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SUMMARY

Thermogenic brown and beige adipocytes convert
chemical energy to heat by metabolizing glucose
and lipids. Serotonin (5-HT) neurons in the CNS are
essential for thermoregulation and accordingly may
control metabolic activity of thermogenic fat. To test
this, we generated mice in which the human diph-
theria toxin receptor (DTR)was selectively expressed
in central 5-HT neurons. Treatment with diphtheria
toxin (DT) eliminated 5-HT neurons and caused loss
of thermoregulation, brown adipose tissue (BAT)
steatosis, and a >50% decrease in uncoupling pro-
tein 1 (Ucp1) expression in BAT and inguinal white
adipose tissue (WAT). In parallel, blood glucose
increased 3.5-fold, free fatty acids 13.4-fold, and tri-
glycerides 6.5-fold. Similar BAT and beige fat defects
occurred in Lmx1bf/fePet1Cre mice in which 5-HT
neurons fail to develop in utero. We conclude 5-HT
neurons play a major role in regulating glucose and
lipid homeostasis, in part through recruitment and
metabolic activation of brown and beige adipocytes.

INTRODUCTION

Brown fat is a specialized thermogenic organ in mammals that

produces heat by uncoupling substrate oxidation from electron

transport using the mitochondrial proton channel uncoupling

protein 1. In performing this function, brown adipose tissue

(BAT) consumes up to one hundred times more energy per

gram than any other tissue (Cannon and Nedergaard, 2004).

Thus, even in small quantities, activated BAT can be a major

contributor to whole-body energy metabolism. In rodents

housed below thermoneutral ambient temperatures, BAT can

burn up to 50% of ingested triglycerides and 75% of ingested

glucose (Nedergaard et al., 2011). As a result, cold-induced,

BAT-mediated clearance of triglyceride-rich lipoproteins is cura-
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tive in murine models of hyperlipidemia and glucose intolerance

(Bartelt et al., 2011). Interestingly, Ucp1-expressing cells have

also been observed in subcutaneous WAT (scWAT) depots,

which were not previously thought to participate in energy

expenditure. Such adipocytes, often referred to as ‘‘beige’’ or

‘‘brite,’’ also contribute to thermoregulation and resistance to

metabolic disease (Cohen et al., 2014; Jespersen et al., 2013;

Shabalina et al., 2013; Wu et al., 2013). Recruitment of ‘‘beige’’

cells is referred to as ‘‘browning.’’ Both brown and beige adipo-

cytes are present in adult humans, albeit in lesser quantities

relative to body weight than in rodents, and pharmacological

stimulants of their activity are being sought as treatments for

obesity, type 2 diabetes, and dyslipidemia (Cohade et al.,

2003; Cypess et al., 2009; Huttunen et al., 1981; van Marken

Lichtenbelt et al., 2009; Nedergaard et al., 2007; Tanuma et al.,

1976; Virtanen et al., 2009; Yoneshiro et al., 2013). Discovering

such molecules remains the defining challenge in the field (Cyp-

ess et al., 2012; Kajimura and Saito, 2014).

In both rodents and humans, the sympathetic nervous system

regulates BAT mass and activity. Both activation and expansion

of BAT require that norepinephrine (NE) be released from post-

ganglionic sympathetic nerve terminals to stimulate lipid oxida-

tion through the b3-adrenoreceptor (Beviz et al., 1968; Hsieh

and Carlson, 1957; Zhao et al., 1994). In mice, genetic deletion

of the NE-synthesizing enzyme dopamine b-hydroxylase leads

to accumulation of lipid in BAT, a decrease in expression of

Ucp1, and cold intolerance (Thomas and Palmiter, 1997). In

humans, NE secretion by tumors leads to an increase in abun-

dance and activity of BAT (English et al., 1973), while administra-

tion of the b-adrenergic receptor antagonist propranolol blocks

BAT activation during cold exposure (Söderlund et al., 2007).

NE also appears to be important for recruitment of beige fat

(Harms and Seale, 2013). However, NE has many other effects

in both the central and peripheral nervous systems, affecting

cognition, blood pressure, cardiac output, and visceral-organ

function. Thus, to be therapeutically useful, stimulation of NE

release would have to be limited to only brown and beige fat.

Inhumans,mildcoldexposure stimulatesbrown fatmetabolism

and peripheral vasoconstriction without influencing sympathetic

activity in other tissues (Cypess et al., 2012). This selectivity is
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mediated by specialized sympathetic premotor neurons in the

brainstem (Cano et al., 2003; Smith et al., 1998; Strack et al.,

1989). Specifically, neurons of the rostral raphé pallidus (rRPa) in-

crease thermogenesis and vascular tone,while other sympathetic

premotor neurons nearby control different physiological pro-

cesses (Morrison, 1999). The thermoregulatory rRPa sympathetic

premotor neurons integrate signals from peripheral thermorecep-

tors, the hypothalamus, and other parts of the brain involved in

processing temperature-related stimuli in order to stimulate sym-

pathetic output that activates BAT (Morrison et al., 2014; Naka-

mura and Morrison, 2011). Thus, they represent a convergence

point in a distributed neural network that controls BAT activation.

Therefore, one potential strategy for selectively triggering NE

release in BAT would be to activate these sympathetic premotor

neurons. However, their molecular identity remains incompletely

characterized.Moreover, which rRPaneurons activate and recruit

beige fat—if any—remains unknown.

