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Longest Chains in the Lattice of Integer Partitions ordered by 
Majorization 

CURTIS GREENE AND DANIEL J. KLEITMAN 

A method is given for finding a chain of maximum length between two partitions A .;;; J1- in the 
lattice of integer partitions, ordered by majorization. The main result is that chains in which 
covers of a certain kind (called 'H-steps') precede covers of another kind (called 'V-steps') all 
have the same length, and this length is maximal. 

1. INTRODUCTION 

Let A = {AI?! A2?!' .. } and J.L = {J.LI?! J.L2?! ... } be partitions of n, a positive integer. 
We say that A majorizes J.L if AI?!J.LI, AI+A2?!J.LI+J.L2, ... ,A I+·· ·+Ai?!J.LI+·· ·+J.Li' 
etc. The terminology is due to Hardy, Littlewood, and Polya [2], although the idea appears 
earlier in the works of Schur, Muirhead, and others. It has been shown to have many 
applications to problems in combinatorics, statistics, algebra, geometry, matrix theory, 
among other fields. A thorough account of the history and applications of the theory can 
be found in [3]. 

For n a fixed positive integer, define (Pm .;;;;) to be the partially ordered set consisting 
of all partitions of n, ordered by majorization. Pn enjoys many special combinatorial 
properties: for example, it is a lattice (with top element {n} and bottom element {I n}), 
and is self-dual (under the map which sends each partition A to its conjugate A *). A 
discussion of these and other elementary properties of Pn can be found in [1] or [3]. 

On the negative side, Pn fails to have a rank function: indeed it is arguably the most 
important 'natural' family of combinatorial posets which is not ranked. (A poset P is 
ranked if there exists a rank function r: P ~ Z such that x :0;;; y implies all maximal chains 
from x to y contain r(y) - r(x) + 1 elements.) In the absence of a rank function, the 
notion of height is often a useful substitute: if J.L';;;; A define h(J.L, A) to be the length 
(=number of elements minus 1) of the longest chain from J.L to A. The purpose of this 
note is to characterize the height function h(J.L, A) of Pn• 

It turns out that, while Pn has maximal chains of length as little as 2n - 3 (see [1]), 
the longest chain has length asymptotic to cn3

!2 (c a constant). In Theorem 12 we give 
a simple algorithmic description of the longest chain between arbitrary partitions, J.L .;;;; A. 
Many of the lemmas used in the proof of the main theorem are of some interest in their 
own right. For example, we define and discuss properties of an interesting closure operator 
on Pn which maps partitions onto partitions with distinct parts. Another somewhat 
surprisng result is that, while intervals can contain maximal chains of different lengths, 
all chains of a certain natural type (called 'HV-chains') have the same length. Thus, in 
a weak sense, Pn is 'ranked' by chains of this kind. 

EXAMPLE. Figure 1 illustrates the lattice P7 • The reader will note maximal chains in 
P7 with both 11 and 12 elements. 

2. RESULTS 

In any poset P, a pair x < y is called a cover if there exists no z such that x < z < y. 
Covers in Pn are characterized as follows: 
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FIGURE 1. 

LEMMA 1 (Muirhead [4]; see [1] or [3]). Let J.L -< A in Pn• Then A covers J.L if and only 
if there exist indices i < i such that 
(a) J.Li = Ai -1, J-Lj = Aj + 1, and J.Lk = Ak for k'" i, j, and 
(b) either i = i + 1 or Ai = Aj + 2. 

In other words, A covers J.L if and only if J.L is 9btained from A by 'lowering' a cell in 
the Ferrers diagram of A to the next available position. Condition (b) says that the transfer 
must either be from some Ai to Ai+I' or from some A r to A 1-., where A * denotes the 
partition conjugate to A. Let us denote the operation of transferring a single cell from Ai 
to Aj by [i ~ j], with the convention that this symbol will only be used when the resulting 
sequence of parts remains monoto'ne. The result of applying [i ~ j] to A will be denoted 
by A [ i ~ j]. Thus [i ~ j] represents a cover iff there is no 'legal' [if ~ j'] with [if, if] a 
proper subinterval of (i,j]. Figure 2 illustrates two examples of covers in p. 2 • Here we 
adopt the convention of representing Ferrers diagrams with vertical parts, i.e. with A\ 
cells in the first column, A2 in the second, etc. 

