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Abstract

We construct a shellable polytopal cell complex that supports a minimal free resolution of a Borel fixed
ideal, which is Borel generated by just one monomial in S = k[x1, x2, . . . , xn]; this includes the case of
powers of the homogeneous maximal ideal (x1, x2, . . . , xn) as a special case. In our most general result we
prove that for any Borel fixed ideal I generated in one degree, there exists a polytopal cell complex that
supports a minimal free resolution of I .
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We study resolutions over the polynomial ring S = k[x1, x2, . . . , xn], where k is a field. The
idea to encode the structure of the resolution of a monomial ideal in the combinatorial structure
of a simplicial complex was introduced in [3] (see also [9]). The idea was generalized later in [4],
where resolutions supported on a regular cell complex were introduced. The generalization con-
tinued in [2] and [14], where monomial resolutions supported on a CW-complex were introduced
and studied. An example of a monomial ideal whose minimal free resolution is supported on a
CW-complex, but cannot be supported on a regular cell complex is given in [19]. More impor-
tantly, a large class of monomial ideals whose resolution cannot be supported on a CW-complex
is also given in [19].

In this paper we study d-generated Borel fixed ideals, i.e. Borel fixed ideals generated in
the same degree d . The Eliahou–Kervaire resolution of a d-generated Borel fixed ideal is min-
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imal and can be supported on a CW-complex, as proved in [2] using discrete Morse theory.
As a worked example in [2], the authors give the Morse complex that supports a minimal free
resolution for powers of the homogeneous maximal ideal (x1, . . . , xn) of the polynomial ring
S = k[x1, x2, . . . , xn]. More generally, the Morse complex that supports a minimal free reso-
lution of a Borel principal ideal is given in [14]. It is not clear whether any of those Morse
complexes are regular. Thus a natural question is the following:

Does there exists a regular cell complex that supports a minimal resolution of a d-generated
Borel fixed ideal?

We answer the above question positively in this chapter, which is organized as follows:
In Section 2, we give the basic notation and preliminaries for the rest of this paper and we

refer to the literature for more details.
In Section 3, we answer the above natural question by constructing inductively a shellable

polytopal cell complex that supports the minimal free resolution of a Borel principal ideal in
S = k[x1, x2, . . . , xn]; this includes the case of powers of the homogeneous maximal ideal as a
special case. Our most general result is Theorem 20, where we prove that for any d-generated
Borel fixed ideal I , there exists a polytopal cell complex that supports a minimal free resolution
of I . It should be noted that the basis we use in the minimal free resolution is different than the
one used in the Eliahou–Kervaire resolution (see [10]).

Finally, in Section 4, we consider the lcm-lattice of a d-generated Borel fixed ideal. In partic-
ular, in Proposition 22, we show that it is ranked.

2. Notation-preliminaries

2.1. Monomial ideals

We work over the polynomial ring S = k[x1, x2, . . . , xn] with char(k) = 0. In examples, we
often use the letters a, b, c, d, . . . , instead of x1, x2, x3, x4, . . . , respectively. For a monomial
m = x

a1
1 x

a2
2 · · ·xan

n in S, we define the exponent vector to be e(m) = (a1, a2, . . . , an) and we set
max(m) to be the largest index of a variable that divides m.

All ideals in this paper are considered to be monomial ideals. If I is a monomial ideal, then
it is trivial to determine whether a monomial m is in I : m ∈ I if and only if m is divisible by a
monomial generator n of I . Note that by removing any monomial generators of I divisible by
other generators, every monomial ideal I ⊆ S has a unique minimal finite set G(I) of monomial
generators.

A monomial ideal I in S is Borel fixed, if for every m in G(I) and every xt that divides m,

mt→s := m
xt

xs

is in I for all 1 � s < t . Let Γ = {m1,m2, . . . ,mr } be a finite set of monomials in S. If I is the
smallest Borel fixed ideal such that Γ is a subset of G(I), then we say that I is Borel generated
by m1,m2, . . . ,mr and we write

I = 〈m1,m2, . . . ,mr 〉.
In particular, if Γ = {m}, then we call I Borel principal and we write

I = 〈m〉.
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Example 1. Let R = k[a, b, c]. The ideal (a2, ab, b2, ac, bc) is a Borel fixed ideal, which is also
Borel principal, because

(
a2, ab, b2, ac, bc

) = 〈bc〉.

For more on monomial ideals we refer to [8,9,16].

2.2. Polytopal complexes

We assume familiarity with the basic notions of CW-complex, polytopal complex and regular
cell complex and their differences. Recall that the closures of the cells of a regular CW-complex
are homeomorphic with closed balls. For example, any polytopal cell complex is regular.

The underlying set of a polytopal complex X is the point set |X| := ⋃
P∈X P . A subdivision

of a polytope X is a polytopal complex X′ with the underlying space |X| = X′. This means
that X is the union of the polytopes in X′. A subdivision X′ of a polytopal complex X is called
regular if there is a piecewise linear convex function f : |X| → R whose domains of linearity
are the facets of X′. Such a function f is called a support function for the subdivision X′ (see,
e.g., [7, p. 34]).

Example 3. (See [7, p. 37].) Let X ⊂ R
N be a polytope and let H ⊂ R

N be a hyperplane given
by the equation a1x1 +· · ·+aNxN = b (a1, . . . , aN , b ∈ R). If H cuts X in two parts of the same
dimension, say X = Z ∪W , then the union of the face lattices of Z and W forms a regular subdi-
vision of X. The function f : |X| → R, with f (y) = |a1y1 + · · · + aNyN − b|, y = (y1, . . . , yN)

is a support function of this regular subdivision. Taking intersections of such subdivisions one
concludes that an arbitrary finite system of hyperplanes H1, . . . ,Hk ⊂ R

N cuts X into smaller
polytopes that define a regular subdivision of X.

