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Abstract

Issai Schur once asked if it was possible to determine a bound, preferably using elementary

methods, such that for all prime numbers p greater than the bound, the greatest number of

consecutive quadratic non-residues modulo p is always less than p1=2: This paper uses

elementary methods to prove that 13 is the only prime number for which the greatest number

of consecutive quadratic non-residues modulo p exceeds p1=2:
r 2003 Elsevier Inc. All rights reserved.

Keywords: Quadratic non-residues; Schur’s conjecture

Issai Schur once asked if it was possible to determine a bound, preferably using
elementary methods, such that for all prime numbers p greater than the bound, the
greatest possible number of consecutive quadratic non-residues modulo p is always

less than p1=2: (One can find a brief discussion of this problem in R. K. Guy’s book
[4]). Schur also pointed out that the greatest number of consecutive quadratic non-

residues exceeds p1=2 for p ¼ 13; since 5, 6, 7, and 8 are all quadratic non-residues
ðmod pÞ: This paper uses elementary methods to prove the following:

Theorem. p ¼ 13 is the only prime number for which the greatest number of

consecutive quadratic non-residues modulo p exceeds p1=2:

This problem has been attacked previously using both analytic and ele-
mentary methods. We shall briefly consider the results given to us by analytic
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number theory, and then focus on the elementary methods for the remainder
of the paper.
In [3], Burgess proves the following:

Theorem (Burgess [3]). If w is any non-trivial Dirichlet character of prime modulus p

and wðN þ 1Þ ¼ wðN þ 2Þ ¼ ? ¼ wðN þ HÞ; then H ¼ Oðp1=4 log pÞ:

From this, it follows that there must be some M; such that for all p4M; the

greatest number of consecutive quadratic non-residues modulo p is less than p1=2: In
[7], Norton asserts that he can refine Burgess’s method to obtain the following result:

Theorem (Norton [7]). In Burgess’s theorem, Ho4:1p1=4 log p for all p: If

p4e15E3:27� 106; then Ho2:5p1=4 log p:

This result implies that M ¼ e15E3:27� 106 is a suitable value for the
aforementioned constant. Unfortunately, however, Norton does not prove this
result in his paper, and without a value such as 4.1 for the implied constant in
Burgess’s theorem, we cannot use Burgess’s theorem to find a suitable constant, M;
in Schur’s conjecture.
Now we consider the work that has been done on the problem using elementary

methods. Brauer [2] has proved the following theorem:

Theorem (Brauer [2]). For prime numbers p; of the form 4n � 1; the maximum length

l; of sequences of quadratic residues and non-residues satisfies lop1=2:

Hudson then considers the case p � 1 ðmod 4Þ by breaking it up into several cases.
In [6], he proves that the maximum number of consecutive quadratic non-residues

ðmod pÞ is less than p1=2 if p � 1 ðmod 24Þ: In [5], he demonstrates that this also holds
if p � 5 or p � 17 ðmod 24Þ: Putting these together, Hudson obtains the following
beneficial result:

Theorem (Hudson [5]). If p is a prime, and the greatest number of consecutive

quadratic non-residues modulo p exceeds p1=2; then p � 13 ðmod 24Þ:

In the same paper, Hudson proposes a proof that the greatest number of

consecutive quadratic non-residues modulo p; is less than p1=2 for p42332 and p �
13 ðmod 24Þ: If his proof of this result were correct, it would complete an elementary
proof of Schur’s conjecture. But upon a careful reading, one sees that the proof of his
assertion is flawed. In particular, Hudson claims that the existence of a quadratic

non-residue in the interval ðp1=2

128
� 23=2p1=8; p1=2

128
Þ implies a quadratic non-residue is

contained in the interval ðp1=2 � 217=2p1=8; p1=2Þ; whereas it really implies a quadratic
residue is contained in the interval ðp1=2 � 217=2p1=8; p1=2Þ; since 2 is a quadratic non-
residue modulo p if p � 13 ðmod 24Þ:
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The research presented here tackles the case p � 13 ðmod 24Þ by using an alternate
method. In addition to completing an elementary proof of Schur’s conjecture, this
paper also shows that p ¼ 13 is the only prime number for which the greatest number

of consecutive quadratic non-residues ðmod pÞ exceeds p1=2:
The argument in this paper breaks down into two parts. In the first part, it is

shown that if p � 13 ðmod 24Þ is sufficiently large and if there exists an interval

containing more than p1=2 integers, all of which are quadratic non-residues modulo
p; then there must exist such an interval J satisfying