Within the rRPa there are neurons that contain 5-HT, others that

express vGlut3, and some that contain both 5-HT and vGlut3 (Na-

kamura et al., 2004). Previous work has focused on vGlut3-ex-

pressing sympathetic premotor neurons in the rRPa in activating

BAT (Morrison et al., 2014; Nakamura andMorrison, 2011; Naka-

mura et al., 2004). However, several studies have also suggested

that central 5-HT neurons participate in BAT activation. For

example, neuroanatomical tract tracing experiments show that

Tph2+ serotonergic neurons are part of the circuit that connects

the brain to BAT (Cano et al., 2003). Retrograde viral tracing

studies of sympathetic nerves terminating in scWAT labels cells

in the IML of the spinal cord and the raphé pallidus (Nguyen

et al., 2014). Interestingly, the IML is densely innervated by 5-HT

neurons, many of whose cell bodies reside in the raphé pallidus

(Loewy, 1981). Other in vivo studies show that 5-HT neurons of

the rRPa increase their firing rate in response to cold (Nason

and Mason, 2006) and that targeting 5-HT receptors pharmaco-

logically in the raphé or spinal cord affects cold-evoked sympa-

thetic nerve activity in brown fat (Madden and Morrison, 2006,

2010; Nakamura andMorrison, 2011). In addition, central admin-

istration of para-chlorophenylalanine (PCPA), an inhibitor of 5-HT

biosynthesis, inhibits BAT thermogenesis and causes BAT stea-

tosis (Fuller et al., 1987). Further, studies in genetically engineered

animals demonstrate an indispensable role for 5-HT neurons

in thermogenesis—but not thermosensation or heat conserva-

tion—at normal room temperature (Ray et al., 2011), or when

exposed to an ambient temperature of 4�C (Hodges et al., 2008,

2011). Most recently, it was demonstrated that lesioning central

5-HT neurons in adult animalswithDT causes hypothermia. How-

ever, themechanismwas not identified in that study (Cerpa et al.,

2014). Finally, it is notable that a human syndrome of inappro-

priate serotonergic excess—serotonin syndrome—is character-

ized by hyperthermia. Although a major component of hyper-

thermia in serotonin syndrome is due to heat generation by

muscle contraction and can be reversed by treatment with para-

lytic agents (Boyer and Shannon, 2005), it cannot be ruled out

that the increase in sympathetic output that also occurs may

contribute to heat generation by inappropriate activation of BAT.

We hypothesized that central 5-HT signaling would be essen-

tial for sympathetic induction of Ucp1 expression and activity in

BAT. Moreover, since sympathetic stimulation of BAT and beige

fat occurs simultaneously in vivo under physiological conditions
C

(e.g., in response to cold), we hypothesized that the central 5-HT

system would also drive the conversion of white adipocytes to

active beige adipocytes, as well as the recruitment of new beige

fat cells from progenitor populations.

RESULTS

Ablation of Pet-1+ 5-HT Neurons Inhibits
Thermogenesis by Interscapular BAT
To investigate the role of 5-HT neurons in controlling BAT and

beige fat activity, we employed amodel of inducible 5-HT neuron

ablation, the DTRf/fePet1Cre mouse, which expresses the human

diphtheria toxin receptor (DTR) in CNS 5-HT neurons (Buch et al.,

2005). In this model, systemic injection of diphtheria toxin (DT)

eliminates 80% of Pet-1+ 5-HT neurons in the medulla, including

the raphé pallidus (Cerpa et al., 2014), yielding a decrease in core

body temperature (Tcore) from 37�C to 30�C–35�C at an ambient

temperature of 22�C (Cerpa et al., 2014). Baseline BAT temper-

ature (TBAT) measured with interscapular telemetry temperature

probes did not differ between DTRf/fePet1Cre mice (37.9�C ±

0.3�C, n = 7) and littermate controls (38.1�C ± 0.1�C, n = 6). How-

ever, 3 days after mice received intraperitoneal DT injections,

TBAT was 1.6�C lower in DTRf/fePet1Cre mice (36.8�C ± 0.3�C,
n = 7 versus 38.4�C ± 0.2�C, n = 6; p < 0.003). By day 4 after

injection, TBAT in these animals had fallen by 4.0�C (34.0�C ±

0.9�C, n = 7 versus 38.0�C ± 0.3�C, n = 6; p < 0.003) (Figure 1A).

To exclude the possibility that ablation of 5-HT neurons caused

anapyrexia, where a lower Tcore is actively defended by the CNS,

we studied DT-treated DTRf/fePet1Cre and control mice at a ther-

moneutral ambient temperature (30�C) (Nedergaard and Can-

non, 2014). Even at thermoneutrality, mice can reduce their Tcore
by increasing heat loss or through behavioral mechanisms. Thus,

mice exhibit 2�C circadian oscillations in Tcore when housed at

thermoneutrality (Gerhart-Hines et al., 2013). Therefore, Tcore of

anapyrexic animals should still differ from controls. However, un-

der thermoneutral conditions, Tcore of DT-treated DTRf/fePet1Cre

mice was identical to that of control mice (36.9�C ± 0.4�C,
n = 4 in controls versus 36.5�C ± 0.2�C, n = 4 in DT-treated

DTRf/fePet1Cremice, p = 0.34), suggesting that their hypothermia

at 22�C resulted from an inability to engage thermogenesis,

rather than anapyrexia.

Ablation of Pet-1+ 5-HT Neurons Causes Steatosis in
Interscapular BAT
Brown adipocytes have a distinctive morphology characterized

by the presence of many small intracellular lipid droplets. These

droplets shrink as BAT activity increases and expand as it

decreases (Cameron and Smith, 1964), inversely tracking with

oxidative activity of the tissue. For example, BAT from Ucp1�/�

mice, which cannot uncouple mitochondrial respiration, con-

tains large lipid droplets (Enerbäck et al., 1997). H&E staining

(Figures 1B–1G) of BAT from DTRf/fePet1Cre mice 4 days after

DT treatment revealed tissue that was steatotic compared

to controls. High magnification revealed large, often unilocular

lipid droplets, reminiscent of BAT from mice in which Ucp1

is deleted—and sometimes even of WAT (Enerbäck et al.,

1997). Analysis of lipid droplet number and area (Figures 1H

and 1I) in these sections demonstrated a 59% reduction in

total number of lipid droplets per imaging field in DT-treated
ell Metabolism 21, 692–705, May 5, 2015 ª2015 Elsevier Inc. 693



Figure 1. Ablation of Pet-1+ Neurons Impairs BAT Thermogenesis and Causes BAT Steatosis
(A) BAT temperature (TBAT) in i.p. DT-treatedDTR

f/fePet1Cremice. InDTRf/fePet1Cremice,TBATdecreases after i.p. injection of diphtheria toxin (n =6–7mice/group).

(B) Control interscapular brown adipose tissue at 253 magnification, stained with H&E.

(C) Lipid accumulation in the cytosol of interscapular brown adipocytes in i.p. DT-treated DTRf/fePet1Cre mice at 253 magnification, stained with H&E.

(D) Control brown adipose tissue at 1003 magnification.

(E) Brown adipose tissue in i.p. DT-treated DTRf/fePet1Cre mice at 1003 magnification.

(F) Control brown adipose tissue at 4003 magnification.

(G) Brown adipose tissue in i.p. DT-treated DTRf/fePet1Cre mice at 4003 magnification.

(H) Quantification of lipid droplet number and area in i.p. DT-treated DTRf/fePet1Cre mice and controls.

(I) Lipid droplet size distribution in brown adipocytes from control and i.p. DT-treated DTRf/fePet1Cre mice.