Let X be a pure k-dimensional polytopal complex (k � 1). As in [20, p. 233], a shelling of X

is a linear ordering F1,F2, . . . ,Fs of the facets of X, which satisfies the following condition:
For 1 < j � s the intersection of the facet Fj with the previous facets is nonempty and is a

beginning of a shelling of the (k − 1)-dimensional boundary complex of Fj , that is,

Fj ∩
(

j−1⋃
i=1

Fi

)
= G1 ∪ G2 ∪ · · · ∪ Gr

for some shelling G1, . . . ,Gr, . . . ,Gt of the boundary complex of Fj , and 1 � r � t .
A polytopal complex is shellable if it is pure and has a shelling. Note that polytopes are

shellable [20, p. 240] and that a regular subdivision of a polytope is shellable [20, p. 243]. For
more on polytopal complexes we refer to [20].

2.3. Cellular resolutions

As in [4], let X be a regular cell complex having G(I), the set of minimal generators of I , as
its set of vertices and let εX be an incidence function on X. It is well known that such a function
exists (see, e.g., pp. 244–248 in [15]). Next we label each nonempty face F of X by the least
common multiple mF of the monomials mj in G(I), which correspond to the vertices of F . The
degree aF of the face F is defined to be the exponent vector e(mF ).



2742 A. Sinefakopoulos / Journal of Algebra 319 (2008) 2739–2760
Let SF be the free S-module with one generator F in degree aF . The cellular complex FX is
the Z

n-graded S-module
⊕

∅�=F∈X SF with differential

∂F =
∑

∅�=F ′∈X

εX(F,F ′) mF

mF ′
F ′.

For each degree b ∈ Z
n let X�b be the subcomplex of X on the vertices of degree � b. The

following results are proved in [4].

Proposition 1. The complex FX is a free resolution of I if and only if X�b is acyclic over k for
all degrees b. In this case, FX is called a cellular resolution of I .

Corollary 2. The cellular complex FX is a resolution of I if and only if the cellular complex
FX�b is a resolution of the monomial ideal I�b for all b ∈ Z

n.

Remark 3. A cellular resolution FX is minimal if and only if any two comparable faces F ′ ⊆ F

of the same degree coincide.

The above results are presented in [16] for polytopal complexes.

Example 2. Let I ⊂ S be a monomial ideal with G(I) = {xd
1 , xd

2 , . . . , xd
n } for a fixed positive

integer d . Then the labeled (n−1)-simplex Δn−1(x
d
1 , xd

2 , . . . , xd
n ) with vertices in G(I) supports

a minimal free resolution of I .
Note that in this paper, we use the term “cellular” resolution for a resolution supported on a

regular cell complex.

2.4. Results from algebraic topology

We need the cellular version of Mayer–Vietoris Theorem and the Künneth Theorem with field
coefficients. See [13] or [15] for more details.

Theorem 4 (Mayer–Vietoris). Let X be a CW-complex and let Y1 and Y2 be CW subcomplexes
of X such that X = Y1 ∪ Y2. Then there is an exact sequence

· · · → H̃i(Y1 ∩ Y2;k) → H̃i(Y1;k) ⊕ H̃i(Y2;k) → H̃i(X;k) → H̃i−1(Y1 ∩ Y2;k) → ·· · .

Theorem 5 (Künneth). Let X and Y be two CW-complexes. Then there is a natural isomorphism⊕
j

(
Hj(X;k) ⊗k Hi−j (Y ;k)

) → Hi(X × Y ;k).

3. Cellular resolutions of d-generated Borel fixed ideals

3.1. Three basic lemmas

Let I and J be two monomial ideals in S and assume that X and Y are regular cell complexes
in some R

N that support a minimal free resolution of I and J , respectively.
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Can we say anything about the cellular resolution of I + J and/or the cellular resolution
of IJ ?

The following three lemmas give some results related to this question, which will be useful in
proving our main results.

Lemma 6. Let I and J be two monomial ideals in S such that G(I +J ) = G(I)∪G(J ). Suppose
that

(i) X and Y are labeled regular cell complexes in some R
N that support a minimal free resolu-

tion FX and FY of I and J , respectively, and
(ii) X ∩ Y is a labeled regular cell complex that supports a minimal free resolution FX∩Y of

I ∩ J .

Then X ∪ Y is a labeled regular cell complex that supports a minimal free resolution FX∪Y of
I + J .

Proof. First let Z := X ∪ Y and note that Z is a regular cell complex. Since G(I + J ) = G(I) ∪
G(J ), the vertices of Z are labeled by the elements of G(I +J ) in a way that extends the labeling
of the vertices of X by G(I) and the labeling of the vertices of Y by G(J ). From the labeling of
X, Y and X ∩ Y and our assumptions above, it follows that G(I ∩ J ) = G(I) ∩ G(J ). From our
hypothesis, we have

H̃i(X�b;k) = 0, H̃i(Y�b;k) = 0, and H̃i

(
(X ∩ Y)�b;k

) = 0

for all i and all b ∈ Z
n. Furthermore, it is clear from our labeling and the definition of Z that

Z�b = (X ∪ Y)�b = X�b ∪ Y�b

for all b ∈ Z
n. Then the Mayer–Vietoris Theorem gives us the following exact sequence

H̃i(X�b;k) ⊕ H̃i(Y�b;k) → H̃i(Z�b;k) → H̃i−1
(
(X ∩ Y)�b;k

)
.

