive step in the carbon capture and storage (CCS) paradigm. The U.S. 

Department of Energy (DOE) National Energy Technology Laboratory (NETL) details three key targets of the CCS 

program: 1) the ability to achieve a 90% capture fraction, 2) the ability to deliver a stream of at least 95% purity, and 

3) achieving these goals at less than a 10% COE increase for new facilities or less than a 35% COE increase at 

existing facilities. 

 

Many adsorptive, absorptive, reactive and membrane-based technologies are under investigation each geared to 

address these goals [2]. At present, the absorptive approaches, especially those featuring amines, are best 

established. Amine scrubbing is applicable to low-CO2 partial pressure gas streams and can produce recovery rates 

of up to 98% with product purity of greater than 99 vol% [3]. However, amine scrubbing also presents some 

significant challenges, including a substantial energy penalty associated with regeneration of the amine, solvent 

degradation, equipment corrosion, large footprint requirements and reagent disposal issues. 

 

In contrast to this approach, Carbozyme, Inc. has developed a biomimetic technology. The Carbozyme 

technology has three key features: 1) a rapid catalyst, CA, 2) a high efficiency mass transfer hollow fiber design, and 

3) low energy requirement that does not use high value steam. CA is the fastest, lowest-energy facilitator known for 

carbon dioxide (CO2) [4, 5]. The Carbozyme permeator consists of two hollow fiber, microporous membranes 

separated by a thin liquid membrane (CLM). The catalyst, CA, is attached to the hollow fiber wall to guarantee that 

the incoming CO2 contacts the CA at the gas-

liquid interface to maximize conversion 

efficiency (Fig. 1). The transport resistance of 

the gases through the microporous membrane is 

low. Thus, CO2 faces little diffusion resistance 

before being converted to bicarbonate at the 

feed side. CA facilitates CO2 uptake by rapid 

conversion to bicarbonate and the liquid film 

restricts nitrogen and oxygen entry. CA exhibits 

a high kinetic rate, low thermodynamic energy 

demand, and high temperature stability, for 

selected isozymes [6]. It is a “green” chemical, 

is found in virtually every organism and 

consumed daily. CA is suitable for both the 

absorption and desorption stages, enhancing the 

rate of both processes. The bicarbonate produced by CA is carried in the form of a metal bicarbonate. This design 

promises significant cost and performance advantages over amine or ammonia-scrubbing systems for the capture of 

CO2 from combustion flue gases. Overall, the Carbozyme technology is applicable for moderate temperature (10-

75°C) gas flows at low to high pressure with CO2 concentrations from those found in air to those found in cement 

plant flue gas (<1% to ~20%) or higher.  

2. CO2 Sources and Carbon Capture Targets  

2.1. CO2 sources 

The Carbozyme CO2 capture process has been applied to gas streams containing CO2 at concentrations ranging 

from that found in breathable air (0.1%) to that found in cement plant stack gas (20%) [7, 8]. The initial 
development of the process was done at the very low concentrations when the focus was on NASA requirements. 

The focus was then transferred to capture of CO2 from flue gas generated at coal-fired power plants (12 – 15%). 

Figure 2 shows the projected growth of Greenhouse Gas Emissions as CO2 equivalents by sector from 2004 to 2030 

as given by the IEA [9] as well results of an analysis done at Carbozyme of the impact of electrification of the 

transport sector. The IEA [9] projects a growth in emissions from all sectors with the power generation sector 

increasing equivalent CO2 emissions by 67%. Our analysis was performed by assuming that 90% of road 

 

Figure 1. Conceptual diagram for operation of the Carbozyme Permeator. 
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transportation energy 

requirements may be 
converted from vehicles 

powered by liquid fossil fuels 

to vehicles powered by 

electricity from the grid Air, 

rail, and ship transport would 

remain unchanged in fuel mix 

from the IEA reference case. 