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005.
DTRf/fePet1Cre mice (10,722 ± 854.2 per field [n = 9] in con-

trol versus 4,401 ± 1,058 per field [n = 3] in DT-treated

DTRf/fePet1Cre mice; p < 0.003), which was attributable to a

decrease in abundance of very small (<130 mM2) lipid droplets,

which normally represent 60%–90% of the total in wild-type

mice housed at subthermoneutral temperatures. This decrease

in abundance of very small droplets was accompanied by a

2.6-fold increase in large lipid droplets >260 mM2 (314 ± 76

per field [n = 9] in controls versus 830 ± 44 [n = 3] in DT-treated

DTRf/fePet1Cre mice; p < 0.004) and a 20-fold increase in lipid

droplets >620 mM2 (8 ± 3 per field [n = 9] in controls versus

164 ± 95 [n = 3]; p < 0.01), suggesting that pre-existing small
694 Cell Metabolism 21, 692–705, May 5, 2015 ª2015 Elsevier Inc.
lipid droplets expanded and fused to form larger droplets in

DT-treated DTRf/fePet1Cre animals. Together, these data sug-

gest that metabolic activity of interscapular BAT is reduced after

loss of Pet-1+ CNS neurons, leading fatty acids to accumu-

late—and lipid droplets to expand—within brown adipocytes.

CNS-directed NE release from postganglionic sympathetic

nerves triggers intracellular lipolysis, which is required for fat

oxidation and lipid droplet breakdown. We hypothesized that

emergence of large lipid droplets might be due to impaired sym-

pathetic stimulation of BAT in DT-treated DTRf/fePet1Cre mice in

response to cold. Supporting this view, at thermoneutrality

(30�C), when sympathetic nerve activity is minimized, we found



Figure 2. Mild Cold Exposure Decreases Lipid Content in Control BAT, but Not Pet-1+ Neuron-Deficient Mouse BAT

(A) Control BAT at 30�C and 22�C.
(B) i.p. DT-treated DTRf/fePet1Cre BAT at 30�C and 22�C.
(C) Similar lipid droplet area in control and i.p. DT-treated DTRf/fePet1Cre BAT at 30�C.
(D) Similar number of small lipid droplets in control and DT-treated DTRf/fePet1Cre mice at 30�C.
(E) Similar number of lipid droplets per field in control and DT-treated DTRf/fePet1Cre mice at 30�C.
(F) Change in lipid droplet area between 30�C and 22�C in control and in DT-treated DTRf/fePet1Cre mice.

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
that there was no difference between controls and DT-treated

DTRf/fePet1Cre mice in average BAT lipid droplet area (87.1 ±

6.6 mM2 [n = 5] in controls versus 79.2 ± 4.0 mM2 [n = 4] in DT-

treated DTRf/fePet1Cre mice; p = 0.37), droplet number per

403 field (1,561 ± 108 droplets [n = 5] in control versus

1,653 ± 96 droplets [n = 4] in DT-treated DTRf/fePet1Cre mice;

p = 0.54), or droplet size distribution (Figures 2C–2E). In contrast,

average BAT lipid droplet area in DT-treated DTRf/fePet1Cre was

increased 3-fold at 22�C (155.7 ± 54.2 mM2 [n = 3] in DT-treated

DTRf/fePet1Cremice versus 52.7 ± 4.7 mM2 [n = 9] in controls; p <

0.006). Thus, whereas lipid droplet area in controls decreased by

45% between 30�C and 22�C, lipid droplet size in DT-treated

DTRf/fePet1Cre BAT tended to increase (D = +76.5 ± 54.2 mM2

in droplet area in DT-treated DTRf/fePet1Cre mice [n = 3] versus

D = �34.4 ± 14.0 mM2 in droplet area in control mice, n = 9;

p < 0.0091) (Figures 2A, 2B, and 2F). These data suggest that

sympathetic activation of BAT during mild cold exposure

(22�C) is impaired in mice lacking central 5-HT neurons.

Ablation of Pet-1+ 5-HT Neurons Causes Hyperglycemia
and Hyperlipidemia via BAT-Dependent and BAT-
Independent Mechanisms
In other models, an increase in activity and mass of BAT

leads to improved glucose and lipid homeostasis (Bartelt
C

et al., 2011; Nedergaard et al., 2011). Therefore, we hypothe-

sized that DT-treated DTRf/fePet1Cre mice, which have hypoac-

tive BAT, might exhibit dysregulated glucose and lipid meta-

bolism. We measured glucose, fatty acids, and triglycerides in

plasma of DT-treated DTRf/fePet1Cre and control mice. Ad libi-

tum-fed DT-treated DTRf/fePet1Cre mice became hyperglyce-

mic and hyperlipidemic, exhibiting a 3.5-fold increase in blood

glucose (537 ± 16 mg/dl [n = 6] versus 150 ± 9 mg/dl [n = 4];

p < 0.003), a 13.4-fold increase in plasma free fatty acids

(0.738 ± 0.090 mM [n = 6] versus 0.055 ± 0.023 mM [n = 3];

p < 0.024), and a 6.5-fold increase in plasma triglycerides

(188 ± 50 mg/dl [n = 6] versus 29 ± 4 mg/dl [n = 4]; p < 0.02)

(Figures 3A–3C).

Since increases in glucose and fatty acid levels of compara-

ble magnitude are seen with insulin deficiency, we measured

circulating levels of insulin and hormones that regulate insulin

secretion. After intraperitoneal (i.p.) DT treatment, insulin levels

decreased by 83% in DTRf/fePet1Cre mice (0.24 ± 0.02 ng/ml

[n = 4] in controls versus 0.04 ± 0.014 ng/ml in DT-treated

DTRf/fePet1Cre [n = 4]; p < 0.0002). This was accompanied by

a 2.2-fold increase in corticosterone (234 ± 60 ng/ml [n = 4] in

controls versus 504.6 ± 66 ng/ml in DT-treated DTRf/fePet1Cre

mice [n = 6]; p < 0.022) and a 56% drop in thyroid stimulating

hormone (TSH) in DT-treated DTRf/fePet1Cre mice (886 ± 159
ell Metabolism 21, 692–705, May 5, 2015 ª2015 Elsevier Inc. 695



Figure 3. Ablation of Pet-1+ Neurons Causes Hyperglycemia,

Hyperlipidemia, and Endocrine Changes that Are Partly

Temperature Dependent

(A–F) Plasma glucose (A), fatty acids (B), triglycerides (C), insulin (D),

corticosterone (E), and thyroid-stimulating hormone (F) in i.p. DT-treated

DTRf/fePet1Cre mice and controls at 22�C.
(G–K) Plasma corticosterone (G), insulin (H), triglycerides (I), fatty acids

(J), and glucose (K) in DT-treated DTRf/fePet1Cre mice and controls at

30�C.
Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005,

****p < 0.001.
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pg/ml [n = 4] in controls versus 393 ± 125 pg/ml in DT-treated

DTRf/fePet1Cre [n = 6]; p < 0.039) (Figures 3D–3F). Circulating

epinepherine and NE levels did not differ between groups

(data not shown).