When a cell is moved by [i ~ i], it obviously moves at least one unit in both the 
horizontal and vertical directions. In fact, [i ~ i] represents a cover precisely when one 
(or perhaps both) of these displacements is a single unit. Let us call [i ~ j] an H-step if 
the horizontal displacement is one unit (i.e. if i = i + 1), and a V-step if the vertical 
displacement is one unit (i.e. if Ai = Aj + 2). Note that [i ~ j] can be both an H-step and 
a V-step (if i = i + 1 and Ai = Aj + 2). An H-chain is a sequence of H-steps, and a V-chain 
is a sequence of V-steps. Define the H-weight wH(A) of a partition A to be the total 
horizontal displacement of all the cells from the left-most column, that is, 
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FIGURE 2. 

Similarly, define the V-weight wy(A) to be the total vertical displacement from the bottom 
row, 

( Ai) .) * Wy = L 2 = L (I - 1 Ai 

For example, if A ={4,3, I}, then wH(A)=5, and wy(A)=9, as shown in Figure 3: 

~Ol o I 

012 

wH ( I. )=5 

FIGURE 3. 
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LEMMA 2. H-chains and V-chains are maximum-length chains between their endpoints. 
In other words, if A = A (0) > A (I) > ... > A (L) = /-L is an H-chain (or a V-chain) then h(/-L, A) = 
L. 

PROOF. Suppose the chain is an H-chain. Then wH(/-L) - wH(A) = L, since each H-step 
increases wH(A) by 1. On the other hand, if A = A (0) > 7(1) > ... > 7(m) = /-L is any chain, 
then WH( 7(i+1» - WH( 7(i» ~ 1 for each i, so that m :s; WH(/-L) - wH(A) = L. Thus L is maximal. 

Let us call a chain A = A (0) > A (I) > ... > A (L) = /-L an HV-chain if there exists an index 
i, O:s; i:s; L, such that A (0) > A (I) > ... > A (i) is an H-chain and A (i) > ... > A (L) is a V-chain. 
By Lemma 2, such a chain has maximum length among all chains from A to /-L which 
pass through A (i). The next lemma is crucial to the arguments which follow: 
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LEMMA 3. Let A = A (0) > A (I) > ... > A (L) = fJ, be any chain from A to fJ,. Then there 
exists an HV-chain from A to fJ, which has length at least L. 

PROOF. We can assume that each A (i) > A (i+1) is a cover, that is, either an H-step or a 
V-step. Furthermore, it suffices to prove the lemma for chains A (k) > A (k+J) > A (k+2) of 
length 2. By repeated application of this special case, one can eventually transform any 
chain of length L into an HV chain of length at least L. Assume that A (k) > A (k+J) is a 
V-step which is not an H-step, and A (k+J) > A (k+2) is an H-step which is not a V-step. 
Denote the corresponding transfer operators by [p ~ q] and [r~ r+ 1], respectively. If 
p, q, rand r+ 1 are distinct (i.e. if the operators act on different parts) then [p~ q] and 
[r~ r+ 1] can be applied in either order, and the lemma follows immediately. Otherwise, 
there are three possibilities: 
Case 1: q = r. In this case one can check that 

[p~ q][q~ q+ 1] = [q~ q+ 1][q -1 ~ q][p~ q -1] 

which is an HV chain of length three. 
Case 2: p = r + 1. In this case, 

[p ~ q ][p -1 ~ p] = [p -1 ~ P ][p ~ P + l][p + 1 ~ q] 

which is again an HV chain of length three. 
Case 3: p = r or q = r+ 1. It is easy to check that these cases cannot occur. 

This completes the proof of the lemma. 

One last definition: if fJ, "" 7 "" A, let us say that 7 is H-reachable from A if there exists 
an H-chain from A to 7. Similarly, 7 is V-reachable from fJ, if there is a V-chain from fJ, 

to 7. 