This electrification of the road 

transport sector results in an 

increase in electrical power 

generation requirements and 
therefore an increase of 130% 

in GHG emissions from the 

power generation sector. Our 

data indicate that not only will 

the size of the power 

generation fleet grow due to 

increases in population but 

that a shift from internal 

combustion engine to electric powered vehicles will result in a transfer of CO2 equivalent green house gas (GHG) 

emissions from transportation (decline by 5360 Mt compared to IEA projections) to power generation (rise by 6708 

Mt compared to IEA projections). This is a small additional increase in total potential emissions (1348 Mt). It is 

3.3% greater than the IEA total estimate of 40,421 Mt for 2030 but it would provide a potential reduction in 
emissions of 4689 Mt (11.6% of IEA total estimate for 2030) if 90% of the increased power generation sector 

potential emissions were captured. 

2.2. Carbon Capture Targets 

The DOE NETL targets for Carbon Capture were noted above. The reasons for these requirements are numerous 

and varied and represent a mix of technical, economic, and political concerns. For example, the requirement for 90% 

CO2 capture is primarily a political one, and might be altered based on economic and technical constraints. In 

contrast, the requirement for 95% CO2 purity has a technical basis, which relates to the purity of CO2 needed to 

generate a supercritical fluid as these properties are needed for use in enhanced oil recovery and for geologic 

storage.  

 

The end goals aside, each step in the capture process has its own requirements. For example, under current US 

EPA regulations there is considerable variance in the flue gas profile. The composition must be managed with an 

eye towards the acceptance standard for the inlet stream to the CC apparatus. Inasmuch as liquid-based capture 

methods rely on acid-base chemistry, it is critical to avoid changes in pH of the reaction fluid. In addition, particle 

load and heavy metal concentrations should be minimized. Other feed stream features include acceptable 

temperature, pressure, CO2 concentration, concentration of other major gaseous components, and concentration of 

contaminants. 

 

Feed side acceptance criteria for common flue gas contaminants for the Carbozyme permeator and some details 

on the reasons for these acceptance limits are given in Jensen et al, 2008 [10]. The conclusion from that work is that 

SOX is controlling contaminant with respect to the need for additional clean up of typical stack gas. Figure 3 

illustrates the range of SOX concentrations that are typically emitted by existing US power plants. These stack gas 

SOX concentrations range from low values - 300 to 500 ppmv - (for very low sulfur coals conjoined with FGD) to 

high - above 5000 ppmv - (higher sulfur coals without SOx scrubbing). The most conservative acceptance limit for 

SOx (SO2+SO3) for the Carbozyme permeator is 7 ppmv (18.6 ppmw), a value far below even the low concentration 

 

Figure 2. Projected Global CO2 Emissions by Sector. Electrification of the transportation sector will 

lead to a reduction in CO2 emissions from that sector but this decrease will be more than offset by 

increases in the power generation sector unless CCS is applied to the additional point source 

emissions. If this is done the result is a net reduction in GHG emissions. 

M.C. Trachtenberg et al. / Energy Procedia 1 (2009) 353–360 355



Author name / Energy Procedia 00 (2008) 000–000

values for existing power plants. Therefore there is an obvious need for additional flue gas treatment prior to CO2

capture. The cold ammonia process and the KS-2 process also require SOx values <10ppmv. [11]

Figure 3. Calculated minimum, maximum and average SOX concentrations in exhaust gas from coal fired boilers as a function of the coal, boiler 

type, and pollution control equipment. All calculations were performed using default conditions of the IECM [12]. Details concerning 

combinations of coal composition, type of boiler, and pollution control equipment which represent 46.1% of the existing US fleet as of Fall 2007 

are available [10].

The first step in determining the most appropriate pretreatment system is to identify the range of combustion flue 

gas constituents that will most often be encountered. Direct measurements are not feasible because very few power 

plants will provide detailed compositional data for their flue gases. Instead, we determined that flue gas 

compositions would have to be estimated for as broad a range of coals and pollution control devices as possible. For

this reason, a multistep approach was taken to define the flue gas compositions:

• The most commonly used coals and their proximate and ultimate analyses were identified.

