On consecutive quadratic non-residues: a conjecture of Issai Schur

Patrick Hummel ${ }^{1}$
1170 E. Del Mar Blvd., Apt. 10 Pasadena, CA 91106-3425, USA

Received 11 September 2002; revised 27 March 2003
Communicated by K.A. Ribet

Abstract

Issai Schur once asked if it was possible to determine a bound, preferably using elementary methods, such that for all prime numbers p greater than the bound, the greatest number of consecutive quadratic non-residues modulo p is always less than $p^{1 / 2}$. This paper uses elementary methods to prove that 13 is the only prime number for which the greatest number of consecutive quadratic non-residues modulo p exceeds $p^{1 / 2}$.

© 2003 Elsevier Inc. All rights reserved.
Keywords: Quadratic non-residues; Schur's conjecture

Issai Schur once asked if it was possible to determine a bound, preferably using elementary methods, such that for all prime numbers p greater than the bound, the greatest possible number of consecutive quadratic non-residues modulo p is always less than $p^{1 / 2}$. (One can find a brief discussion of this problem in R. K. Guy's book [4]). Schur also pointed out that the greatest number of consecutive quadratic nonresidues exceeds $p^{1 / 2}$ for $p=13$, since $5,6,7$, and 8 are all quadratic non-residues $(\bmod p)$. This paper uses elementary methods to prove the following:

Theorem. $p=13$ is the only prime number for which the greatest number of consecutive quadratic non-residues modulo p exceeds $p^{1 / 2}$.

This problem has been attacked previously using both analytic and elementary methods. We shall briefly consider the results given to us by analytic

[^0]number theory, and then focus on the elementary methods for the remainder of the paper.

In [3], Burgess proves the following:
Theorem (Burgess [3]). If χ is any non-trivial Dirichlet character of prime modulus p and $\chi(N+1)=\chi(N+2)=\cdots=\chi(N+H)$, then $H=\mathrm{O}\left(p^{1 / 4} \log p\right)$.

From this, it follows that there must be some M, such that for all $p>M$, the greatest number of consecutive quadratic non-residues modulo p is less than $p^{1 / 2}$. In [7], Norton asserts that he can refine Burgess's method to obtain the following result:

Theorem (Norton [7]). In Burgess's theorem, $H<4.1 p^{1 / 4} \log p$ for all p. If $p>e^{15} \approx 3.27 \times 10^{6}$, then $H<2.5 p^{1 / 4} \log p$.

This result implies that $M=e^{15} \approx 3.27 \times 10^{6}$ is a suitable value for the aforementioned constant. Unfortunately, however, Norton does not prove this result in his paper, and without a value such as 4.1 for the implied constant in Burgess's theorem, we cannot use Burgess's theorem to find a suitable constant, M, in Schur's conjecture.

Now we consider the work that has been done on the problem using elementary methods. Brauer [2] has proved the following theorem:

Theorem (Brauer [2]). For prime numbers p, of the form $4 n-1$, the maximum length l, of sequences of quadratic residues and non-residues satisfies $l<p^{1 / 2}$.

Hudson then considers the case $p \equiv 1(\bmod 4)$ by breaking it up into several cases. In [6], he proves that the maximum number of consecutive quadratic non-residues $(\bmod p)$ is less than $p^{1 / 2}$ if $p \equiv 1(\bmod 24)$. In [5], he demonstrates that this also holds if $p \equiv 5$ or $p \equiv 17(\bmod 24)$. Putting these together, Hudson obtains the following beneficial result:

Theorem (Hudson [5]). If p is a prime, and the greatest number of consecutive quadratic non-residues modulo p exceeds $p^{1 / 2}$, then $p \equiv 13(\bmod 24)$.