Consequently, H̃i(Z�b;k) = 0 and so FZ is a cellular resolution of I + J from Proposition 1.
The minimality of FZ follows immediately from the minimality of FX and FY and Remark 3. �
Remark 7. For any two monomial ideals I and J , we have

G(I + J ) ⊆ G(I) ∪ G(J ).

A case where equality becomes true is when all elements of G(I)∪G(J ) are of the same degree.

Lemma 8. Let I ⊂ k[x1, . . . , xk] and J ⊂ k[xk+1, . . . , xn] be two monomial ideals. Suppose that
X and Y are labeled regular cell complexes in some R

N of dimension k − 1 and n − k − 1,
respectively, that support a minimal free resolution FX and FY of I and J , respectively. Then the
labeled regular cell complex X × Y supports a minimal free resolution FX×Y of IJ .
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Proof. Let Z := X × Y and label the vertices of Z with the product of the labels of the corre-
sponding vertices of X and Y . This is a well defined labeling because from hypotheses it follows
that G(IJ ) = G(I)G(J ). Let b = (b1,b2) ∈ Z

n, where b1 ∈ Z
k and b2 ∈ Z

n−k . Then, it is easy
to check that

Z�b = (X × Y)�b = X�b1 × Y�b2 .

From the Künneth Theorem for CW complexes, there is an isomorphism

⊕
j

(
Hj(X�b1;k) ⊗k Hi−j (Y�b2;k)

) ∼= Hi(X�b1 × Y�b2;k) = Hi(Z�b;k)

for all i. From our hypothesis, we have

H̃i(X�b1;k) = 0 and H̃i(Y�b2;k) = 0,

for all i. Therefore,

H0(Z�b;k) = k ⊗k k = k,

while

Hi(Z�b;k) = 0,

for i > 0. Therefore, FZ is a cellular resolution of IJ from Proposition 1.
Now assume that the cellular resolutions FX and FY are minimal and let eX × eY and σX ×σY

be two comparable faces of X × Y with the same label. That is,

eX ⊂ σX and eY ⊂ σY

and

label(eX × eY ) = label(σX × σY ) = (b1,b2)

where b1 ∈ Z
k and b2 ∈ Z

n−k . Then

label(eX) = label(σX) = (b1)

and

label(eY ) = label(σY ) = (b2),

respectively. From Remark 3 and the minimality of FX and FY , it follows that eX = σX and
eY = σY , Therefore, eX × eY = σX × σY and so FZ is minimal. The proof is complete. �
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Remark 9. From our conclusion in Lemma 8, it follows that

proj dim(S/IJ ) = dim(X × Y) + 1

= dim(X) + dim(Y ) + 1

= (k − 1) + (n − k − 1) + 1

= n − 1.

Lemma 10. Let I ⊂ k[x1, . . . , xk] and J ⊂ k[xk, . . . , xn] be two monomial ideals such that
G(IJ ) = G(I)G(J ). Suppose that there exists a regular cell complex X in R

N ( for some N )
of dimension k − 1 and a regular cell complex Y in R

n−k of dimension n − k, which support
a minimal free resolution FX of I and FY J respectively. Then the regular cell complex X × Y

supports a minimal free resolution FX×Y of IJ .

Proof. Let Z := X × Y and label the vertices of Z with the product of the labels of the corre-
sponding vertices of X and Y . This is a well defined labeling because G(IJ ) = G(I)G(J ). Let
b = (b1, β,b2) ∈ Z

n, where b1 ∈ Z
k−1, β ∈ Z and b2 ∈ Z

n−k . Then, for 1 � k � β − 1 define
iteratively Z

(k)
�b as follows

Z
(k+1)
�b = Z

(k)
�b ∪ (X�(b1,k) × Y�(β−k,b2)),

where Z
(1)
�b = X�(b1,0) × Y�(β,b2), and note that

Z�b = Z
(β)

�b = (X�(b1,0) × Y�(β,b2)) ∪ (X�(b1,1) × Y�(β−1,b2)) ∪ · · ·
∪ (X�(b1,k) × Y�(β−k,b2)).

Moreover,

(X�(b1,0) × Y�(β,b2)) ∩ (X�(b1,1) × Y�(β−1,b2)) = X�(b1,0) × Y�(β−1,b2),

or more generally,

Z
(k)
�b ∩ (X�(b1,k+1) × Y�(β−k−1,b2)) = X�(b1,0) × Y�(β−k−1,b2).

By combining the Mayer–Vietoris Theorem with the Künneth Theorem we get

H̃i(Z�b;k) = 0.

Therefore, FZ is a cellular resolution of IJ from Proposition 1. Now assume that the cellular
resolutions FX and FY are minimal and let eX × eY and σX × σY be two comparable faces of
X × Y with the same label. That is,

eX ⊂ σX and eY ⊂ σY
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and

label(eX × eY ) = label(σX × σY ) = (b1, β,b2)

where b1 ∈ Z
k−1, β ∈ Z and b2 ∈ Z

n−k . Then,

label(eX) = (b1, β1) and label(σX) = (b1, β2),

which implies β1 � β2 and

label(eY ) = (β − β1,b2) and label(σY ) = (β − β2,b2),

which implies β − β1 � β − β2, that is, β2 � β1. Thus we have β1 = β2 and then,

label(eX) = label(σX) = (b1, β1)

and

label(eY ) = label(σY ) = (β − β1,b2).