LEMMA 4. Every interval fJ, "" A contains a unique smallest partition which is H-reachable 
from A and a unique largest partition which is V-reachable from fJ,. 

PROOF: Let 8 be a partition in the interval fJ, "" A which is H-reachable from A, but 
such that no smaller partition in the interval has this property. Let us abbreviate the 
symbol for the operator [i ~ i + 1] as simply [i). Thus 8 = A[i1][i2] ••• for some sequence 
of indices iI, i2 , •••• Note that any 'legal' permutation of the operators [i1], [i2], ... yields 
the same 8, i.e. 8 is determined by the multiset {il> i2 , ••• }. This follows from the fact 
that [i) reduces the ith partial sum by 1, regardless of when it is applied. Thus the final 
partial sum sequence is uniquely determined, and this determines 8. Let p be the smallest 
index which appears in the list iI, i2, ... i.e. p is the index of the largest 'active' part. Let 
q;;. p be the largest index with the property that Ai - Ai+1 .;; 1 for i = p, P + 1, ... , q -1. In 
other words, Aq is the last part in the 'run' (=sequence of consecutive parts differing by 
at most one) which follows Ap (see Figure 4). The significance of q lies in the following 
claim: q must appear in the list iI, i2 , ••• , and must precede all occurrences of any index k < q. 

This follows from the fact that for p.;; k < q, [k] is not 'legal' until Aq , and perhaps 
other parts, have been reduced in size. Note that Aq > Aq+1 + 1, since otherwise Aq = 1 and 
no transfers at all are legal. In fact, q is uniquely determined by A and fJ,: q is the index 
of the largest part Aq such that Aq > Aq+1 + 1, and such that A[q] "" fJ,. 

If q is not active, then [q] always remains legal, and hence 8 cannot be H -minimal. 
As indicated above, the first k.;; q to be active must be q itself. Next observe that the 
first occurrence of [q] can be permuted to the beginning of the list [it1[ i2 ] •••• This is 
based on the following general assertion: For any a and b, we have [a][b] = [b][a] provided 
both of the operations [a][b] and [b][a] can be carried out. In particular, if [a][b] can 
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be (legally) applied to T, and Tb ¥- Tb+1 + 1, then [b][a] can be applied to T, and T[b][a] = 
T[a][b]. 

As noted before, the partial sums of T[a][b] and T[b][a] are identical, so it suffices 
to check that T[ b] is legal if Tb ¥- Tb+1 + 1. The case Tb = Tb+1 is impossible, since otherwise 
T[a][b] is not legal. Hence Tb> Tb+1 + 1, and the statement follows. 

If (I = A[il ][i2] ••• , and q is defined as above, then the first occurrence of [q] can be 
permuted to the beginning of the list, i.e. (I = A [q ][il ][i2] ••• , and the latter is a legal sequence 
of operations. 

This follows from the fact that the inequality Aq > Aq+J + 1 is true initially, and remains 
true as long as operators [i] are applied with i> q. 

Now we can complete the proof of Lemma 4. Suppose that T = A UI][h] ... is any other 
partition which is H-minimal in the interval JL ~ A. Then by the arguments given above, 
q appears in the list jbj2, ... , and the first occurrence of q can be permuted to the 
beginning of the list. Thus T = A[q]UI][h] "', and both (I and Tare H-minimal in the 
interval JL ~ A [q]. The Lemma now follows by induction on h(JL, A). 

Denote the H-minimal and V-maximal partitions in JL ~ A by LA],. and r JL 1". respec
tively. Write LAJ {In} = ~ and r JL lin} = ji. An explicit description of these partitions is 
complicated in general. However, {n} and {In} are extremely easy to describe. Write 
n = (m;l) + r, 0 ~ r < m. Then {n} is obtained by adding one additional copy of r to the 
partition {m, m -1, ... ,2, I}, and {I "} is the conjugate of {n}. Figure 5 illustrates the case 
n =23: 

r--
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For any partition J,L, fi has distinct parts (otherwise it would not be V-maximal), and 
fi = J,L if and only if J,L has distinct parts. Dually, ! always has the property that adjacent 
parts differ by at most 1. Let us call such a partition a run: thus A is a run iff ! = A iff 
A * has distinct parts. 