In the same paper, Hudson proposes a proof that the greatest number of consecutive quadratic non-residues modulo p, is less than $p^{1 / 2}$ for $p>2^{332}$ and $p \equiv$ $13(\bmod 24)$. If his proof of this result were correct, it would complete an elementary proof of Schur's conjecture. But upon a careful reading, one sees that the proof of his assertion is flawed. In particular, Hudson claims that the existence of a quadratic non-residue in the interval $\left(\frac{p^{1 / 2}}{128}-2^{3 / 2} p^{1 / 8}, \frac{p^{1 / 2}}{128}\right)$ implies a quadratic non-residue is contained in the interval $\left(p^{1 / 2}-2^{17 / 2} p^{1 / 8}, p^{1 / 2}\right)$, whereas it really implies a quadratic residue is contained in the interval $\left(p^{1 / 2}-2^{17 / 2} p^{1 / 8}, p^{1 / 2}\right)$, since 2 is a quadratic nonresidue modulo p if $p \equiv 13(\bmod 24)$.

The research presented here tackles the case $p \equiv 13(\bmod 24)$ by using an alternate method. In addition to completing an elementary proof of Schur's conjecture, this paper also shows that $p=13$ is the only prime number for which the greatest number of consecutive quadratic non-residues $(\bmod p)$ exceeds $p^{1 / 2}$.

The argument in this paper breaks down into two parts. In the first part, it is shown that if $p \equiv 13(\bmod 24)$ is sufficiently large and if there exists an interval containing more than $p^{1 / 2}$ integers, all of which are quadratic non-residues modulo p, then there must exist such an interval J satisfying

$$
J \subset\left(\frac{p+3+p^{1 / 2}}{2}, \frac{p}{2}+2^{1 / 2} p^{3 / 4}-p^{1 / 2}\right) .
$$

Then, in the second part, it is shown that this cannot hold for p sufficiently large by demonstrating that one can find two integers, $a, b \in J$ such that if $R \equiv a b(\bmod p)$ and $0 \leqslant R \leqslant p-1$, then $R \in J$. This implies that J contains a quadratic residue R, so J could not have existed in the first place. This implies that the greatest number of consecutive quadratic non-residues modulo p, is less than $p^{1 / 2}$ when p is sufficiently large. The remaining cases, where p is less than a given bound, are handled by computer.

Lemma 1. If p is a prime number such that $p \equiv 13(\bmod 24), p>38659$, and there is a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues $(\bmod p)$, there must be such a sequence in the interval $\left(\frac{p+3+p^{1 / 2}}{2}, \frac{p}{2}+2^{1 / 2} p^{3 / 4}-p^{1 / 2}\right)$.

Proof. $p \equiv 13(\bmod 24)$ implies that every number of the form $2 a^{2}$ is a quadratic non-residue. This means that there must exist a quadratic non-residue, say N, in the interval

$$
\left(p^{1 / 2}-2^{3 / 2} p^{1 / 4}+2, p^{1 / 2}\right)
$$

because if c is the smallest positive integer such that $2 c^{2}>p^{1 / 2}$, then $2(c-1)^{2}>p^{1 / 2}-$ $2^{3 / 2} p^{1 / 4}+2$.

Suppose J is an integer interval containing more than $p^{1 / 2}$ consecutive quadratic non-residues. Multiplying each member of J by N and reducing $(\bmod p)$, we obtain a collection of quadratic residues in which each quadratic residue differs from the next by $N<p^{1 / 2}$. This collection must span more than

$$
\left(p^{1 / 2}-1\right)\left(p^{1 / 2}-2^{3 / 2} p^{1 / 4}+2\right)>p-2^{3 / 2} p^{3 / 4}+p^{1 / 2}
$$

integers. Since -1 is a quadratic residue $(\bmod p), p-b$ must be a quadratic nonresidue whenever b is. Therefore, if our collection of quadratic residues is to lie entirely outside a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues,
J must either be contained in

$$
\begin{gathered}
\left(1,2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right) \\
\left(p-2^{1 / 2} p^{3 / 4}+\frac{p^{1 / 2}}{2}, p-1\right)
\end{gathered}
$$

or

$$
\begin{equation*}
\left(\frac{p}{2}-2^{1 / 2} p^{3 / 4}+\frac{p^{1 / 2}}{2}, \frac{p}{2}+2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right) \tag{1}
\end{equation*}
$$