JC
p þ 3þ p1=2

2
;
p

2
þ 21=2p3=4 � p1=2

� �
:

Then, in the second part, it is shown that this cannot hold for p sufficiently large
by demonstrating that one can find two integers, a; bAJ such that if R � ab ðmod pÞ
and 0pRpp � 1; then RAJ: This implies that J contains a quadratic residue R; so J

could not have existed in the first place. This implies that the greatest number of

consecutive quadratic non-residues modulo p; is less than p1=2 when p is sufficiently
large. The remaining cases, where p is less than a given bound, are handled by
computer.

Lemma 1. If p is a prime number such that p � 13 ðmod 24Þ; p438 659; and there is a

sequence of more than p1=2 consecutive quadratic non-residues ðmod pÞ; there must be

such a sequence in the interval ðpþ3þp1=2

2
; p
2
þ 21=2p3=4 � p1=2Þ:

Proof. p � 13 ðmod 24Þ implies that every number of the form 2a2 is a quadratic
non-residue. This means that there must exist a quadratic non-residue, say N; in the
interval

ðp1=2 � 23=2p1=4 þ 2; p1=2Þ;

because if c is the smallest positive integer such that 2c24p1=2; then 2ðc � 1Þ24p1=2 �
23=2p1=4 þ 2:

Suppose J is an integer interval containing more than p1=2 consecutive quadratic
non-residues. Multiplying each member of J by N and reducing ðmod pÞ; we obtain a
collection of quadratic residues in which each quadratic residue differs from the next

by Nop1=2: This collection must span more than

ðp1=2 � 1Þðp1=2 � 23=2p1=4 þ 2Þ4p � 23=2p3=4 þ p1=2

integers. Since �1 is a quadratic residue ðmod pÞ; p � b must be a quadratic non-
residue whenever b is. Therefore, if our collection of quadratic residues is to lie

entirely outside a sequence of more than p1=2 consecutive quadratic non-residues,
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J must either be contained in

1; 21=2p3=4 � p1=2

2

� �
;

p � 21=2p3=4 þ p1=2

2
; p � 1

� �

or

p

2
� 21=2p3=4 þ p1=2

2
;
p

2
þ 21=2p3=4 � p1=2

2

� �
: ð1Þ

But J cannot be fully contained in the first of these intervals because the difference

between the square numbers in ð1; 21=2p3=4 � p1=2

2
Þ is less than p1=2: Similarly, J cannot

be contained in the second of these intervals because any sequence of the form given

by J in ðp � 21=2p3=4 þ p1=2

2
; p � 1Þ would have to correspond to a similar sequence in

ð1; 21=2p3=4 � p1=2

2 Þ So such a J can only be contained in the interval given by (1).

We now refer to the following theorem of Brauer’s:

Theorem (Brauer [1]). The least odd quadratic non-residue u modulo a prime p

satisfies uo23=5p2=5 þ 2�ð6=5Þ � 25p1=5 þ 3 for p ¼ 8n þ 5:

This implies that there exists an odd quadratic non-residue u; less than p1=2 if

p438 659: Then, since pþ1
2

is a quadratic non-residue ðmod pÞ; uðpþ1
2
Þ � pþu

2
is a

quadratic residue ðmod pÞ: Therefore, there exists a quadratic residue in the interval

ðp
2;

pþp1=2

2 Þ; so there must exist a corresponding quadratic residue in the interval

ðp�p1=2

2
; p

2
Þ; which means that J cannot pass through p

2
:

Combining this with the fact that �b is a quadratic non-residue whenever b is, we
know that if such a J exists, there must be at least one such J in the interval

p

2
;
p

2
þ 21=2p3=4 � p1=2

2

� �
: ð2Þ

Now note that 3 is a quadratic residue ðmod pÞ: Therefore, for odd m; pþ3m
2

must be

a quadratic residue ðmod pÞ if pþm
2 is. Combined with the fact that there exists a

quadratic residue in the interval ðp
2
; pþp1=2

2
Þ; we find that if such a J lies in the interval

given by (2), that same J must also lie in the interval

p þ 3þ p1=2

2
;
p

2
þ 21=2p3=4 � p1=2

2

� �
: ð3Þ
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To see why, suppose that pþ3
2