From Remark 3 and the minimality of FX and FY , it follows that eX = σX and eY = σY . There-
fore, eX × eY = σX × σY and so FZ is minimal. The proof is complete. �
Remark 11.

(1) For any two monomial ideals I and J , we have

G(IJ ) ⊆ G(I)G(J ).

Thus our assumption that G(IJ ) = G(I)G(J ) is equivalent to |G(IJ )| = |G(I)| · |G(J )|.
(2) As in Remark 9, from our conclusion in Lemma 10, it follows that

proj dim(S/IJ ) = dim(X × Y) + 1

= dim(X) + dim(Y ) + 1

= (k − 1) + (n − k) + 1

= n.

(3) A lemma similar to Lemmas 8 and 10 for monomial ideals

I ⊂ k[x1, . . . , xk−1, xk] and J ⊂ k[xk−1, xk, . . . , xn]

and corresponding labeled regular cell complexes X and Y with

dim(X) = k − 1 and dim(Y ) = n − k + 1

would fail because we would have
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dim(X × Y) + 1 = dim(X) + dim(Y ) + 1

= (k − 1) + (n − k + 1) + 1

= n + 1

> proj dim(S/IJ ),

which contradicts Hilbert’s Syzygy Theorem (see, e.g. [8, p. 478]).
(4) Let X and Y be labeled regular cell complexes in some R

N that support a minimal free
resolution FX and FY of I and J , respectively. If X × Y is a labeled cell complex that
supports a minimal free resolution of IJ , then

FX×Y = FX ⊗ FY.

(see, e.g., pp. 280–282 in [15]).

Example 4. Let R = k[a, b, c]. The resolution of I = (a, b) is of the form

0 → R(−2) → R2(−1) → (a, b) → 0

and the resolution of J = (b, c) is of the form

0 → R(−2) → R2(−1) → (b, c) → 0.

Therefore, the resolution of IJ = (a, b)(b, c) is of the form

0 → R(−4) → R4(−3) → R4(−2) → IJ → 0,

which is the tensor product of the first two resolutions.

3.2. Powers of the homogeneous maximal ideal

Now we may prove our first main result, which is about the powers of the homogeneous
maximal ideal in S.

Theorem 12. There exists a shellable polytopal cell complex Pd(x1, . . . , xn) that supports a
minimal free resolution of (x1, . . . , xn)

d . Moreover, Pd(x1, . . . , xn) is a polytopal subdivision of
the (n − 1)-simplex Δn−1(x

d
1 , xd

2 , . . . , xd
n ).

Proof. The proof will be by induction on d . It is clear that if d = 1, then the standard (n − 1)-
simplex denoted by Δn−1(x1, x2, . . . , xn), supports a minimal free resolution of (x1, . . . , xn) for
all n � 1. Thus

P1(x1, . . . , xn) = Δn−1(x1, x2, . . . , xn)

for all n � 1. Also, P1(xk+1, . . . , xn) is a subcomplex of P1(xk, . . . , xn) for all k < n. Assume
that for some d � 1 we have constructed Pd(x1, . . . , xn) for all n � 1 and that Pd(xk+1, . . . , xn)

is a subcomplex of Pd(xk, . . . , xn) for all k < n. Define the ideals

Ik = (x1, x2, . . . , xk)(xk, xk+1, . . . , xn)
d
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and note that an easy (finite) induction on k gives us

I1 + · · · + Ik = (x1, . . . , xk)(x1, x2, . . . , xn)
d

for all 1 � k � n. Indeed, assuming that we have proved it for k − 1, for some k > 1, then we
have

I1 + · · · + Ik−1 + Ik = (x1, . . . , xk−1)(x1, x2, . . . , xn)
d + (x1, . . . , xk)(xk, . . . , xn)

d

= (x1, . . . , xk−1)(x1, x2, . . . , xn)
d + xk(xk, . . . , xn)

d

= (x1, . . . , xk−1)(x1, x2, . . . , xn)
d + xk(x1, . . . , xn)

d

= (x1, . . . , xk)(x1, . . . , xn)
d .

Moreover, we see that

(I1 + · · · + Ik) ∩ Ik+1 = (x1, . . . , xk)(x1, . . . , xn)
d ∩ (x1, . . . , xk+1)(xk+1, . . . , xn)

d

= (x1, . . . , xk)(xk+1, . . . , xn)
d .

From Lemmas 8 and 10, we conclude that the polytopal cell complexes Ck and Dk (k =
1,2, . . . , n) defined by

Ck := Δk−1(x1, x2, . . . , xk) × Pd(xk, . . . , xn)

and

Dk := Ck ∩ Ck+1 = Δk−1(x1, x2, . . . , xk) × Pd(xk+1, . . . , xn)

support a minimal free resolution for Ik and (I1 + · · · + Ik) ∩ Ik+1, respectively.
Thus from this and Lemma 6, the polytopal cell complex C′

k , which is defined recursively by

C′
1 = C1, and C′

k+1 = C′
k ∪ Ck+1

for k � 1, supports a (minimal) free resolution for (x1, . . . , xk)(x1, x2, . . . , xn)
d . Accordingly, set

Pd+1(x1, x2, . . . , xn) := C′
n = C1 ∪ C2 ∪ · · · ∪ Cn

and the construction of our polytopal cell complex is done by induction. The intersection of any
two polytopes of Pd(x1, . . . , xn) is empty or another polytope of Pd(x1, . . . , xn) smaller dimen-
sion. The (n − 1)-simplex Δn−1(x

d
1 , xd

2 , . . . , xd
n ) is the union of the polytopes in Pd(x1, . . . , xn),

and so Pd(x1, . . . , xn) is a polytopal subdivision of Δn−1(x
d
1 , xd

2 , . . . , xd
n ). From our construction

and Example 3, it follows that Pd(x1, . . . , xn) is a regular subdivision of Δn−1(x
d
1 , xd

2 , . . . , xd
n ).