These data led to the hypothesis that an inability to oxidize

fatty acids and glucose in BAT—possibly combined with cold

stress—might be responsible for the steady-state increases

in circulating fatty acids, glucose, and triglycerides in DT-treated

DTRf/fePet1Cre mice. This is likely due to reduced substrate

disposal in BAT, as well as by corticosterone-mediated sup-

pression of insulin secretion (which would promote lipolysis

and increased hepatic glucose production). To test this,

we measured these metabolites in control and DT-treated

DTRf/fePet1Cre mice housed at thermoneutrality (30�C), antici-
pating that this change in ambient temperature would eliminate

BAT-dependent differences in plasma metabolites. Housing at

30�C abolished significant intergroup differences in corticoste-

rone (396.1 ± 66.17 ng/ml [n = 5] in controls versus 478.7 ±

67.74 ng/ml in DT-treated DTRf/fePet1Cre mice [n = 4]; p =

0.417) and insulin levels (0.0874 ± 0.01685 ng/ml [n = 5] in

controls versus 0.03675 ± 0.01377 ng/ml in DT-treated

DTRf/fePet1Cremice [n = 4]; p = 0.060) (though insulin still trended

lower), suggesting that cold-induced corticosterone production

might inhibit insulin secretion in DT-treated DTRf/fePet1Cre

mice housed at 22�C (Figures 3G and 3H). While plasma triglyc-

erides remained increased at 30�C in DT-treated DTRf/fePet1Cre

mice (35.21 ± 2.108 mg/dl [n = 5] in controls versus 74.79 ±

12.79 mg/dl in DT-treated DTRf/fePet1Cre mice [n = 4]; p <

0.05), the magnitude of this change was less than at 22�C (2.1-

fold versus 6.5-fold) (Figure 3I). Similarly, plasma fatty acid levels

were significantly increased at 30�C (0.373 ± 0.036 mM [n = 5] in

controls versus 0.753 ± 0.084 mM in DT-treated DTRf/fePet1Cre

mice [n = 4]; p < 0.01), but to a lesser extent than at 22�C (2-

fold versus 13.4-fold) (Figure 3J). On the other hand, glucose

levels in DT-treated DTRf/fePet1Cre mice remained elevated at

thermoneutrality (180.6 ± 7.1 mg/dl [n = 5] in controls versus

536.5 ± 22.0 mg/dl in DT-treated DTRf/fePet1Cre mice [n = 4];

p < 0.0001) to an extent similar to that at 22�C (3-fold versus

3.5-fold) (Figure 3K). These results suggest that minimizing

BAT activity in both control and DT-treated DTRf/fePet1Cre

mice reduces the difference between groups in circulating tri-

glyceride and fatty acid levels. This is consistent with the inter-

pretation that changes in BAT activity may be responsible, in

part, for differences in steady-state lipid (but not glucose) levels

between control and DT-treated DTRf/fePet1Cre mice.

The cell type specificity of ePet1-Cre has been validated using

Cre-dependent reporter strains and is highly specific for CNS 5-

HT neurons. However, small numbers of cells in gut, pancreas,

skin, and cardiac neural crest also express ePet1-Cre during

development and/or adult life (Ohta et al., 2011; Scott et al.,

2005). Accordingly, these cells may express human DTR and

be lesioned by systemic DT treatment in DTRf/fePet1Cre mice.

Thus, we investigated ePet1-Cre-mediated DTR expression in

various tissues by qPCR, hypothesizing that lesioning ePet1-

Cre+ cells in peripheral tissues (in particular pancreatic b cells)

might contribute to hyperglycemia. However,Hbegf (the DTR re-

ceptor) mRNA was very low in DTRf/fePet1Cre mouse pancreas,

BAT, and liver, consistent with the low levels of adult expression

ofPet-1 in these tissues. By contrast, expression ofHbegfmRNA
C

was 1,213-fold higher in raphé and 314-fold higher in spinal cord

than in pancreas, mirroring the adult expression pattern of Pet-1

(Figures S1A and S1B).

To determine whether Pet-1+ cells in the CNS were the crit-

ical determinants of the thermogenic and metabolic phenotype

seen in DTRf/fePet1Cre mice treated systemically with DT, we

injected DT or vehicle into the lateral ventricle of DTRf/fePet1Cre

mice and measured BAT temperature and blood glucose daily.

This intracerebroventricular (i.c.v.) administration of DT spares

DTR+ b cells of mice that express DTR in both pancreas and

brain under control of RIP-Cre (Rother et al., 2012). Remark-

ably, 4 days after treatment, BAT temperature decreased by

7.8�C in i.c.v. DT-treated DTR
f/f

ePet1Cre mice but remained

stable in controls (37.1�C ± 0.3�C [n = 4] in controls versus

29.3�C ± 2.3�C [n = 3] in DT-treated DTRf/fePet1Cre mice; p <

0.01) (Figure 4A). As in systemically DT-treated DTRf/fePet1Cre

mice, this fall in BAT temperature was associated with a 4.2-

fold increase in blood glucose levels (165 ± 11 mg/dl [n = 4]

in controls versus 689 ± 23 mg/dl [n = 3] in i.c.v. DT-treated

DTRf/fePet1Cre animals; p < 0.0001) (Figure 4B). Substantially

smaller doses of DT were required when administered i.c.v. in

order to obtain this effect (75 ng i.c.v. versus 2.25 mg i.p.).

These results indicate that the Pet-1+ neurons responsible

for controlling thermogenesis and systemic glycemia/lipemia

reside within the CNS.

Notably, at day 4, insulin levels in i.c.v. DT-treated

DTRf/fePet1Cre mice did not differ from controls, despite their

hyperglycemia (Figure 4C). Thus, we hypothesized that the hy-

perglycemia caused by deletion of Pet-1+ neurons was due to

elevated rates of endogenous glucose production. To test this

possibility, we measured expression of gluconeogenic genes

in the liver by qPCR. Consistent with this hypothesis, expression

of phosphoenolpyruvate carboxykinase (PEPCK) was elevated

2-fold (2.0 ± 0.38 in i.c.v. DT-treated DTRf/fePet1Cre mice [n =

4] versus 1.0 ± 0.03 in controls [n = 4]; p < 0.042) and glucose-

6-phosphatase (G6Pase) was elevated 3.4-fold (4.2 ± 0.77 in

i.c.v. DT-treated DTRf/fePet1Cre mice [n = 4] versus 1.2 ± 0.41

in controls [n = 4]; p < 0.014) (Figures 4D and 4E). This observa-

tion may be explained by altered CNS output to liver, but could

also involve changes in insulin sensitivity.