But J cannot be fully contained in the first of these intervals because the difference between the square numbers in $\left(1,2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right)$ is less than $p^{1 / 2}$. Similarly, J cannot be contained in the second of these intervals because any sequence of the form given by J in $\left(p-2^{1 / 2} p^{3 / 4}+\frac{p^{1 / 2}}{2}, p-1\right)$ would have to correspond to a similar sequence in $\left(1,2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right)$ So such a J can only be contained in the interval given by (1).

We now refer to the following theorem of Brauer's:
Theorem (Brauer [1]). The least odd quadratic non-residue u modulo a prime p satisfies $u<2^{3 / 5} p^{2 / 5}+2^{-(6 / 5)} \cdot 25 p^{1 / 5}+3$ for $p=8 n+5$.

This implies that there exists an odd quadratic non-residue u, less than $p^{1 / 2}$ if $p>38$ 659. Then, since $\frac{p+1}{2}$ is a quadratic non-residue $(\bmod p), u\left(\frac{p+1}{2}\right) \equiv \frac{p+u}{2}$ is a quadratic residue $(\bmod p)$. Therefore, there exists a quadratic residue in the interval $\left(\frac{p}{2}, \frac{p+p^{1 / 2}}{2}\right)$, so there must exist a corresponding quadratic residue in the interval $\left(\frac{p-p^{1 / 2}}{2}, \frac{p}{2}\right)$, which means that J cannot pass through $\frac{p}{2}$.

Combining this with the fact that $-b$ is a quadratic non-residue whenever b is, we know that if such a J exists, there must be at least one such J in the interval

$$
\begin{equation*}
\left(\frac{p}{2}, \frac{p}{2}+2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right) \tag{2}
\end{equation*}
$$

Now note that 3 is a quadratic residue $(\bmod p)$. Therefore, for odd $m, \frac{p+3 m}{2}$ must be a quadratic residue $(\bmod p)$ if $\frac{p+m}{2}$ is. Combined with the fact that there exists a quadratic residue in the interval $\left(\frac{p}{2}, \frac{p+p^{1 / 2}}{2}\right)$, we find that if such a J lies in the interval given by (2), that same J must also lie in the interval

$$
\begin{equation*}
\left(\frac{p+3+p^{1 / 2}}{2}, \frac{p}{2}+2^{1 / 2} p^{3 / 4}-\frac{p^{1 / 2}}{2}\right) \tag{3}
\end{equation*}
$$

To see why, suppose that $\frac{p+3}{2}+x$ is the first entry in J. Then, we can assume that $\frac{p+1}{2}+x$ is a quadratic residue, meaning $\frac{p}{2}+3\left(\frac{1}{2}+x\right)=\frac{p+3}{2}+3 x$ is also a quadratic residue. Therefore we must have $\frac{p+3}{2}+3 x-\left(\frac{p+3}{2}+x\right)>p^{1 / 2}$, or $x>\frac{p^{1 / 2}}{2}$.

Lemma 2. Suppose $p>38659$ is a prime congruent to 13 modulo 24 and $\frac{p+1}{2}+k$ is a quadratic non-residue, where $k>0$ is some fixed integer. Then, if there exists a such that $\frac{1}{4} \leqslant a \leqslant \frac{15}{32}$, and $\left(a p^{1 / 2}-2\right)^{2}>2 k+2(1-a) p^{1 / 2}+2-\left\lfloor p^{1 / 2}\right\rfloor$, and the difference between $\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k x+x+x^{2}$ at $x=\left\lfloor(1-a) p^{1 / 2}\right\rfloor$ and $x=\left\lfloor a p^{1 / 2}\right\rfloor-2$ is greater than $p, \frac{p+1}{2}+k$ is not the smallest number in a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues.