LEMMA 5. (a) The map J,L ~ fi is a closure operator on Pn , mapping Pn onto the set of 
partitions with distinct parts. 
(b) fi is the unique smallest partition into distinct parts which majorizes J,L. 

(c) The map A ~! is a closure operator on the dual of Pn , mapping Pn onto the set of 
runs. 
(d) ! is the unique largest run majorized by A. 

PROOF. We will prove parts (c) and (d). Parts (a) and (b) then follow by duality. 
Recall that a closure operator on a poset P is a map x ~ x which satisfies (1) x;;. x, (2) 
x,;;;; y implies x';;;; ji, (3) x = x. The first and third conditions are obvious; the second 
requires proof. To prove (2) it suffices to prove the following statement: Suppose that 
(J ~ 'T and !l. = (J. If 'T' < 'T is obtained from 'T by a single H-step, then (J ~ 'T'. 

To see this, suppose that 'T' = 'T[ i], i.e. 'T' is obtained from 'T by transferring a single 
cell from 'Ti to 'Ti+I. Necessarily 'Ti;;' 'Ti+1 + 2. Clearly 'T' ~ (J unless I: (Jj = I: 'Tj. However, 
·f h· I h ~i-I ~i+1 d ~i+1 (J ~i+1 S b . . (J 1 t IS occurs, we aso aveLoI (Jj';;;;LoI 'Tjan Lol j';;;;LoI 'Tj. U tractmgglves i+1';;;; 

'Ti+I';;;; 'Ti';;;; (Ji. But this implies (Ji - (Ji+l;;' 'Ti - 'Ti+1 ;;. 2, which is a contradiction, since (J was 
assumed to be a run. This proves that A ..... ! is a closure operator, and also verifies 
statement (d). 

One of the arguments just made will be useful in other situations, so we isolate it as 
a lemma: 

Whenever a closure operator x ~ x is defined on a lattice L, it is easy to see that the 
closed elements are closed under /I. Thus we obtain 

COROLLARY 7. The set of partitions in Pn with distinct parts is closed under /I. The set 
of runs in Pn is closed under v. 

This fact can actually be given a short direct proof. Consider partitions A and 'T, with 
partial sums St. S2, ... and t1 , t2, ... , respectively. Then A and 'T have distinct parts if 
and only if their partial sum sequences are strictly concave, i.e. Si + Si+2 < 2si+1 and 
ti + ti+2 < 2ti+1 for i = 1,2, ... m - 2, where m in each case is the number of parts. Further, 
A /I'T has partial sum sequence min{sJ' tl}' min{s2' t}, .... It is easy to see that the min 
of two strictly concave sequences is strictly concave. 

The next lemma answers the general question: which partitions 'T < A are H-reachable 
from A? 

LEMMA 8. Given 'T < A, let ko = 0, kl' k2' ... denote the indices such that 

kj k j 

I 'Tj = I Aj . 
j~1 j~1 

Then 'T is H-reachable from A if and only if in each' block' 'Tk,+I>· .. , 'Tk'+l' each run has at 
most one repeated part, and this part is not repeated more than twice. 
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PROOF. Clearly, in any chain from A to 7, there can be no transfer of cells between 
different 'blocks'. The lemma is an immediate consequence of the following two statements: 
(1) if 7 fails to satisfy the conditions of the lemma, then for every 7' such that 7 < 7' ~ A 
and 7 < 7' is an H-step, 7' also fails to satisfy the conditions; (2) if 7 satisfies the conditions, 
then either 7 = A or there exists a 7' such that 7 < 7' ~ A, where 7 < 7' is an H-step and 7' 

satifies the conditions. 
The first assertion is straightforward. Suppose that 7 = 7'[ i], in the notation of Lemma 