Ablation of Pet-1+ 5-HT Neurons Reduces Expression of
Norepinepherine-Responsive Thermogenic Genes
in BAT
Ucp1 and deiodinase 2 (Dio2) are prototypical genes expressed

by BAT and increase in response to sympathetic stimulation

by NE. Altered expression of these genes would further sug-

gest differential noradrenergic activity in BAT. We found that

BAT expression of Ucp1 mRNA was reduced by 50% in DT-

treated DTRf/fePet1Cre mice compared to controls (0.50- ±

0.13-fold [n = 6] versus 1.02- ± 0.09-fold [n = 6] in controls;

p < 0.0085), and expression of Dio2 was reduced by 85%

(0.15- ± 0.06-fold [n = 6] versus 1.00- ± 0.2-fold [n = 6] in con-

trols; p < 0.006) (Figures 5A and 5B). Notably, markers of BAT

differentiation, Cidea and Prdm16, did not differ between DT-

treated DTRf/fePet1Cre and control mice (Prdm16 = 0.97- ±

0.1-fold [n = 5] versus 1.03- ± 0.12-fold [n = 6] in controls,

p = 0.7; and Cidea = 0.83- ± 0.14-fold [n = 5] versus 1.01- ±

0.07-fold [n = 6] in controls, p = 0.25), suggesting that the
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Figure 4. Ablation of Pet-1+ Neurons with Intracerebroventricular

Injection of DT Decreases BAT Temperature, Causes Hyperglyce-

mia, and Increases Hepatic Gluconeogenic Gene Expression

without Changing Systemic Insulin Levels

(A–E) BAT temperature (A), plasma glucose (B), insulin (C), PEPCK mRNA

expression (D), and G6Pase mRNA expression (E) in controls and i.c.v. DT-

treated DTRf/fePet1Cre mice.

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005,

****p < 0.001.
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differentiation state of interscapular brown adipocytes was

not affected by the ablation of Pet-1+ neurons. These findings

suggest that the low TBAT and extensive lipid vacuolization

observed in DT-treated DTRf/fePet1Cre mice were due to a

decrease in release of NE from sympathetic nerves, since at

22�C this is the primary mechanism that drives BAT substrate

oxidation, and is continuously activated (Cannon and Neder-

gaard, 2004; Nedergaard and Cannon, 2014).

In mice treated with i.c.v. DT, similar results were obtained,

with BAT expression of Ucp1 mRNA reduced by 73% (0.29- ±

0.1-fold in i.c.v. DT-treated DTRf/fePet1Cre mice [n = 4] versus

1.07- ± 0.24-fold in controls [n = 4]; p < 0.023) (Figure 5C). Cumu-

latively, these data support the hypothesis that central 5-HT

neurons modulate the activity—but not the development or dif-

ferentiation—of BAT cells.

Ablation of Pet-1+ 5-HT Neurons Reduces Expression of
Thermogenic Genes in Beige Adipose Tissue
Recently, it has become clear that beige adipocytes can

have important effects on metabolic homeostasis and thermo-

regulation. In general, activation of brown and beige fat appear

to be responsive to the same signals and are temporally

synchronized, suggesting that metabolic activation of BAT

and recruitment of beige fat might have shared mechanisms.

For example, beige fat cells emerge in response to administra-

tion of sympathomimetic agents, such as the b3-adrenore-

ceptor agonist CL-316,243 (Collins et al., 1997), which also

activates and expands BAT. Thus, like BAT, beige fat physi-

ology is likely to be controlled by input from the sympathetic

nervous system (Murano et al., 2009). However, the specific

neural population(s) responsible for beige fat recruitment

remain undefined.

To determine if central 5-HT neurons facilitate stimulation of

beige fat cells, as they do BAT, we measured Ucp1 and Dio2

expression in subcutaneous inguinal WAT of DTRf/fePet1Cre

and control mice, housed at 22�C, 4 days after DT-treatment.

In DT-treated DTRf/fePet1Cre mice, Ucp1 expression was 76%

lower (0.24- ± 0.09-fold [n = 6] versus 1.00- ± 0.12-fold [n = 3]

in controls; p < 0.002), and Dio2 expression was 84% lower

(0.15- ± 0.07-fold [n = 6] versus 1.00- ± 0.48-fold [n = 3] in con-

trols; p < 0.041) than controls (Figures 5D and 5E). Thus, Pet-1+

neurons are also important for driving expression of thermogenic

genes in scWAT at 22�C, a temperature at which Ucp1 expres-

sion in scWAT is �20-fold higher than it is at 30�C (Qiu et al.,

2014), which suggests ongoing sympathetic stimulation, even

at mild temperatures.

Similarly, in mice where DT was delivered i.c.v., Ucp1 expres-

sion in scWAT declined by 97% in DTRf/fePet1Cre mice (0.03- ±

0.01-fold [n = 4] versus 1.06- ± 0.23-fold [n = 4] in controls; p <

0.0042) 4 days after treatment. (Figure 5F).



Figure 5. Acute, Developmental, and i.c.v.

Ablation of Central Pet-1+ Neurons Reduces

Thermogenic Gene Expression in Brown and

Beige Fat

(A and B) Ucp1 (A) and Dio2 (B) expression in inter-

scapular BAT of i.p. DT-treated DTRf/fePet1Cre mice

and controls.

(C) Ucp1 expression in interscapular BAT of i.c.v. DT-

treated DTRf/fePet1Cre mice and controls.

(D and E) Expression of Ucp1 (D) and Dio2 (E)

transcripts in inguinal scWAT of i.p. DT-treated

DTRf/fePet1Cre mice and controls.

(F) Ucp1 expression in inguinal scWAT of i.c.v. DT-

treated DTRf/fePet1Cre mice and controls.

(G and H) Ucp1 (G) and Dio2 (H) expression in inter-

scapular BAT of cold-exposed Lmx1bf/fePet1Cre mice

and controls.

(I and J) Cold-evoked induction of Ucp1 (I) and Dio2 (J)

transcription in inguinal scWAT of Lmx1bf/fePet1Cre

mice.

Data presented as mean ± SEM. *p < 0.05, **p < 0.01,

***p < 0.005.
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Developmental Loss of All CNS 5-HT Neurons Also
Reduces Expression of Thermogenic Genes in Both BAT
and scWAT
To rule out unknown model-specific confounders that might

have influenced our results, we also studied BAT and beige fat

in Lmx1bf/fePet1Cre mice, which are deficient in CNS 5-HT neu-

rons because they lack expression of a transcription factor

essential for Pet-1+ neuron development, LIM-homeodomain

transcription factor 1b (Lmx1b) (Ding et al., 2003; Zhao et al.,

2006). These mice exhibit increased mortality during early post-

natal life. Surviving Lmx1bf/fePet1Cremice maintain normal basal

body temperature Tcore at an ambient temperature of 22�C
(Hodges et al., 2008) but have a severe thermoregulatory deficit

when challenged with exposure to an ambient temperature of

16�C or 4�C. In these Lmx1bf/fePet1Cre mice, thermosensation

and heat conservation mechanisms are intact, but there is

impaired thermogenesis from shivering and, to a lesser extent,

BAT activation upon transfer to 4�C (Hodges et al., 2008).