Proof. Suppose that all the integers of the form

$$
\frac{p+1}{2}+k+m
$$

are quadratic non-residues, where m is an integer ranging from 0 to $\left\lfloor p^{1 / 2}\right\rfloor$.
Note that the product of two integers of this form, say $\frac{p+1}{2}+k+m$ and $\frac{p+1}{2}+$ $k+n$, is a quadratic residue, and equals

$$
\begin{equation*}
\left(\frac{p+1}{2}\right)^{2}+(p+1) k+k^{2}+(m+n)\left(k+\frac{p+1}{2}\right)+m n \tag{4}
\end{equation*}
$$

which if m and n both equal the same value, say x, reduces to

$$
\left(\frac{p+1}{2}\right)^{2}+(p+1) k+k^{2}+(2 x)\left(k+\frac{p+1}{2}\right)+x^{2}
$$

which is congruent to

$$
\begin{equation*}
\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k x+x+x^{2} \tag{5}
\end{equation*}
$$

modulo p.
If there exists an a such that $\frac{1}{4} \leqslant a \leqslant \frac{15}{32}$ and the difference between $\left(\frac{p+1}{2}\right)^{2}+k+$ $k^{2}+2 k x+x+x^{2}$ at $x=\left\lfloor(1-a) p^{1 / 2}\right\rfloor$ and $x=\left\lfloor a p^{1 / 2}\right\rfloor-2$ is greater than p, we note that we can find an integer x contained in the interval $\left(a p^{1 / 2}-2,(1-a) p^{1 / 2}\right]$, and an integer c such that

$$
\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k x+x+x^{2}>\left(c+\frac{1}{2}\right) p+\frac{1}{2}+k+\left\lfloor p^{1 / 2}\right\rfloor
$$

and

$$
\begin{equation*}
\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k(x-1)+x-1+(x-1)^{2} \leqslant\left(c+\frac{1}{2}\right) p+\frac{1}{2}+k+\left\lfloor p^{1 / 2}\right\rfloor . \tag{6}
\end{equation*}
$$

Now suppose that

$$
\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k(x-1)+x-1+(x-1)^{2} \geqslant\left(c+\frac{1}{2}\right) p+\frac{1}{2}+k
$$

Then, combining this with (6), we reach the absurd conclusion that a quadratic residue equals a quadratic non-residue. Therefore, we have

$$
\begin{equation*}
\left(\frac{p+1}{2}\right)^{2}+k+k^{2}+2 k(x-1)+x-1+(x-1)^{2}<\left(c+\frac{1}{2}\right) p+\frac{1}{2}+k \tag{7}
\end{equation*}
$$

Now consider (4) again. Let m and n vary so that $m=x-y$ and $n=x+y$, where x is an integer that satisfies the above conditions, and y is an integer ranging from 0 to the smallest integer larger than $a p^{1 / 2}-2$. Since x lies in $\left(a p^{1 / 2}-2,(1-a) p^{1 / 2}\right]$, we continue to meet the condition that m and n are both integers between 0 and $\left\lfloor p^{1 / 2}\right\rfloor$ inclusive, because $y<a p^{1 / 2}-1$, and $\left\lfloor p^{1 / 2}\right\rfloor-(1-a) p^{1 / 2}>a p^{1 / 2}-1$. If m and n vary this way, the only part of (4) that changes is the product $m n$. Also note that

$$
0<m n-(m-1)(n+1)=n-m+1<p^{1 / 2}
$$

when $0 \leqslant n-m<p^{1 / 2}-1$, which holds when y varies as above. So we have a collection of quadratic residues in which no quadratic residue exceeds the next by more than $p^{1 / 2}$. This collection spans an interval of

$$
\begin{equation*}
x^{2}-\left(x-a p^{1 / 2}+2\right)\left(x+a p^{1 / 2}-2\right)=\left(a p^{1 / 2}-2\right)^{2} \tag{8}
\end{equation*}
$$