• The most common plant configurations (i.e., boiler type and attendant pollution control devices) were determined 

for the entire U.S. power production fleet.

• The composition of the flue gases produced by the most-mined coals when fired in the most common plant 

configurations was estimated.

• The estimated flue gases were compared to identify a range for each flue gas component that could be expected.

• The expected component ranges were compared with the Carbozyme permeator acceptance criteria to determine 

the cleanup requirements of the pretreatment technology.

The feed-side polishing device that is appropriate for use with the Carbozyme permeator is similar to what others 

have referred to as a “deep SOx scrubber”. To determine the specific type of device that would be needed for the 

Carbozyme permeator we evaluated the emission composition from about half of the US PC fleet. These values 

were compared with the Carbozyme stream component acceptance values to allow the CA-based CLM permeator to 

operate for a minimum of 2500 hours (a conservative value) without need to change enzyme or CLM. More frequent 

exchange of the CLM or active control of CLM chemistry (e.g., treatment to remove accumulated sulfate) would 

allow the permeator to accept flue gases containing higher SOX concentrations. Addition of EDTA, if needed, to the 

permeator should permit acceptance of the predicted mercury levels. The flue gas composition data indicated that 

SOx and oxidized mercury levels would likely exceed the acceptance requirements of the CLM permeator, 

especially for plants with either a dry SOx scrubber or without a SOx scrubber. The data showed that even the best 

356 M.C. Trachtenberg et al. / Energy Procedia 1 (2009) 353–360



Author name / Energy Procedia 00 (2008) 000–000

fitted plant was still emitting SOx at about 200ppm (vs. 25-fold higher for the worst). A polishing wet scrubber 

should be able to produce a flue gas stream meeting the liquid membrane permeator’s SOx requirements. 

Currently EERC is preparing a small scale packed column lime scrubber for use in testing of a scaled up model of 

the Carbozyme permeator. Details on the design of this scrubber are available in [10]. This polishing scrubber was 

fabricated and installed on the Energy & Environmental Research Center’s (EERC) combustion and environmental 

process simulator (CEPS). Shakedown and testing (late 2008) are expected to validate the polisher’s ability to meet 

the Carbozyme permeator inlet acceptance criteria. 

Following CO2 enrichment the output stream must meet the inlet acceptance criteria of the pipeline carrier. CO2

product requirements include specific stream composition in addition to compression, drying, and polishing. The 
most demanding requirement for transport where the amount of moisture, oxygen and certain contaminants with the 

potential to cause corrosion in steel pipe or would require the use of more expensive pipe materials. Table 1 is a list 

of the expected Generation 1 Carbozyme permeator performance and a sample pipeline requirement. The final 

column in Table 1 shows the variance between the anticipated product composition from the Carbozyme permeator 

before and after compression and drying. Additional polishing will be required to remove the excess oxygen from 

the purified CO2 product to meet the pipeline acceptance criteria. A variety of technologies can be employed to 

remove this oxygen. We anticipate the lowest cost option will be flash vaporization of the O2 from the product after 

compression to 8.3MPa (1200 psi) and before final compression to pipeline pressures of 15.2-16.5MPa (2200-2400 

psi). 

Table 1. Carbozyme Permeator Product Stream and Pipeline Acceptance Requirements

Component Feed CZ CO2 Product Out of Permeator

Wet Dry

% % % volume % weight

Pipeline 

Requirement 

for CO2

Product [13]

Variance for CO2 Product

(compare dry CZ product to 

pipeline requirement)

CO2 13.9 43.7 92.4 94.92 95% 0.08% too low

N2 72 3.1 6.6 4.3 4% 0.32% too high

O2 5.5 0.39 0.83 0.62 10 ppmw 622 times too high

Ar 0.93 0.07 0.14 0.13 OK

H2O 7.7 53.8 0.01 5.1e-5kg/m3 4.8e-4kg/m3 15% of max spec = OK

Over the last several years we have scaled up the design 1,000-fold with no change in performance. This is highly 

indicative that improvements and development will be linearly scalable. Under current DOE funding we are in a 

scale-up mode where scale-up involves an increase in both the size of each permeator and in the number of 

permeators. The tests, which will be run using hot coal flue gas, are central to establishing that the design is fully 

scaleable within single modules and that multiple modules work harmoniously. Each of these activities will allow 

progressive scale-up for industrial and power plant operation.