Consistent with results obtained in DTRf/fePet1Cre mice, Ucp1

expression was 25% lower in interscapular BAT of cold-

challenged Lmx1bf/fePet1Cre versus WT mice (1.01 ± 0.05 [n = 5]

in WT versus 0.76 ± 0.10 in Lmx1bf/fePet1Cre [n = 5]; p < 0.05),

and Dio2 expression was 52% lower (1.03 ± 0.12 [n = 5] in WT

versus 0.49 ± 0.05 in Lmx1bf/fePet1Cre [n = 5]; p < 0.005), demon-

strating attenuated sympathetic activation of BAT in response to

cold (Figures 5G and 5H). In scWAT, there was no difference in

expression ofUcp1 or Dio2mRNA inWT versus Lmx1bf/fePet1Cre

mice at an ambient temperature of 22�C. After exposure to

an ambient temperature of 4�C, however, expression of Ucp1

mRNA was induced 28-fold in scWAT of WT mice, but only 6.4-

fold in Lmx1b
f/f

ePet1Cre animals (from 1.59- ± 0.93-fold to

44.81- ± 8.8-fold [n = 3–5] in WT versus 2.24- ± 1.09-fold to

14.44- ± 5.4-fold in Lmx1bf/fePet1Cre [n = 3–5]; p < 0.004). Simi-

larly, Dio2 was induced by 28-fold in scWAT of WT mice (from

1.31- ± 0.52-fold to 36.99- ± 11.75-fold [n = 3–5]) versus 8.2-

fold in Lmx1bf/fePet1Cre mice (1.70- ± 0.51-fold to 13.81- ±

3.64-fold [n = 3–5]; p < 0.04) (Figures 5I and 5J). Collectively,

these data show, using a second in vivo model with different

mechanisms, that the absence of central 5-HT neurons impairs

sympathetic activation of brown and beige fat in response to cold.

Pet-1+ Neuron Projections to the Spinal
Intermediolateral Cell Column Are Lost in DT-Treated
DTRf/fePet1Cre Mice
We examined tissue from mice expressing enhanced yellow

fluorescent protein (EYFP) under control of the Pet-1 enhancer

region (ePet-EYFP mice) (Scott et al., 2005). Preganglionic sym-

pathetic neurons (PSNs) of the intermediolateral horn (IML),

which project to sympathetic ganglia that innervate BAT, receive

projections from 5-HT neurons in the raphé pallidus and obscu-

rus (Loewy, 1981). 5-HT excites PSNs in the IML, including those

that control thermogenesis (Madden and Morrison, 2006, 2010).

Therefore, we hypothesized that Pet-1+ neurons regulate BAT

thermogenesis via projections to the IML. Using ePet-EYFP re-

porter mice, we identified EYFP+ cell bodies in the medulla

and projections in the spinal cord (Figure 6A). There were dense

projections to the IML of the thoracic spinal cord at levels T2–T5,

as well as diffuse projections to the ventral and dorsal horns (Fig-

ure 6A). By contrast, EYFP+ projections were absent from BAT,
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liver, and pancreas, arguing against direct serotonergic innerva-

tion of these tissues. These data are consistent with the view that

Pet-1+ cells influence thermogenesis by regulating sympathetic

outflow to BAT and beige fat.

5-HT projections to the IML would be expected to be lost

in DT-treated DTRf/fePet1Cre mice, which cannot thermoregu-

late, and tissue 5-HT content should decrease. To test this, we

harvested the thoracic spinal cord and raphé from DT-treated

DTRf/fePet1Cre and control mice for histology and HPLC. As

expected, destruction of Pet-1+ neurons reduced raphé 5-HT

content by 50% (0.019 ± 0.002 ng/mg [n = 6] in DT-treated

DTRf/fePet1Cre versus 0.039 ± 0.002 ng/mg [n = 6] in controls;

p < 0.005) and thoracic spinal 5-HT content by 52% (0.348 ±

0.067 ng/mg [n = 5] in DT-treated DTRf/fePet1Cre versus

0.724 ± 0.142 ng/mg [n = 5] in controls; p < 0.045) (Figures 6G

and 6H). Similarly, 5-HT was reduced by 93% in spinal cords

of Lmx1bf/fePet1Cremice (0.037 ± 0.013 ng/mg [n = 3]) compared

to controls (0.568 ± 0.007 ng/mg [n = 3]; p < 0.0001) (Figure 6I).

We also sectioned spinal cords from these mice, staining for

expression of the serotonin transporter (Slc6a4), a marker of 5-

HT neuron terminals, in the IML. Slc6a4 staining in the IML was

reduced by 73% in DT-treated DTRf/fePet1Cre mice (817.8 ±

89.81 integrated density [n = 6]) compared to controls (220.8 ±

58.01 integrated density [n = 5]; p < 0.0003) (Figures 6B–6F).

DISCUSSION

Here we report that deletion of central 5-HT neurons in mice

causes steatosis of BAT, impaired browning of WAT, and loss

of thermoregulation. These effects are accompanied by

decreased expression of genes essential for thermogenesis in

BAT and beige fat, includingUcp1. Furthermore, deletion of cen-

tral 5-HT neurons causes severe hyperglycemia and hyperlipid-

emia that are only partially attributable to the observed defects in

BAT. These results indicate that 5-HT neurons facilitate sympa-

thetic drive to BAT, promote browning of scWAT, and maintain

normal levels of metabolic energy substrates in blood. Central

serotonergic neurons may be master regulators of whole-body

energy homeostasis. This role may be intertwined with a larger

role integrating metabolism, body temperature, and breathing,

explaining the contribution of these neurons to central CO2

chemoreception (Brust et al., 2014; Hodges et al., 2008, 2011;

Ray et al., 2011).

Serotonergic neurons are essential for normal thermogenesis

and have been proposed to play a role in facilitating BAT activity

(Nakamura and Morrison, 2011; Nakamura et al., 2004), but they

have not been linked to maintaining the phenotype of BAT or to

browning of scWAT. Rather, the predominant focus on BAT acti-

vation has been on noradrenergic signaling, possibly through

interaction with peripheral hematopoetic cells (Qiu et al., 2014;

Rao et al., 2014). Thus, our work provides direct evidence that

central 5-HT neurons are required for thermogenesis by brown

and beige adipocytes.