4. If 7 contains a sequence 7j = 'lj+1 = 7j+2 of equal parts, then so does 7', since i cannot 
be equal to j, j + 1, or j + 2. It is possible that 7' contains one additional 'barrier' knot 
present in 7, but k = i if it exists. Thus the sequence 7j = 7j+1 = 7j+2 lies entirely within a 
block of 7', and the statement is proved in this case. If 7 contains two pairs of repeated 
parts in a run, an easy argument shows that 7' contains either (a) the same pair, (b) a 
'closer' pair, or (c) a sequence of three equal parts. Moreover it is easy to check that 
these configurations lie within a block of 7'. This proves statement (1). 

Suppose next that 7 satisfies the conditions of the lemma. We claim first that if some 
block of 7 contains a repeated part 7j = 7HI, then the transformation [i)-I yields a partition 
7' with the desired properties. The only nontrivial step is to show that applying [irl to 
7 is legal, i.e. 7j_1 ~ 7j + 1 ~ 7HI -1 ~ 7H2' If 7j_l, 7j, 7HI, and 7H2 lie in a block of 7, this 
is trivial, since 7 contains no parts repeated three times. If 7j_1 > 7j and 7HI> 7H2, it is 
also trivial. Suppose that 7j_1 = 7j and these two parts lie in different blocks, i.e. i-I = k" 
for some a. By Lemma 6, 7j:';;; Aj :,;;; Ai-! :,;;; 7j_l, which implies 7j = Aj. But this implies 

L 7j = L Aj , 
j=l j=l 

which means that 7j is a block of size 1, contrary to the assumption that 7j and 7j+1 lie 
in a block. A similar argument deals with the case when 7j+1 and 7H2 are equal and lie 
in separate blocks. This proves that 7' = 7[ i)-I exists. It is easy to see that 7 < 7' ~ A, and 
that [irl does not introduce any 'bad' configurations within a block (i.e. parts repeated 
three times or pairs of repeated parts in a run). This completes the proof of statement 
(2) in this case. 

Suppose, finally, that the blocks of 7 contain no repeated parts. If there is a block 
containing at least two parts, say 7j and 7HI, it follows from the argument given above 
that 7j-I~7j+l~7HI-l~7H2' Hence the operator [irl is legal, and it is easy to see 
that 7' = 7[ir l has the desired properties. 

The only remaining case is when all of the blocks of 7 have size one. But this means 
7 = A, and the proof is complete. 

The preceding argument actually yields another result which will be essential later on: 

LEMMA 9. Suppose that 7 ~ A, and 7 is H-reachable from A. It 7 is not V-maximal in 
the interval 7 < A, there exists a partition 7' with the following properties: (a) 7 < 7' ~ A, (b) 
7 < 7' is both an H-step and a V-step, (c) 7' is H-reachable from A. 

PROOF. It is easy to see that if 7 is not V-maximal in 7 ~ A, then some block of 7 

must contain a part repeated more than once. On the other hand, since 7 is H-reachable 
from A, Lemma 8 shows that this part cannot be repeated more than twice. Say 7j = 7j+h 

and these two parts lie in a block. In the preceding argument it' was shown that [ir I is 
a legal transformation, and also that 7' = 7[ir l satifies the conditions for H-reachability 
from A. Clearly 7 < 7' is both an H-step and a V-step. This completes the proof. 
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The conditions of H-reachability from {n} are quite simple: 

COROLLARY 10. Tis H-reachable from A = {n} if and only if each run of T contains at 
most one repeated part, and this part is not repeated more than twice. 

EXAMPLE. {8, 7, 6, 6, 3, 3, 2, I} is H-reachable from {36}, but {7, 6, 6, 6, 5,3, 2, 1} 
and {8, 7, 6, 5, 3, 3, 2, 1, I} are not. 

LEMMA 11. If f..' ~ A, then lAL. is V-reachable from f..', and r f..' lA is H-reachable from 
A. 