2.3. Performance Testing on Current-scale Permeator

A scalable-design permeator was fabricated and tested. Current results of the shakedown testing indicate that the 

permeator behavior matched the modeled/expected results. The preliminary test results are summarized in Table 2. 

Full performance testing is in progress. It will include demonstration of performance under design conditions,

optimization of operation to maximize performance, and feedback with respect to design, assembly, and scale-up.

Table 2. Performance Testing on Current-Scale Permeator

TARGET

(DOE CCS goals)

OBSERVED

(Shakedown run)

90% removal of CO2 from a 15% CO2 feed 85.3% removal of CO2 from a 15.4% CO2 feed

95% CO2 dry product gas 81% CO2 dry product gas (93.6% without argon)

Flue gas at design load 45.7% of design gas load
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Operating temperature near adiabatic for flue gas Low operating temperature (prior to temperature control)

Permeate pressure as high as possible Low permeate pressure (necessary at lower test temperature)

No sweep other than H2O vapor Small argon sweep flow (13.3% of dry permeate) used to supplement 

water vapor sweep (necessary for lower test temperature)

3. COMPETITION 

MEA systems have been reported by the Castor Project as requiring 4GJ/t of CO2 for capture. They anticipate 

reducing the energy cost to 3.5GJ/t with improved amines and further to 3.2GJ/t with improved mass transfer.  

Although Le Thiez [14] notes a goal of 2GJ/t, this is assumed to be unrealistic for the moment. These estimations 

expect the concentrated CO2 to be discharge from the regenerator at 0.2MPa pressure. Our goal is to compare these 

energy estimates with ours, in terms of impact on the busbar cost. This is a challenge as the energy consumption of 

the permeator system is primarily derived from compression operations. Some heat needed by the permeator system 

to control evaporation of water into the permeate. However, that heat is at such a low temperature that all of it is 

available from the cooling of the compressor exhaust gas. For this reason it is not included in the evaluation other 

than to consider the energy necessary to compress the gas to pressure. To put the amine systems on the same basis 

all of the system costs have been converted to electrical energy. Efficiency assumptions enter into the estimation 

when converting high value heat to electricity for processes that consume steam power plant energy. To 

accommodate these differences and to try to be fair to the amine based systems we have assumed very efficient 

power plants: 40% for now, 45% for the near-future time and 50% in the ultimate system.

Table 3. Energy Use Comparison (GJ/t CO2)

EU Castor Project [14] Carbozyme

Amine/

Hollow 

Fiber

Improved 

Amine

Improved 

Mass 

Transfer

Current

HFCLM

Near-

Future 

HFCLM

Future 

HFCLM

Electric energy loss 

without compression 
1.60 1.58 1.60 0.12 0.12 0.11

Electric energy loss for 

compression to 8.45 MPa 

including drying

0.30 0.30 0.30 0.57 0.55 0.5

TOTAL Energy Cost 1.90 1.88 1.90 0.69 0.67 0.61

CZ Advantage 2.74 2.80 3.11

The Carbozyme permeator system calculations make no correction for the efficiency of the plant; the 

compressors are electrically driven and need no conversion. The initial calculations are from a heat and material 

balance preformed using EPRI case 7C for design conditions. The energy input into the process before compression 

is a) from a blower to increase the flue gas velocity sufficiently to move the gas though the permeator, and b) from 

the pump necessary to move the heating fluid and CLM through the permeator. Compressors are used to pressurize 

the permeate gas from 0.02MPa.  Improvements in the design are anticipated, thus capture compression power will 

be reduced as is shown in Table 5.0. 