þ x is the first entry in J: Then, we can assume that
pþ1
2

þ x is a quadratic residue, meaning p
2
þ 3ð1

2
þ xÞ ¼ pþ3

2
þ 3x is also a quadratic

residue. Therefore we must have pþ3
2

þ 3x � ðpþ3
2

þ xÞ4p1=2; or x4p1=2

2
: &

Lemma 2. Suppose p438 659 is a prime congruent to 13 modulo 24 and pþ1
2

þ k is a

quadratic non-residue, where k40 is some fixed integer. Then, if there exists a such

that 1
4
pap15

32
; and ðap1=2 � 2Þ242k þ 2ð1� aÞp1=2 þ 2� Ip1=2m; and the difference

between ðpþ1
2
Þ2 þ k þ k2 þ 2kx þ x þ x2 at x ¼ Ið1� aÞp1=2m and x ¼ Iap1=2m� 2 is

greater than p; pþ1
2

þ k is not the smallest number in a sequence of more than p1=2

consecutive quadratic non-residues.

Proof. Suppose that all the integers of the form

p þ 1

2
þ k þ m

are quadratic non-residues, where m is an integer ranging from 0 to Ip1=2m:
Note that the product of two integers of this form, say pþ1

2
þ k þ m and pþ1

2
þ

k þ n; is a quadratic residue, and equals

p þ 1

2

� �2

þðp þ 1Þk þ k2 þ ðm þ nÞ k þ p þ 1

2

� �
þ mn ð4Þ

which if m and n both equal the same value, say x; reduces to

p þ 1

2

� �2

þðp þ 1Þk þ k2 þ ð2xÞ k þ p þ 1

2

� �
þ x2

which is congruent to

p þ 1

2

� �2

þk þ k2 þ 2kx þ x þ x2 ð5Þ

modulo p:

If there exists an a such that 1
4
pap15

32
and the difference between ðpþ1

2
Þ2 þ k þ

k2 þ 2kx þ x þ x2 at x ¼ Ið1� aÞp1=2m and x ¼ Iap1=2m� 2 is greater than p; we

note that we can find an integer x contained in the interval ðap1=2 � 2; ð1� aÞp1=2	;
and an integer c such that

p þ 1

2

� �2

þk þ k2 þ 2kx þ x þ x24 c þ 1

2

� �
p þ 1

2
þ k þ Ip1=2m
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and

p þ 1

2

� �2

þk þ k2 þ 2kðx � 1Þ þ x � 1þ ðx � 1Þ2p c þ 1

2

� �
p þ 1

2
þ k þ Ip1=2m: ð6Þ

Now suppose that

p þ 1

2

� �2

þk þ k2 þ 2kðx � 1Þ þ x � 1þ ðx � 1Þ2X c þ 1

2

� �
p þ 1

2
þ k:

Then, combining this with (6), we reach the absurd conclusion that a quadratic
residue equals a quadratic non-residue. Therefore, we have

p þ 1

2

� �2

þk þ k2 þ 2kðx � 1Þ þ x � 1þ ðx � 1Þ2o c þ 1

2

� �
p þ 1

2
þ k: ð7Þ

Now consider (4) again. Let m and n vary so that m ¼ x � y and n ¼ x þ y; where
x is an integer that satisfies the above conditions, and y is an integer ranging from 0

to the smallest integer larger than ap1=2 � 2: Since x lies in ðap1=2 � 2; ð1� aÞp1=2	;
we continue to meet the condition that m and n are both integers between 0 and

Ip1=2m inclusive, because yoap1=2 � 1; and Ip1=2m� ð1� aÞp1=24ap1=2 � 1: If m

and n vary this way, the only part of (4) that changes is the product mn: Also note
that

0omn � ðm � 1Þðn þ 1Þ ¼ n � m þ 1op1=2

when 0pn � mop1=2 � 1; which holds when y varies as above. So we have a
collection of quadratic residues in which no quadratic residue exceeds the next by

more than p1=2: This collection spans an interval of

x2 � ðx � ap1=2 þ 2Þðx þ ap1=2 � 2Þ ¼ ðap1=2 � 2Þ2: ð8Þ

Note that increasing x by 1 in (5) increases the value of the expression by 2k þ
2x þ 2: Combining this with (7) and (8), we find that one of the quadratic residues in
the aforementioned collection is congruent ðmod pÞ to an integer in the interval,