Prior work has suggested that 5-HT neurons also contribute to

metabolic homeostasis. For example, 5-HT influences glucose

metabolism and appetite through an incompletely delineated

mechanism involving the sympathetic nervous system (Lam

and Heisler, 2007). Lorcaserin, a 5HT2C receptor agonist, re-

duces body weight and improves glycemic control and was



Figure 6. Pet-1+ Neurons of the Ventromedial Medulla Primarily Project to the Intermediolateral Cell Column in the Spinal Cord, and These

Projections Are Lost in Lmx1bf/fePet1Cre Mice and DT-Treated DTRf/fePet1Cre Mice

(A) EYFP expression in the thoracic spinal cord (T2–T5) of ePet-EYFP mice, with the intermediolateral cell column indicated by a box.

(B) Serotonin transporter (Slc6a4) expression in control upper thoracic spinal cord IML.

(C) Serotonin transporter (Slc6a4) expression in i.p. DT-treated thoracic spinal cord IML.

(D) An additional control animal upper thoracic spinal cord IML, stained for serotonin transporter (Slc6a4).

(E) An additional i.p. DT-treated thoracic spinal cord IML, stained for serotonin transporter (Slc6a4).

(F) Quantification of the serotonin transporter density within the spinal cord IML.

(G and H) 5-HT levels in the raphé (G) and thoracic spinal cord (H) of control and i.p.

DT-treated DTRf/fePet1Cre mice. (I) 5-HT levels in the thoracic spinal cord of Lmx1bf/fePet1Cre mice.

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
recently approved to treat human obesity (O’Neil et al., 2012),

while genetic deletion of the 5-HT2C receptor in mice leads to

obesity (Tecott et al., 1995). Further data show that selective

deletion of 5-HT2C receptors in pre-opiomelanocortin (POMC)

neurons, part of a circuit which may be impacted in our 5-HT

deletion models, negatively alters glucoregulation (Berglund

et al., 2013). Some effects of 5-HT on metabolism are indepen-

dent of changes in body weight. For example, at doses that do

not alter food intake, 5-HT2C receptor agonists reduce hepatic

glucose production and improve glucose homeostasis in mice,

while 5-HT2C receptor antagonists cause hyperglycemia (Xu

et al., 2010; Zhou et al., 2007). The current findings suggest

that serotonergic and other neuron types in the CNS play a

greater role in control of peripheral nutrient metabolism than

has been fully appreciated (Schwartz et al., 2013). This effect is

likely mediated by both sympathetic projections to BAT, as

well as sympathetic projections to beige fat and to the liver.
C

Reduced substrate oxidation in BAT and beige fat is one

mechanism that may contribute to metabolic dysfunction in

models of reduced brain 5-HT. However, the persistence of

hyperglycemia in 5-HT neuron-ablated animals housed at a

thermoneutral ambient temperature suggests that at least

some aspects of 5-HT neuron-mediated control of glucose

homeostasis are independent of brown or beige fat. We

considered at least four potential mechanisms of this BAT-

independent hyperglycemia. First, 5-HT neurons modulate

pancreatic insulin production, as mice treated systemically

with DT were hypoinsulinemic. However, though clearly impor-

tant, this mechanism does not appear to be sufficient to explain

our observations, as i.c.v. DT-treated mice have normal insulin

levels but remain severely hyperglycemic. A second hypothesis

is that 5-HT neurons modulate hepatic glucose production or

peripheral insulin sensitivity. Third, 5-HT neurons may simply

modulate glycemic control through other critical endocrine
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modulators of metabolism, such as corticosteroids and the thy-

roid axis. Finally, recent evidence in humans shows that the

greatest glucose utilization in response to acute cold is by

deep proximal muscles rather than by brown adipocytes (Blon-

din et al., 2015). As shivering is impaired in Lmx1bf/fePet1Cre

mice in response to cold (Hodges et al., 2008), it may be that

the 5-HT neuron-ablated DTRf/fePet1Cre mice also have

impaired glucose utilization from skeletal muscle, partially ex-

plaining the exaggerated hyperglycemia in these animals. Our

data suggest that all four of these non-BAT mechanisms may

be involved in mediating this response.

5-HT neurons are heterogeneous (Brust et al., 2014), and

further work will be required to identify the subpopulation(s) of

Pet-1+ neurons responsible for activating BAT and/or controlling

glucose metabolism. Based on prior studies, we believe selec-

tive control of these processes is likely. For example, sibutr-

amine, which blocks 5-HT and NE uptake, increases brown fat

activity 18-fold in rats, without affecting metabolism of other tis-

sues (Connoley et al., 1999). Similarly, cold-evoked vasocon-

striction in the tail, a mechanism that contributes significantly

to heat conservation in mice, is not affected in Pet-1�/� or

Lmx1bf/fePet1Cre animals (Cummings et al., 2011; Hodges

et al., 2008).

Beyond the populations of Pet-1+ neurons that impart these

effects, many questions remain unanswered about the mecha-

nism by which these 5-HT neurons function. For example, it

will be important to determine whether 5-HT activates thermo-

genesis itself, or alternatively acts as a permissive or neuromo-

dulatory signal for other central activators of sympathetic

discharge. For example, Pet-1+ neurons could modify activity

(or alter responsiveness to glutamate) of PSNs in the spinal

cord IML that are important for sympathetic discharge in inter-

scapular and subcutaneous adipose tissue. Such a mechanism

would determine whether increased serotonergic tone could

supraphysiologically enhance BAT activity, or whether loss of

5-HT tone could reduce BAT activity.

In summary, we have identified Pet-1+ neurons as indispens-

able for sympathetic activation of adult mouse brown and beige/

brite adipose tissue, for maintenance of their ‘‘brown’’ pheno-

type, and for thermogenesis in BAT. We also have shown that

Pet-1+ neurons are necessary for maintaining homeostatic

circulating levels of glucose and lipids. This latter effect is due

in part to effects on BAT substrate oxidation, although it is likely

that generation of glucose by the liver also plays an important

role. This work identifies a subset of Pet-1+ neurons as key reg-

ulators of diverse metabolic processes, and therefore as poten-

tial targets for treatment of obesity and type 2 diabetes, in part by

activation of BAT.
EXPERIMENTAL PROCEDURES

Animals

All animal experiments were performed according to procedures approved by

The University of Iowa Institutional Animal Care and Use Committee. Sex- and

age-matched mice were maintained on a standard laboratory chow on a 12 hr

light/dark cycle. WT mice injected with DT exhibit no temperature phenotype

or differences in gene expression relative to PBS-injected DTRf/fePet1Cre

mice in any tissue. Thus, for the experiments described below, littermate

PBS-injected DTRf/fePet1Cre mice were used as controls in testing the effects

of CNS-Cre expression, Pet-1+ cell expression of the human diphtheria-toxin
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receptor, and the mixed genetic background. DT (Sigma Aldrich) was injected

intraperitoneally at a concentration of 2.250 mg/mouse. For i.c.v. injections,

canulas from Alzet brain infusion kit 3 (DURECT corporation) were used.