Therefore, Pd(x1, . . . , xn) is shellable. �
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Fig. 1.

Fig. 2.

Example 5. Let I = (a, b, c, d)2. Using the software package MACAULAY 2 [12], we see that
the polytopal cell complex that supports the minimal free resolution of I is as shown in Fig. 1.

This can be decomposed as shown in Fig. 2.
Another cell complex that supports a minimal free resolution of I is shown in Fig. 3 (Morse

complex), which supports the Eliahou–Kervaire resolution of I . In particular, note that it is not
polytopal.
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Fig. 3.

Remark 13. From Theorem 12 and Corollary 2, we may get a minimal cellular resolution for all
ideals of the form I�b (b ∈ Z

n) (see also [17]).

3.3. Borel principal ideals

Our next goal is to prove a more general result for Borel principal ideals. Note that the fol-
lowing theorem includes Theorem 12 as a special case, since

(x1, . . . , xn)
d = 〈

xd
n

〉
.

Theorem 14. There exists a shellable polytopal cell complex Q(m) that supports a minimal free
resolution of the Borel principal ideal

I = 〈m〉 =
s∏

j=1

I
dj

λj
,

where m = x
d1
λ1

x
d2
λ2

· · ·xds

λs
, Ii = (x1, x2, . . . , xi) and 1 � λ1 < λ2 < · · · < λs � n. Moreover,

Q(m) is a subcomplex of Pd(x1, . . . , xn), where d = deg(m). In particular, Q(m) is the union of
all the convex polytopes (i.e. the faces) of the polytopal cell complex Pd(x1, . . . , xn), with vertices
in 〈m〉.

Remark 15. If s = 1, then m = x
d1
λ1

, and so Q(m) = Pd1(x1, x2, . . . , xλ1). If λs−1 = 1, then

s = 2 and m = x
d1
1 x

d2
λ2

, so Q(m) is obtained by multiplying all the labels of the vertices of

Pd2(x1, x2, . . . , xλ2) by x
d1
1 .

Before we prove the above theorem we need a lemma. Because of the above remark, we may
assume that s > 1 and λs−1 > 1.
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Lemma 16. Let I be a Borel principal ideal as above. Define the ideals

Nk = 〈
x

d1
λ1

x
d2
λ2

· · ·xdj

λj
x

dj+1+···+ds−1
k

〉
and Jk = Nk · (xk, . . . , xμ)ds

for λj < k � λj+1 (j < s − 1 and λ0 = 0). Then for λs−1 < μ � λs

(a) Ni · (x1, . . . , xμ)ds = J1 + J2 + · · · + Ji for i = 1,2, . . . , λs−1, and
(b) Nj · (x1, . . . , xμ)ds ∩ Nj+1 · (xj+1, . . . , xμ)ds = Nj · (xj+1, . . . , xμ)ds

for j = 1,2, . . . , λs−1 − 1.

Proof. (a) First it is clear that

Ni · (x1, . . . , xμ)ds ⊇ J1 + J2 + · · · + Ji.

Note that the ideal Ni · (x1, . . . , xμ)ds is Borel principal, Borel generated by the monomial

x
d1
λ1

x
d2
λ2

· · ·xdj

λj
x

dj+1+···+ds−1
i xds

μ ∈ Ni · (xi, . . . , xμ)ds = Ji

(λj < i � λj+1 < μ, since j < s − 1). To complete the proof of part (a), it suffices to show that
the ideal J1 + J2 + · · · + Ji is Borel fixed. Since J1 is Borel fixed, assume by induction that
for some 1 � k < i, the ideal J1 + · · · + Jk is Borel fixed and let n ∈ J1 + · · · + Jk + Jk+1. If
n ∈ J1 + · · · + Jk , we are done, so assume that n ∈ G(Nk+1) \ (J1 + · · · + Jk). Then write

n = n′n′′

for some n′ ∈ G(Nk+1) and n′′ ∈ G((xk+1, . . . , xμ)ds ). Now observe that xk+1 must divide n′
because n /∈ J1 + · · · + Jk . If r < t and xt divides n, then we see that nt→r is in Jk+1. Indeed, it
is easy to verify this when xt divides n′, because Nk+1 is Borel fixed, so assume that xt does not
divide n′. Then xt divides n′′, so t � k + 1. If k + 1 � r , then we have

nxr

xt

= n′ · n′′xr

xt

∈ Nk+1 · (xk+1, . . . , xμ)ds = Jk+1,

while if r < k + 1,

nxr

xt

= n′xr

xk+1
· n′′xk+1

xt

∈ Nk+1 · (xk+1, . . . , xμ)ds = Jk+1,

because Nk+1 is Borel fixed. Thus

nxr

xt

∈ J1 + · · · + Jk + Jk+1

in all cases and the proof of part (a) is complete.
For part (b), let m ∈ G(Nj · (x1, . . . , xμ)ds ) and n ∈ G(Nj+1 · (xj+1, . . . , xμ)ds ), and write

m = m1m2 and n = n1n2, where m1 ∈ G(Nj ), m2 ∈ G((x1, . . . , xμ)ds ), n1 ∈ G(Nj+1) and
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Fig. 4.

n2 ∈ G((xj+1, . . . , xμ)ds ). Then, note that m1n2 divides lcm(m,n). This implies that lcm(m,n)

is in Nj · (xj+1, . . . , xμ)ds , and so

Nj · (x1, . . . , xμ)ds ∩ Nj+1 · (xj+1, . . . , xμ)ds ⊆ Nj · (xj+1, . . . , xμ)ds .