ðpþ1
2

þ k; pþ1
2

þ k þ Ip1=2mÞ if

ðap1=2 � 2Þ242k þ 2x þ 2� Ip1=2m;

and since xpð1� aÞp1=2; we have

ðap1=2 � 2Þ242k þ 2ð1� aÞp1=2 þ 2� Ip1=2m; ð9Þ

which proves the lemma. &
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Theorem. p ¼ 13 is the only prime number for which the greatest number of

consecutive quadratic non-residues modulo p exceeds p1=2:

Proof. Suppose p438 659; and suppose there exists a sequence of more than p1=2

consecutive quadratic non-residues ðmod pÞ: As noted earlier, this implies that p �
13 ðmod 24Þ:
Now suppose that

p þ 1

2
þ k ð10Þ

is a quadratic non-residue, where k is a fixed integer. With Lemma 1 in mind, we
need only prove that this is not the least quadratic non-residue in a sequence of more

than p1=2 consecutive quadratic non-residues when

p1=2

2
þ 1oko21=2p3=4 � p1=2:

Now consider three cases:

Case 1: ko2p1=2: Note that the difference between (5) at x ¼ I3p1=2

4
m and x ¼

Ip1=2

4
m� 2 is greater than p because it equals

ð2k þ 1Þ 3p1=2

4

� �
þ 3p1=2

4

� �2 !
� ð2k þ 1Þ p1=2

4

� �
� 2

� �
þ p1=2

4

� �
� 2

� �2
 !

¼ 2k
3p1=2

4

� �
� p1=2

4

� �� �
þ 3p1=2

4

� �
þ 4k þ 3p1=2

4

� �2
� p1=2

4

� �2
þ3 p1=2

4

� �
� 2

42k
p1=2

2
� 1

� �
þ 3p1=2

4
� 1þ 4k þ 9p

16
� 3p1=2

2
þ 1� p

16
þ 3

p1=2

4
� 1

� �
� 2

¼ kp1=2 þ 2k þ p

2
� 54

p

2
þ p1=2 þ p1=2 þ 2þ p

2
� 54p;

since k4p1=2

2
þ 1: With Lemma 2 in mind, we find that (10) is not the least quadratic

non-residue in a sequence of more than p1=2 consecutive quadratic non-residues if

p1=2

4
� 2

� �2

42k þ 3p1=2

2
þ 2� Ip1=2m: ð11Þ

Since ko2p1=2; (11) holds whenever

p1=2

4
� 2

� �2

4
9p1=2

2
þ 3;

which holds for p47711:
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Case 2: 2p1=2oko8p1=2: Note that the difference between (5) at x ¼ I5p1=2

8
m and

I3p1=2

8
m� 2 is greater than p because it equals

ð2k þ 1Þ 5p1=2

8

� �
þ 5p1=2

8

� �2 !
� ð2k þ 1Þ 3p1=2

8

� �
� 2

� �
þ 3p1=2

8

� �
� 2

� �2
 !

¼ 2k
5p1=2

8

� �
� 3p1=2

8

� �� �
þ 5p1=2

8

� �
þ 4k þ 5p1=2

8

� �2
� 3p1=2

8

� �2
þ3 3p1=2

8

� �
� 2

42k
p1=2

4
� 1

� �
þ 5p1=2

8
� 1þ 4k þ 25p

64
� 5p1=2

4
þ 1� 9p

64
þ 3

3p1=2

8
� 1

� �
� 2

¼ kp1=2

2
þ 2k þ p

4
þ p1=2

2
� 54p þ 4p1=2 þ p

4
þ p1=2

2
� 54p;

since k42p1=2: With Lemma 2 in mind, we find that (10) is not the least quadratic

non-residue in a sequence of more than p1=2 consecutive quadratic non-residues if

3p1=2

8
� 2

� �2

42k þ 5p1=2

4
þ 2� Ip1=2m: ð12Þ

Since ko8p1=2; (12) holds when

3p1=2

8
� 2

� �2

4
65p1=2

4
þ 3;

which holds for p415917:

Case 3: 8p1=2ok: Note that the difference between (5) at x ¼ I17p1=2

32
m and

I15p1=2

32
m� 2 is greater than p because it equals

ð2k þ 1Þ 17p1=2

32

� �
þ 17p1=2

32

� �2 !
� ð2k þ 1Þ 15p1=2

32

� �
� 2

� �
þ 15p1=2

32

� �
� 2

� �2
 !