Note that increasing x by 1 in (5) increases the value of the expression by $2 k+$ $2 x+2$. Combining this with (7) and (8), we find that one of the quadratic residues in the aforementioned collection is congruent $(\bmod p)$ to an integer in the interval, $\left(\frac{p+1}{2}+k, \frac{p+1}{2}+k+\left\lfloor p^{1 / 2}\right\rfloor\right)$ if

$$
\left(a p^{1 / 2}-2\right)^{2}>2 k+2 x+2-\left\lfloor p^{1 / 2}\right\rfloor
$$

and since $x \leqslant(1-a) p^{1 / 2}$, we have

$$
\begin{equation*}
\left(a p^{1 / 2}-2\right)^{2}>2 k+2(1-a) p^{1 / 2}+2-\left\lfloor p^{1 / 2}\right\rfloor \tag{9}
\end{equation*}
$$

which proves the lemma.

Theorem. $p=13$ is the only prime number for which the greatest number of consecutive quadratic non-residues modulo p exceeds $p^{1 / 2}$.

Proof. Suppose $p>38659$, and suppose there exists a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues $(\bmod p)$. As noted earlier, this implies that $p \equiv$ $13(\bmod 24)$.

Now suppose that

$$
\begin{equation*}
\frac{p+1}{2}+k \tag{10}
\end{equation*}
$$

is a quadratic non-residue, where k is a fixed integer. With Lemma 1 in mind, we need only prove that this is not the least quadratic non-residue in a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues when

$$
\frac{p^{1 / 2}}{2}+1<k<2^{1 / 2} p^{3 / 4}-p^{1 / 2}
$$

Now consider three cases:
Case 1: $k<2 p^{1 / 2}$. Note that the difference between (5) at $x=\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor$ and $x=$ $\left\lfloor\frac{p^{1 / 2}}{4}\right\rfloor-2$ is greater than p because it equals

$$
\begin{aligned}
& \left((2 k+1)\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor+\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor^{2}\right)-\left((2 k+1)\left(\left\lfloor\frac{p^{1 / 2}}{4}\right\rfloor-2\right)+\left(\left\lfloor\frac{p^{1 / 2}}{4}\right\rfloor-2\right)^{2}\right) \\
& \quad=2 k\left(\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor-\left\lfloor\frac{p^{1 / 2}}{4}\right\rfloor\right)+\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor+4 k+\left\lfloor\frac{3 p^{1 / 2}}{4}\right\rfloor^{2}-\left\lfloor\left.\frac{p^{1 / 2}}{4}\right|^{2}+3\left\lfloor\frac{p^{1 / 2}}{4}\right\rfloor-2\right. \\
& >2 k\left(\frac{p^{1 / 2}}{2}-1\right)+\frac{3 p^{1 / 2}}{4}-1+4 k+\frac{9 p}{16}-\frac{3 p^{1 / 2}}{2}+1-\frac{p}{16}+3\left(\frac{p^{1 / 2}}{4}-1\right)-2 \\
& \quad=k p^{1 / 2}+2 k+\frac{p}{2}-5>\frac{p}{2}+p^{1 / 2}+p^{1 / 2}+2+\frac{p}{2}-5>p
\end{aligned}
$$

since $k>\frac{p^{1 / 2}}{2}+1$. With Lemma 2 in mind, we find that (10) is not the least quadratic non-residue in a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues if

$$
\begin{equation*}
\left(\frac{p^{1 / 2}}{4}-2\right)^{2}>2 k+\frac{3 p^{1 / 2}}{2}+2-\left\lfloor p^{1 / 2}\right\rfloor \tag{11}
\end{equation*}
$$

Since $k<2 p^{1 / 2}$, (11) holds whenever

$$
\left(\frac{p^{1 / 2}}{4}-2\right)^{2}>\frac{9 p^{1 / 2}}{2}+3
$$

which holds for $p>7711$.