The opposite containment is obvious, so the proof of part (b) is complete. �
Remark 17. Part (a) with i = λs−1 and μ = λs yields

I = N1 · (x1, . . . , xλs )
ds + N2 · (x2, . . . , xλs )

ds + · · · + Nλs−1 · (xλs−1 , . . . , xλs )
ds .

Example 6.

(i) For the ideal I = 〈bd2〉 in k[a, b, c, d], we have s = 2, λ1 = 2, d1 = 1, λ2 = 4 and d2 = 2.
Moreover, N1 = 〈a〉, N2 = 〈b〉 = (a, b). Therefore,

I = 〈a〉(a, b, c, d)2 + 〈b〉(b, c, d)2.
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(ii) For the ideal I = 〈bcd〉 in k[a, b, c, d], we have s = 3, λ1 = 2, λ2 = 3, λ3 = 4 and d1 =
d2 = d3 = 1. Moreover, N1 = 〈a2〉, N2 = 〈b2〉 and N3 = 〈bc〉. Therefore, as is also shown in
Fig. 4,

I = 〈
a2〉(a, b, c, d) + 〈

b2〉(b, c, d) + 〈bc〉(c, d).

Proof of Theorem 14. By induction on s. For s = 1, we are done. Assume that s > 1 and that we

have obtained Q(
∏k

j=1 I
dj

λj
) for all k < s. By the inductive hypothesis, there is a polytopal cell

complex Q(Ni) that supports a minimal free resolution for the ideals Ni , for all 1 � i � λs−1.
In particular, Q(Ni) is the union of all the convex polytopes of Pd−ds (x1, . . . , xn) with vertices
in Ni . Thus Q(Ni) is a subcomplex of Q(Ni+1) for all 1 � i < λs−1. Set Ji = Ni · (xi, . . . , xλs )

ds

(i = 1,2, . . . , λs−1 − 1). From Lemmas 8, 10 and 16 it follows that the polytopal cell complexes
Ci and Di (i = 1,2, . . . , λs ) defined by

Ci := Q(Ni) × Pds (xi, . . . , xλs )

and

Di := Ci ∩ Ci+1 = Q(Ni) × Pds (xi+1, . . . , xλs )

support a minimal free resolution of Ji and (J1 + · · · + Ji) ∩ Ji+1, respectively, for all 1 � i <

λs−1. Thus Lemma 6 implies that the polytopal cell complex C′
k , which is defined recursively by

C′
1 = C1, and C′

i+1 = C′
i ∪ Ci+1

for 1 � i < λs−1, supports a minimal free resolution of J1 + J2 + · · · + Ji . Accordingly, set

Q(m) := C′
λs−1

= C1 ∪ C2 ∪ · · · ∪ Cλs−1

and the construction of our polytopal cell complex is done by induction. Also, from our construc-
tion it follows inductively that Q(m) is the union of all the convex polytopes of Pd(x1, . . . , xn)

with vertices in 〈m〉. Therefore, Q(m) is subcomplex of Pd(x1, . . . , xn), where d = deg(m), as
desired. As in Theorem 12, Q(m) is a regular subdivision of Δn−1(x

d
1 , xd

2 , . . . , xd
n ) and hence

shellable. The proof is complete. �
3.4. d-generated Borel fixed ideals

Next we generalize Theorem 14 to the case of any Borel fixed ideal generated in one degree.
We need some preliminary lemmas first.

Lemma 18. Let m1 and m2 be two monomials of the same degree d . Then

〈m1〉 ∩ 〈m2〉

is a Borel principal ideal, Borel generated by a monomial m of degree d . Moreover,

Q(m1) ∩ Q(m2) = Q(m).
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Proof. First assume that m1 = x
a1
1 x

a2
2 · · ·xan

n and m2 = x
b1
1 x

b2
2 · · ·xbn

n . Then define μn =
min{an, bn} and the natural numbers μi for i = n − 1, . . . ,1 recursively, by setting

μi = min{ai + · · · + an, bi + · · · + bn} − (μi+1 + · · · + μn).

Define the following monomial of degree d

MIN(m1,m2) := x
μ1
1 x

μ2
2 · · ·xμn

n .

From our choice of the μi ’s, we have

μn−i + μn−i+1 + · · · + μn � an−i + an−i+1 + · · · + an,

and

μn−i + μn−i+1 + · · · + μn � bn−i + bn−i+1 + · · · + bn,

for all i = 0,1, . . . , n − 1. Therefore,

〈
MIN(m1,m2)

〉 ⊆ 〈m1〉 ∩ 〈m2〉.

Now let n1 = x
c1
1 x

c2
2 · · ·xcn

n be in G(〈m1〉) and let n2 = x
d1
1 x

d2
2 · · ·xdn

n be in G(〈m2〉). We want
to show that lcm(n1,n2) is in 〈MIN(m1,m2)〉, so we may assume that c1 < d and d1 < d . Let k

be the largest positive integer such that

max{c1, d1} + · · · + max{ck, dk} < d.