3.1. Baseline Cost of CO2 Capture – MEA-Based Absorption

Evaluation of a novel CO2-separation method typically begins with a comparison to the traditional 

monoethanolamine (MEA) scrubbing process. The purpose of this type of analysis is to establish a baseline set of 

power plant parameters as a reference method for comparison of CO2 removal methods. We performed an analysis 

of this type in order to compare the Carbozyme process with MEA scrubbing. The parameters included in the 

analysis were thermal performance, capital costs, and operating costs for all major areas of a supercritical pulverized 

coal (SCPC) steam power plant generating about 500 megawatts of power (the DOE case models).
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Figure 4 – CO2 Recovery Block Diagram

As part of an ongoing effort to develop fair methods of system evaluation, NETL commissioned a comprehensive 
comparison of 12 plants representing combinations of fuel type and fuel conversion approach, with and without 

carbon capture [15]. In this analysis two of those plants are supercritical pulverized-coal (SCPC) plants – one

without carbon capture and the other with MEA carbon capture. Those two plants provide the bridge between the

2007 study and the current study of biomimetic carbon capture performed in this project.

The “baseline” effect of MEA CO2 removal was quantified by comparing its parameters to a corresponding set of

parameters for a similar SCPC plant without CO2 removal. The selected reference plant was a 545-MW supercritical 

pulverized coal power plant with MEA CO2 removal. This plant is Case 12 in a published a set of cost and 

performance baselines for fossil energy plant. [15]

The CO2 recovery block 
detailed in Figure 4 

includes a flue gas 

polishing unit, a CO2

separation system (MEA, 

CLM, or other), a CO2

compressor, a CO2 dryer, a 

CO2 polishing unit, and a 

condensate return pump. 

Inputs to this block are 

clean flue gas and steam. 

Outputs from this block are 

pipeline-quality CO2,
returned condensate, and 

low-CO2 exhaust gas.

3.1.1. Cost of CO2

Removed and Avoided

Using the method presented in the NETL report [15], the costs of CO2 removed and CO2 avoided can be

calculated. CO2 removal and avoidance costs are normally reported as dollars (or euros) per metric tonne, but they 

are sometimes reported in terms of US tons instead of metric tonnes, or with first-year costs instead of levelized 

costs. Table 4 shows these variations of CO2 costs for the reference (MEA) case. Similar calculations for the 

Carbozyme permeator case will be performed once sufficient data have been collected from scaled up permeators to 

allow improved estimates from those presented in Table 3.

Table 4 – CO2 Removal and Avoidance Costs

Cost Units Levelized First-year

CO2 Removal $/tonne ($/ton) $45.00 ($40.82) $41.37 ($37.53)

CO2 Avoided $/tonne ($/ton) $67.46 ($61.20) $62.02 ($56.26)

4. Conclusions

Carbozyme, under DOE NETL funding, has begun to carry out a systematic analysis of feed gas composition, 

treatment and requirements for application to its unique enzyme-based, contained liquid membrane permeator. In 

addition, we have examined the acceptance requirements of the pipeline carrier that would guide the output product. 

The permeator design uses an efficient catalyst, an efficient mass transfer design and imposes a minimal energy 

burden on the PC power plant, one that is far less than that imposed by amines. A MEA base case analysis has been 

developed for direct comparison. Results of shakedown testing of a scalable permeator design indicate that the 

permeator behavior matches the modeled/expected results.

M.C. Trachtenberg et al. / Energy Procedia 1 (2009) 353–360 359



Author name / Energy Procedia 00 (2008) 000–000

References 

1. U.S. DOE Energy Information Administration, Greenhouse Gases, Climate change, and Energy, Brochure DOE/EIA–X012, Available 

online at http://www.eia.doe.gov/bookshelf/brochures/greenhouse/Chapter1.htm, May 2008.

2. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, Advances in CO2 Capture Technology – the U.S. Department 

of Energy Carbon Sequestration Program, International Journal of Greenhouse Gas Control, 2 (2008) 9-20.

3. M. Jensen, CO2 Capture Technologies Update, presented at the Plains CO2 Reduction Partnership 2007 Annual Meeting, Energy & 

Environmental Research Center, Grand Forks, ND, 18–19 October 2007.

4. S. Lindskog and J.E. Coleman, The Catalytic Mechanism of Carbonic Anhydrase, Proc. Nat. Acad. Sci. USA. 70 (1973) 2505-2508.

5. D.N. Silverman and S. Lindskog, The catalytic mechanism of carbonic anhydrase—Implications of a rate-limiting protolysis of water, 

Acc. Chem. Res. 21 (1988) 30–36.

6. K.S. Smith and J.G. Ferry, A plant-type (beta-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium 

thermoautotrophicum, J Bacteriol 181 (1999) 6247-53.

7. R.M. Cowan, J.J. Ge, Y.J., Qin, M.L. McGregor and M.C. Trachtenberg, CO2 Capture By Means of an Enzyme-Based Reactor, New 

York Academy of Sciences, 984 (2003) 453-470.

8. M.C. Trachtenberg, Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine and alkaline, J Memb Sci, 280 

(2006) 330-334.

9. IEA World Energy Outlook 2006, Paris, France, 2006.

10. M.D. Jensen, J.D. Laumb, R.M. Cowan, D.A. Smith and M.C. Trachtenberg, Capture of CO2 From Combustion Flue Gas Using the 

Carbozyme Liquid Membrane Permeator – Results of Pilot-Scale Testing, 2008 AIChE Spring National Meeting Conference 

Proceedings, New York, NY. (2008)

11. M.C. Trachtenberg, High Efficiency Post-combustion Carbon Dioxide Capture, presented at the Carbon Capture Status and Outlook

Capture Session 1, Washington D.C., 3-5 December 2007.

12. Carnegie Mellon University Department of Engineering and Public Policy, Integrated Environmental Control Model (Feb 2007 

version) developed by Carnegie Mellon University Department of Engineering and Public Policy with support from the U.S. 

Department of Energy National Energy Technology Laboratory. Available online at www.iecm-online.com, Aug 2007.

13. IPCC Special Report on Carbon Dioxide Capture and Storage, Special Report of the Intergovernmental Panel on Climate Change. –

Chapter 4 – Transport of CO2. Available online at http://arch.rivm.nl/env/int/ipcc/pages_media/SRCCS-

final/IPCCSpecialReportonCarbondioxideCaptureandStorage.htm, 2005.

14. P. Le Thiez, The CASTOR Initiative Workshop on CCS MEXICO, JULY 2008, presented at the 4th Capacity Building in Emerging 

Economies Workshop / Taller de Secuestro y Captura de CO2, Mexico City, Mexico, Available at 

http://www.cslforum.org/documents/12_LeThiezCASTORMexico2008.pdf, 9-10 July 2008

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge support from the US Department of Energy – National Energy Technology 

Laboratory (DOE NETL) under Cooperative Agreement No. DE-FC21-07NT43084. We wish to thank our DOE 

project officer Jose D. Figueroa for his continued support and extra efforts made toward the benefit of our work. We 

also want to acknowledge funding received from Lignite Research Council of North Dakota and the New Jersey 

Commission on Science and Technology. We would also like to thank our project subcontractors: EERC; Siemens 

Power Systems; Visage Energy Corp.; SRI International; Novozymes and cost share partners: OLI Systems, Inc.; 
OtterTail Power Company; Cogentrix; Montana-Dakota Utilities Co.; and Great River Energy.

This report was prepared as an account of work sponsored by an agency of the United States Government. 

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, 

express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 

any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 

owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, 

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 

by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the United States Government or any agency thereof.

360 M.C. Trachtenberg et al. / Energy Procedia 1 (2009) 353–360