Case 2: $2 p^{1 / 2}<k<8 p^{1 / 2}$. Note that the difference between (5) at $x=\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor$ and $\left\lfloor\frac{3 p^{1 / 2}}{8}\right\rfloor-2$ is greater than p because it equals

$$
\begin{aligned}
& \left((2 k+1)\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor+\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor^{2}\right)-\left((2 k+1)\left(\left\lfloor\frac{3 p^{1 / 2}}{8}\right\rfloor-2\right)+\left(\left\lfloor\frac{3 p^{1 / 2}}{8}\right\rfloor-2\right)^{2}\right) \\
& \quad=2 k\left(\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor-\left\lfloor\frac{3 p^{1 / 2}}{8}\right\rfloor\right)+\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor+4 k+\left\lfloor\frac{5 p^{1 / 2}}{8}\right\rfloor^{2}-\left\lfloor\left.\frac{3 p^{1 / 2}}{8}\right|^{2}+3\left\lfloor\frac{3 p^{1 / 2}}{8}\right\rfloor-2\right. \\
& >2 k\left(\frac{p^{1 / 2}}{4}-1\right)+\frac{5 p^{1 / 2}}{8}-1+4 k+\frac{25 p}{64}-\frac{5 p^{1 / 2}}{4}+1-\frac{9 p}{64}+3\left(\frac{3 p^{1 / 2}}{8}-1\right)-2 \\
& \quad=\frac{k p^{1 / 2}}{2}+2 k+\frac{p}{4}+\frac{p^{1 / 2}}{2}-5>p+4 p^{1 / 2}+\frac{p}{4}+\frac{p^{1 / 2}}{2}-5>p
\end{aligned}
$$

since $k>2 p^{1 / 2}$. With Lemma 2 in mind, we find that (10) is not the least quadratic non-residue in a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues if

$$
\begin{equation*}
\left(\frac{3 p^{1 / 2}}{8}-2\right)^{2}>2 k+\frac{5 p^{1 / 2}}{4}+2-\left\lfloor p^{1 / 2}\right\rfloor \tag{12}
\end{equation*}
$$

Since $k<8 p^{1 / 2}$, (12) holds when

$$
\left(\frac{3 p^{1 / 2}}{8}-2\right)^{2}>\frac{65 p^{1 / 2}}{4}+3
$$

which holds for $p>15917$.
Case 3: $8 p^{1 / 2}<k$. Note that the difference between (5) at $x=\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor$ and $\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor-2$ is greater than p because it equals

$$
\begin{aligned}
& \left((2 k+1)\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor+\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor^{2}\right)-\left((2 k+1)\left(\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor-2\right)+\left(\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor-2\right)^{2}\right) \\
& =2 k\left(\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor-\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor\right)+\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor+4 k+\left\lfloor\frac{17 p^{1 / 2}}{32}\right\rfloor^{2}-\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor^{2}+3\left\lfloor\frac{15 p^{1 / 2}}{32}\right\rfloor-2 \\
& >2 k\left(\frac{p^{1 / 2}}{16}-1\right)+\frac{17 p^{1 / 2}}{32}-1+4 k+\frac{289 p}{1024}-\frac{17 p^{1 / 2}}{16}+1-\frac{225 p}{1024}+3\left(\frac{15 p^{1 / 2}}{32}-1\right)-2 \\
& =\frac{k p^{1 / 2}}{8}+2 k+\frac{p}{16}+\frac{7 p^{1 / 2}}{8}-5>p+16 p^{1 / 2}+\frac{p}{16}+\frac{7 p^{1 / 2}}{8}-5>p
\end{aligned}
$$

since $k>8 p^{1 / 2}$. With Lemma 2 in mind, we find that (10) is not the least quadratic non-residue in a sequence of more than $p^{1 / 2}$ consecutive quadratic non-residues if

$$
\begin{equation*}
\left(\frac{15 p^{1 / 2}}{32}-2\right)^{2}>2 k+\frac{17 p^{1 / 2}}{16}+2-\left\lfloor p^{1 / 2}\right\rfloor \tag{13}
\end{equation*}
$$