Then set νi = max{ci, di} for i = 1,2, . . . , k and νk+1 = d − (ν1 + · · · + νk). Since

ν1 + · · · + νi � max{c1 + · · · + ci, d1 + · · · + di}
� max{a1 + · · · + ai, b1 + · · · + bi},

for all 1 � i � k, we see that

νi+1 + · · · + νk+1 � d − max{a1 + · · · + ai, b1 + · · · + bi}
= min{ai+1 + · · · + an, bi+1 + · · · + bn}
= μi+1 + · · · + μn.

Therefore, the monomial x
ν1
1 x

ν2
2 · · ·xνk+1

k+1 is a minimal generator of 〈MIN(m1,m2)〉 and divides

lcm(n1,n2) = x
max{c1,d1}
1 x

max{c2,d2}
2 · · ·xmax{cn,dn}

n . Thus lcm(n1,n2) is in 〈MIN(m1,m2)〉, and
so

〈m1〉 ∩ 〈m2〉 ⊆ 〈
MIN(m1,m2)

〉
.

The proof of our first claim is complete with m := MIN(m1,m2). Now note that Q(m1)∩Q(m2)

is the union of all the convex polytopes of the polytopal cell complex Pd(x1, . . . , xn) with vertices
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Fig. 5.

in 〈m1〉 ∩ 〈m2〉 = 〈m〉. Since Q(m) is the union of all the convex polytopes of the polytopal cell
complex Pd(x1, . . . , xn) with vertices in 〈m〉, we must have

Q(m1) ∩ Q(m2) = Q(m). �
Example 7. Let m1 = b5c, m2 = ab3c2 and m3 = a2c4 in k[a, b, c]. Then, as we may easily
check from Fig. 5,

〈m1〉 ∩ 〈m2〉 = 〈
b5c

〉 ∩ 〈
ab3c2〉 = 〈

ab4c
〉
,

〈m1〉 ∩ 〈m3〉 = 〈
b5c

〉 ∩ 〈
a2c4〉 = 〈

a2b3c
〉
.

Also,

〈m1〉 ∩ 〈m2,m3〉 = 〈
ab4c, a2b3c

〉 = 〈
ab4c

〉
.

In general, the intersection of a Borel principal ideal with a Borel nonprincipal ideal is not
principal. For example, in k[a, b, c, d] we have

〈
ab4c3d

〉 ∩ 〈
a2b4cd2, a3bc2d3〉 = 〈

a3b2c3d, a2b4c2d
〉
.
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The following lemma is sufficient for our purposes.

Lemma 19. Let m1,m2, . . . ,ms be s monomials of the same degree d . Then for all j < s,

〈mj 〉 ∩ 〈mj+1, . . . ,ms〉
is a Borel fixed ideal, which is Borel generated by at most s − j monomials nj+1, . . . ,ns of
degree d .

Proof. First note that the case where j = s − 1 is Lemma 18. Now for all j < s, we have

〈mj 〉 ∩ 〈mj+1, . . . ,ms〉 = (〈mj 〉 ∩ 〈mj+1〉
) + · · · + (〈mj 〉 ∩ 〈ms〉

)
= 〈

MIN(mj ,mj+1)
〉 + · · · + 〈

MIN(mj ,ms)
〉

= 〈nj+1, . . . ,ns〉
where

nk := MIN(mj ,mk)

for k = j + 1, . . . , s. Some of the nk’s might be redundant, so the above intersection is Borel
generated by at most s − j monomials nj+1, . . . ,ns of degree d . �

Now we are ready to prove our most general result.

Theorem 20. Let m1,m2, . . . ,ms be s monomials of the same degree d and let

I = 〈m1, . . . ,ms〉.
Then there exists a polytopal cell complex Q(m1, . . . ,ms) that supports a minimal free resolution
of I . Moreover, Q(m1, . . . ,ms) is the union of all the convex polytopes of the polytopal cell
complex Pd(x1, . . . , xn) with vertices in I .

Proof. For s = 2 both of our claims were proved in Lemma 18. So assume that s > 2, and for all
j < s set

Ij = 〈mj , . . . ,ms〉.
Next suppose that for some j < s we have constructed a polytopal cell complex Q(K) that
supports a minimal free resolution of any Borel fixed ideal K , which is Borel generated by at
most s−j monomials of the same degree d . Assume also that Q(K) is the union of all the convex
polytopes of the polytopal cell complex Pd(x1, . . . , xn) with vertices in K . From Lemma 19, we
see that

〈mj 〉 ∩ 〈mj+1, . . . ,ms〉 = 〈nj+1, . . . ,ns〉
is a Borel fixed ideal, which is Borel generated by at most s − j monomials nj+1, . . . ,ns of
degree d . So far we have constructed the polytopal cell complex Q(mj ) in Theorem 14, and the
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polytopal cell complexes Q(mj+1, . . . ,ms) and Q(nj+1, . . . ,ns), by the inductive hypothesis.
Also by the inductive hypothesis, Q(mj ) ∩ Q(mj+1, . . . ,ms) is the union of all the convex
polytopes of Pd(x1, . . . , xn) with vertices in 〈mj 〉 ∩ 〈mj+1, . . . ,ms〉. Since Q(nj+1, . . . ,ns) is
the union of all the convex polytopes of Pd(x1, . . . , xn) with vertices in 〈nj+1, . . . ,ns〉, we must
have

Q(mj ) ∩ Q(mj+1, . . . ,ms) = Q(nj+1, . . . ,ns).