Following ketamine (87 mg/kg)/xylazine (13 mg/kg) anesthesia, mice were

placed in a stereotaxic apparatus, and the injection guide canula was inserted

using the following coordinates: 0.2 mm caudal to bregma, 1.0 mm lateral to

midline, 2.5 mm below skull surface.

Temperature Measurements

BMDS electronic ID transponders (Bio Medic Data Systems) were implanted

subcutaneously into the intrascapular region of mice 2–4 months of age

for temperature measurements. Baseline temperature (TBAT) was measured

for 5 days prior to injection, and TBAT was measured for 4 days following

injection.

Real-Time qPCR Analysis

Animals used for transcription analysis were 6.5–8 months of age. BAT

RNA was extracted using the standard TRIzol-chloroform method, following

the manufacturer’s instructions (Ambion). Inguinal WAT RNA was extracted

using the RNeasy Mini Kit (QIAGEN). mRNA was reverse transcribed using

the QIAGEN Quantitect Reverse Transcription Kit, with quality assessed using

a Nanodrop 1000. qPCR reactions contained Power SYBR green fluorescent

dye from Applied Biosystems, and measurements were made using an

Agilent MX3000P system. Relative mRNA expression for the DTRf/fePet1Cre

mice was determined following normalization to b-actin levels using the

DD-CT method. Relative mRNA expression for the Lmx1bf/fePet1Cre mice

was determined following normalization to GAPDH levels using the DD-CT

method. Taqman Gene Expression Assays were used for Pet-1(Fev) (Assay

ID: Mm00462220_m1) and Hbegf (Assay ID: Hs00181813_m1).

Sequences of UCP1 Primers (50/ 30)
Forward: ACG TCC CCT GCC ATT TAC TGT CA

Reverse: GGC CGT CGG TCC TTC CTT

Sequences of DIO2 Primers (50/30)
Forward: TCT GTA GCC CCG AAT TCC CAA GTG

Reverse: TCC CAG CTG TGT ACA TGC CTC AAT

Sequences of b-Actin Primers(50/30)
Forward: GGC TGT ATT CCC CTC CAT CG

Reverse: CCA GTT GGT AAC AAT GCC ATG T

Sequences of GAPDH Primers (50/30)
Forward: CTG ACG TGC CGC CTG GAG AAA

Reverse: CCC GGC ATC GAA GGT GGA AGA GT

Genotyping Primers (50/30)
Lmx1bf/fePet1Cre Mice

Flox1: AGG CTC CAT CCA TTC TTC TC

Flox2: CCA CAA TAA GCA AGA GGC AC

Cre1: ATT TGC CTG CAT TAC CGG TCG

Cre2: CAG CAT TGC TGT CAC TTG GTC

DTRf/fePet1Cre Mice

DTR forward: ACC ATG AAG CTG CTG CCG TC

DTR reverse: ATC AGT GGG AAT TAG TCA TGC

Cre1: ATT TGC CTG CAT TAC CGG TCG

Cre2: CAG CAT TGC TGT CAC TTG GTC

Confocal Imaging

Animals were anesthetized using ketamine (87mg/kg)/xylazine (13 mg/kg) and

perfused with PBS followed by 4% paraformaldehyde (PFA). Following resec-

tion of the brain and spinal column, tissues were placed in 4% PFA overnight.

Thoracic sections were stained using an anti-SERT (SLC6A4) rabbit polyclonal

primary antibody (ab44520) at a concentration of 1:500 overnight at 4�C, ob-
tained from Abcam. The sections were then subsequently stained at 4�C for

1 hr using Alexa Fluor 488 goat anti-rabbit secondary antibody (BD Bio-

sciences).Tissue slices were then coverslipped using Vectashield mounting

medium containing DAPI (Vector Labs).



Histology

BAT from mice 2–7 months of age was extracted immediately following

euthanasia under isofluorane anesthesia. Tissue was placed in 4% PFA for

24 hr, followed by PBS. Tissue was then paraffin embedded and stained

using H&E at the University of Iowa Histology Research Core. Images were

collected using a Leica Microsystems DMI-6000B inverted microscope.

Lipid droplets were quantified using the MRI Adipocyte Tools with ImageJ

software.

Plasma Serum Harvest and Biomarker Measurement

Blood was extracted from ad libitum-fed mice 2–6 months of age via cardiac

puncture under isofluorane following 1 hr acclimatization period, at minimum.

Extractions were performed near end of the light cycle. Blood was immedi-

ately centrifuged at 3,000 3 g for 5 min at 4�C to separate plasma from blood

cells. Plasma fatty acids were measured using the HR Series NEFA-HR kit

(Wako Diagnostics). Plasma triglycerides were measured using the Infinity Tri-

glyceride Reagent (Thermo Scientific). Blood glucose was measured using an

AlphaTrak glucose meter and blood glucose test strips (Abbott Laboratories).

Plasma ketones were measured using a Ketone Body Assay Kit (Abnova

Corporation). Plasma corticosterone, TSH, and insulin were measured

using radioimmunoassay and quantified using a Packard Gamma counter

by the Vanderbilt Hormone Assay and Analytical Services Core, Vanderbilt

University.

Cold Exposure

Animals used for cold exposure experiments were 2–3 months of age.

Animals in normal cages with bedding were placed in a 4�C room for 4 hours

and were inspected every 30 min during this period to ensure they were alive.

As we had previously shown that Tcore of Lmx1bf/fePet1Cre mice drops to

lethal levels after 2 hours of 4�C exposure (Hodges et al., 2008), those that

became immobile were moved to room temperature and euthanized under

isofluorane, where the interscapular BAT and inguinal WAT were resected.

For each time point at which an Lmx1bf/fePet1Cre mouse was euthanized,

a WT mouse was also euthanized. The five time points were as follows:

2.5 hr, 3 hr, 3.5 hr, 4 hr, 4.5 hr.

Statistical Methods

Data set statistics were analyzed using the GraphPad Prism software,

version 6.01. The Student’s t test was used to compare data sets. For

multiple comparison correction, the Benjamini-Hochberg false discovery

rate method was used, with Q set to 5%. Data are represented as the

mean ± SEM.
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Nakamura, K., Matsumura, K., Hübschle, T., Nakamura, Y., Hioki, H.,
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M.G., Jr., and Brüning, J.C. (2012). Acute selective ablation of rat insulin

promoter-expressing (RIPHER) neurons defines their orexigenic nature.

Proc. Natl. Acad. Sci. USA 109, 18132–18137.

Schwartz, M.W., Seeley, R.J., Tschöp, M.H., Woods, S.C., Morton, G.J.,
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