Since $k<2^{1 / 2} p^{3 / 4}-p^{1 / 2}$, (13) holds whenever

$$
\left(\frac{15 p^{1 / 2}}{32}-2\right)^{2}>2^{3 / 2} p^{3 / 4}-\frac{31 p^{1 / 2}}{16}+3
$$

which holds for $p>27250$.
So when $p>38659$, no sequence of more than $p^{1 / 2}$ consecutive quadratic nonresidues exists.

Now all that remains is to consider the case $p \leqslant 38659$. This case can be handled by a simple computation. I have run a computer program which compares the largest number of consecutive quadratic non-residues modulo p with $p^{1 / 2}$ for all primes p, such that $p \equiv 13(\bmod 24)$ and $p \leqslant 38659$. From this I was able to check that 13 is the only prime number for which the greatest number of consecutive quadratic nonresidues $(\bmod p)$ exceeds $p^{1 / 2}$.

Remark. The data obtained from this program can be viewed by going to the website http://www.math.caltech.edu/people/hummel.html. A sample of some of the data obtained from the program is given below. The numbers in each set represent p, the greatest number of consecutive quadratic non-residues $(\bmod p)$, and $\left\lfloor p^{1 / 2}\right\rfloor$ in that order. For all but the smallest numbers, $p^{1 / 2}$ far exceeds the greatest number of consecutive quadratic non-residues.

| $\{13,4,3\},\{757,8,27\},\{3181,9,56\}$, | $\{5869,9,76\},\{7237,10,85\}$, | $\{9397,10,96\}$, | |
| ---: | ---: | ---: | ---: | ---: |
| $\{12037,11,109\}$, | $\{14389,12,119\}$, | $\{16477,12,128\}$, | $\{18517,13,136\}$, |
| $\{20509,13,143\}$, | $\{22381,12,149\}$, | $\{24061,13,155\}$, | $\{26029,13,161\}$, |
| $\{28429,13,168\}$, | $\{30469,14,174\}$, | $\{32749,15,180\}$, | $\{34693,14,186\}$, |
| $\{36709,15,191\}$, | $\{38653,15,196\}$. | | |

Acknowledgments

This research is the result of work done under the mentorship of Prof. Dinakar Ramakrishnan while on a Caltech Summer Undergraduate Research Fellowship. I am deeply grateful to Prof. Ramakrishnan for his guidance and to David Whitehouse for reviewing my paper.

References

[1] A. Brauer, On the non-existence of the Euclidean algorithm in certain quadratic number fields, Amer. J. Math. 62 (1940) 697-716.
[2] A. Brauer, Über die Verteilung der Potenzreste, Math. Z. 35 (1932) 39-50.
[3] D.A. Burgess, A note on the distribution of residues and non-residues, J. London Math. Soc. 38 (1963) 253-256.
[4] R.K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994, pp. 244-245.
[5] R.H. Hudson, On a conjecture of Issai Schur, J. Reine Angew. Math. 289 (1977) 215-220.
[6] R.H. Hudson, On sequences of consecutive quadratic non-residues, J. Number Theory 3 (1971) 178-181.
[7] K.K. Norton, Bounds for sequences of consecutive power residues, Analytic number theory, Amer. Math. Soc. 24 (1973) 213-220.

[^0]: E-mail address: hummel@its.caltech.edu.
 ${ }^{1}$ Patrick Hummel is affiliated with the Class of 2006 at California Institute of Technology.