Since the rest of the hypotheses of Lemma 6 are easily verified, we conclude that the complex

Xj := Q(mj ) ∪ Q(Ij+1) = Q(mj ) ∪ Q(mj+1) ∪ · · · ∪ Q(ms)

supports a minimal free resolution of the ideal Ij . Thus

X := X1 = Q(m1) ∪ Q(m2) ∪ · · · ∪ Q(ms)

supports a minimal free resolution of I1 = I . �
4. The lcm-lattice

The lcm-lattice of an arbitrary monomial ideal I was introduced in [11], where the authors
show how its structure relates to the Betti numbers and the maps in the minimal free resolution
of I . The lcm-lattice of I , with G(I) = {m1,m2, . . . ,mr}, is denoted by LI . This is the lattice
with elements labeled by the least common multiple of m1,m2, . . . ,mr ordered by divisibility;
that is, if n and m are distinct elements of LI , then m ≺ n if and only if m divides n. Moreover,
we include 0̂ := 1 as the bottom element and 1̂ = lcm(m1,m2, . . . ,mr ) as the top one. We say
that n covers m and we write m → n, if m ≺ n and if there is no element k �= n,m of LI such
that m ≺ k ≺ n. A chain of LI is a set of elements of LI in which every two monomials are
comparable. A chain is maximal if it is not a proper subset of another chain. If every maximal
chain has the same length, LI is called ranked.

We would like to find a labeling of the edges of LI with the following property: for all ele-
ments m and n in LI with m ≺ n, there exists a unique increasing maximal chain from m to n,
which is also lexicographically first among all other maximal chains from m to n. This would
prove that LI is shellable (see [5,6]) in a way different from the one given in [1]. Finding such a
labeling is still an open problem.

Remark 21. The natural labeling which assigns to each edge m → n the integer max( n
m ) :=

max{i|xi divides n
m } does not work. For this labeling, one can prove that the desired property

holds only provided that m �= 0̂ = 1.

Example 8. Let

I = 〈
ab, ac, ad2, b2cd2〉

= (
a2, ab, b5, ac, b4c, b3c2, b2c3, b4d, b3cd, b2c2d, ad2, b3d2, b2cd2).
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The interval [1, ab2cd2] of LI is

ab2cd2

abcd2

2

abc

4

abd2

3

acd2

2

ab ac ad2

3

b2cd2

1

1

4

Hence there is no decreasing sequence of labels from ab2cd2 to 1 (or even to abc).

The above example shows also that the lcm lattice of a Borel fixed ideal need not be ranked in
general. However, if I is generated in the same degree then we prove the following proposition,
which was also proved independently (and in greater generality) in [18]. The advantage of our
proof is that it is very elementary; it only requires a minimum knowledge of lattices and the
definition of a Borel fixed ideal.

Proposition 22. The lcm-lattice LI of a d-generated Borel fixed ideal I is ranked.

Proof. Let I = (m1,m2, . . . ,mr ) be minimally generated by m1,m2, . . . ,mr in the same de-
gree d and let m �= 1̂ = lcm(m1,m2, . . . ,mr ) be in the lcm-lattice LI of I . Assume that
m = lcm(mα,mβ, . . . ,mγ ), with

e(mα)= (a1, a2, . . . , an), e(mβ)= (b1, b2, . . . , bn), . . . , e(mγ )= (c1, c2, . . . , cn).

In order to show that the lattice is ranked it suffices to prove that deg(n) = 1 + deg(m)

for all n that cover m. There exists an mδ in I , with e(mδ) = (d1, d2, . . . , dn) such that
n = lcm(mα,mβ, . . . ,mγ ,mδ) = lcm(m,mδ). Also, there is at least one j such that dj >

max{aj , bj , . . . , cj }. Without loss of generality assume that for that j , max{aj , bj , . . . , cj } = aj .
If there is some k with j < k � n such that ak �= 0, then

 := lcm
(
(mα)k→j ,mα,mβ, . . . ,mγ

)
has degree deg() = 1 + deg(m), divides n and is divisible by m. The minimality of n forces  =
n and so deg(n) = 1+deg(m). Now assume that ak = 0 for all j < k � n. Then, there is an i < j
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such that max{ai, bi, . . . , ci} > di . [Indeed, suppose to the contrary that di � max{ai, bi, . . . , ci}
for all i < j . Then,

d �
j∑

i=1

di >

j∑
i=1

max{ai, bi, . . . , ci} �
j∑

i=1

ai =
n∑

i=1

ai = d,

a contradiction.] Then

 := lcm
(
(mδ)j→i ,mα,mβ, . . . ,mγ

)
has degree deg(n) − 1, divides n and is divisible by m. Hence,  = m and so deg(n) = 1 +
deg(m), as desired. The proof is complete. �
Remark 23.

(1) The above proof applies with minor modifications to the case of a strongly stable square-free
ideal generated in the same degree. A monomial ideal I is called strongly stable square-free
if all monomials in G(I) are square-free and for every m in G(I), if xt divides m and xs

does not divide m (1 � s < t), then mt→s is in I .
(2) There exists a d-generated Borel fixed ideal I = (m1,m2, . . . ,mr ) minimally generated by

m1,m2, . . . ,mr and an element m of LI of degree d + 1, such that for some 1 � s < t � n,
(i) xt divides m,

(ii) x
ds
s does not divide m, where di is the largest positive integer such that x

di

i divides
lcm(m1,m2, . . . ,mr ), and

(iii) mt→s is not in LI .

Example 9. Let

I = 〈
x1x

3
3 , x2

2x3x4
〉
.

Then d3 = 3 and x2
2x2

3x4 = lcm(x2
2x3x4, x

2
2x2

3) is in LI , but x2
2x3

3 = (x2
2x2

3x4)4→3 is not in LI .
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