PROOF. By definition, lAJ IL ~ f..'. Thus by Lemma 3, there is an HV chain from lAL. 
to f..'. Since LA J IL is H-minimal in the interval f..' ~ A, there can be no H-steps in this chain, 
and LAL. is V-reachable from f..'. By a similar argument, r f..' lA is H-reachable from A, 
and the lemma is proved. 

We can now state our main theorem, which characterizes the height function h(f..', A) 
in Pn• 

THEOREM 12. Suppose that f..' ~ A. Then all HV-chainsfrom A to f..' have the same length, 
and this length is h(f..', A). Furthermore, 

h(f..', A) = wH( LA L.) - wH(A) + wyUA L.) - Wy(f..') 

= wH(f f..' lA) - wH(A) + Wy( r f..' lA) - Wy(f..'). 

HV-chains can be constructed by the following algorithm: start at A and proceed toward 
f..' by H-steps until no further H-steps are possible. This occurs when LAL. is reached. 
Then proceed by V-steps to f..'."Lemma 4 shows the uniqueness of LAL., and Lemma 11 
shows the existence of a V-chain from LAL. to f..'. 

To prove the theorem, suppose that A = A (0) > A (I) > ... > A (L) = f..' is any HV-chain 
between A and f..', where A (0) > A (I) > ... > A (i) is an H-chain and A (i) > A (HI) > ... > A (L) 

is a V-chain. Since A (i) is H-reachable from A and V-reachable from f..', we have LAJ" ~ 
A (i) ~ r f..' lA. By Lemma 9, if A (i) ~ r f..' 1\ there exists a partition T such that A (i) < T ~ A, T 
is H-reachable from A, and A (i) < T is both an H-step and a V-step. Since all H-paths 
from A (i) to A have the same length, we can replace the original H-path by one of the 
same length which passes through T. Since A (i) < T is a V-step, we can view T as the 
'transition point' instead of A (i) in this path. This argument can be repeated until 
A (i) = r f..' lA. Now the total length of the chain can be calculated, and the result is 

WH( r f..' t) - wH(A)+ wy( rf..' lA) - Wy(f..'). 

We have shown that all HV-chains must have this length, including the chain of maximum 
length whose existence is guaranteed by Lemma 3. A dual argument shows that all 
HV-chains also have length 

and the proof is complete. 
We conclude by calculating the length of the longest chain in Pn explicitly. Let f..' = {1 n} 

and A = {n}, and let h(fn) = h(f..', A). Write 
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where 0",-;; r"'-;; m. Then LA 1", is the partition {m, m -1, ... , r, r, ... , 2, I}, and it is straight
forward to compute 

By Theorem 1.2, h(Pn) is equal to the sum of these two values, since wH(A) =: Wy(IL) =: O. 
The leading term in this sum is m3/3. Since m is asymptotic to v'2ii, this shows that 

(2n )3/2 
h(Pn)~-3-' 

There is an easy way to compute h(Pn ) for any particular value of n: form the Ferrers 
diagram of {m, m - 1, ... , r, r, ... , 2, 1}, and label the cell in the ith row and jtla column 
with the number (i - 1) + (j - 1). Then h (Pn ) is the sum of all of these numbers. Figure 
6 illustrates the computation when n =: 18: 

-
4 

3 4 

2 3 4 5 

I 2 3 4 5 I 
0 I 2 3 4 I 5 I 

FIGURE 6. 

It is clear from this construction that the successive differences of the function h(Pn) are 

0,1,1,2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5, ... 

from which the values can be readily computed as given in Table 1. 

TABLE 1 

n h(Pn ) .1n n h(Pn ) .::1n n h(Pn ) .::1n n h(Pn ) .::1n n h(Pn ) .1n 

1 0 1 7 11 3 13 32 4 19 60 5 25 94 6 
2 1 1 8 14 3 14 36 4 20 65 5 26 100 6 
3 2 2 9 17 3 15 40 5 21 70 6 27 106 6 
4 4 2 10 20 4 16 45 5 22 76 6 28 112 7 
5 6 2 11 24 4 17 50 5 23 82 6 29 119 7 
6 8 3 12 28 4 18 55 5 24 88 6 30 126 
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