¼ 2k
17p1=2

32

� �
� 15p1=2

32

� �� �
þ 17p1=2

32

� �
þ 4k þ 17p1=2

32

� �2
� 15p1=2

32

� �2
þ3 15p1=2

32

� �
� 2

42k
p1=2

16
� 1

� �
þ 17p1=2

32
� 1þ 4k þ 289p

1024
� 17p1=2

16
þ 1� 225p

1024
þ 3

15p1=2

32
� 1

� �
� 2

¼ kp1=2

8
þ 2k þ p

16
þ 7p1=2

8
� 54p þ 16p1=2 þ p

16
þ 7p1=2

8
� 54p;
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since k48p1=2: With Lemma 2 in mind, we find that (10) is not the least qua-

dratic non-residue in a sequence of more than p1=2 consecutive quadratic
non-residues if

15p1=2

32
� 2

� �2

42k þ 17p1=2

16
þ 2� Ip1=2m: ð13Þ

Since ko21=2p3=4 � p1=2; (13) holds whenever

15p1=2

32
� 2

� �2

423=2p3=4 � 31p1=2

16
þ 3;

which holds for p427 250:

So when p438 659; no sequence of more than p1=2 consecutive quadratic non-
residues exists.
Now all that remains is to consider the case pp38 659: This case can be handled

by a simple computation. I have run a computer program which compares the largest

number of consecutive quadratic non-residues modulo p with p1=2 for all primes p;
such that p � 13 ðmod 24Þ and pp38 659: From this I was able to check that 13 is the
only prime number for which the greatest number of consecutive quadratic non-

residues ðmod pÞ exceeds p1=2: &

Remark. The data obtained from this program can be viewed by going to the
website http://www.math.caltech.edu/people/hummel.html. A sample of some of the
data obtained from the program is given below. The numbers in each set represent p;

the greatest number of consecutive quadratic non-residues ðmod pÞ; and Ip1=2m in

that order. For all but the smallest numbers, p1=2 far exceeds the greatest number of
consecutive quadratic non-residues.

f13; 4; 3g; f757; 8; 27g; f3181; 9; 56g; f5869; 9; 76g; f7237; 10; 85g; f9397; 10; 96g;
f12037; 11; 109g; f14389; 12; 119g; f16477; 12; 128g; f18517; 13; 136g;
f20509; 13; 143g; f22381; 12; 149g; f24061; 13; 155g; f26029; 13; 161g;
f28429; 13; 168g; f30469; 14; 174g; f32749; 15; 180g; f34693; 14; 186g;
f36709; 15; 191g; f38653; 15; 196g:

Acknowledgments

This research is the result of work done under the mentorship of Prof. Dinakar
Ramakrishnan while on a Caltech Summer Undergraduate Research Fellowship. I
am deeply grateful to Prof. Ramakrishnan for his guidance and to David
Whitehouse for reviewing my paper.

ARTICLE IN PRESS
P. Hummel / Journal of Number Theory 103 (2003) 257–266 265

&ast;http://www.math.caltech.edu/people/hummel.html.


References

[1] A. Brauer, On the non-existence of the Euclidean algorithm in certain quadratic number fields, Amer.

J. Math. 62 (1940) 697–716.

[2] A. Brauer, Über die Verteilung der Potenzreste, Math. Z. 35 (1932) 39–50.

[3] D.A. Burgess, A note on the distribution of residues and non-residues, J. London Math. Soc. 38 (1963)

253–256.

[4] R.K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994, pp. 244–245.

[5] R.H. Hudson, On a conjecture of Issai Schur, J. Reine Angew. Math. 289 (1977) 215–220.

[6] R.H. Hudson, On sequences of consecutive quadratic non-residues, J. Number Theory 3 (1971)

178–181.

[7] K.K. Norton, Bounds for sequences of consecutive power residues, Analytic number theory, Amer.

Math. Soc. 24 (1973) 213–220.

ARTICLE IN PRESS
P. Hummel / Journal of Number Theory 103 (2003) 257–266266


	On consecutive quadratic non-residues: a conjecture of Issai Schur
	Acknowledgements
	References


