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Abstract

Physics-based earthquake disaster simulations are expected to contribute to high-precision
earthquake disaster prediction; however, such models are computationally expensive and the
results typically contain significant uncertainties. Here we describe Monte Carlo simulations
where 10,000 calculations were carried out with stochastically varied building structure param-
eters to model 3,038 buildings. We obtain the spatial distribution of the damage caused for
each set of parameters, and analyze these data statistically to predict the extent of damage to
buildings.

Keywords: earthquake disaster simulation, Monte Carlo simulation, high performance computing

1 Introduction

An earthquake may lead to widespread disaster, and is a serious risk for large urban areas. At
present, statistical methods such as fragility curves are typically used for earthquake disaster
prediction. Fragility curves are empirical relations describing building structure damage as
a function of earthquake intensity. However, these methods are based on historical data, so
generally are not sufficient to describe the specific characteristics of earthquakes and building
structures. To create a high-precision and high-resolution earthquake disaster prediction model,
we are developing a system called the Integrated Earthquake Simulator (IES) [1], which imple-
ments large-scale earthquake simulations and integrates reliable physics-based analysis methods
and geographic information system (GIS) data. This high-precision and high-resolution disaster
simulation method is expected to help create disaster mitigation policies, efficient risk-shifting,
and rapid evacuation and recovery.
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Figure 1: An illustration of the Monte Carlo method for earthquake simulation. The left panel
shows a cross-section, illustrating the fault-to-city system of fault rupture, wave propagation
in the crust, soil amplification, and structure response. The earthquake ground motion of the
bedrock is estimated using a Stochastic Green’s Function (SGF) simulation technique, which
considers fault rupture and wave propagation in the crust. The response of the city is computed
through the physics-based soil amplification and seismic structural response analysis. The right
panel illustrates the stochastic building structures model, where uncertainty in the parameters
is accounted for by running multiple simulations with stochastically varied input parameters,
material’s elasticity and strength.

High-performance computing (HPC) is required for IES[2], because physics-based simulation
of an entire city is a computationally expensive task. HPC allows IES to use high-resolution
models of soil and building structures, and with IES, we can model an entire city in considerable
detail using GIS data. We also require HPC for the multiple cases that are included in the Monte
Carlo simulation (MCS), i.e., to model numerous possible earthquake scenarios. IES can model
1,000 earthquake scenarios for 253,405 buildings in Tokyo in 3,446 s; however, this requires
the use of 20,000 nodes of the K-computer, which is the largest supercomputer in Japan, and
the existing implementation of IES does not consider uncertainty in the model of the building
structures.

In this study, we address uncertainty in the physics-based simulation model. In earthquake
simulation, the models of faults, the crust, soil, and building structures typically contain signif-
icant uncertainties that originate from non-uniformity of material and incomplete survey data.
MCS is an approach for managing uncertain parameters, by including a probability distribution
of those parameters. Here we use IES with a Monte Carlo method to account for uncertainties in
building structure parameters. Figure 1 shows an overview of the simulation process. We simu-
lated 10,000 parameter sets describing an earthquake disaster event in Onagawa, Japan, which
has 3,038 building structures. We obtain the stochastic variation in the spatial distribution of
damage to building structures.

2 Simulation Method

Currently, a range of simulation methods are used in the fields of earthquake engineering and
Earth science. We may also utilize GIS data, which are typically very detailed in urban areas.

A Monte Carlo earthquake disaster simulation Homma, Fujita, Ichimura, Hori, Citak and Hori

856



Figure 2: An illustration of the simulation process.

In this study, we used IES, which integrates several simulation methods and data conversion
methods. For high-precision and high-resolution earthquake disaster prediction, we should
consider the entire response of the system, i.e., fault rupture, wave propagation in the crust,
soil amplification, and the response of the building structures. IES produces a seamless “fault-
to-city” simulation that can describe the whole process of an earthquake, and the resulting
damage to buildings. In addition, the spatial distribution of damage over a large area can
be used to make evacuation and recovery plans. In the following section, the IES simulation
method is described, and in the subsequent sections, methods to simulate and model aspects
of earthquake disaster simulation are detailed.

2.1 IES

There are three modules in the simulation: wave propagation analysis (WPA), soil amplifica-
tion analysis (SAA), and structure response analysis (SRA). Figure 2 shows an outline of the
simulation process. The reference relationship of the analysis modules, their functions, and
their input models are shown. The WPA module includes the generation of an earthquake
wave at a fault and subsequent propagation through the crust. The SAA module computes the
amplification of the earthquake wave as it propagates through the soft subsurface soil. The SRA
module describes the effects of the earthquake wave at the surface. The flow of the simulation
is unidirectional, so that each module takes input data only from the module of the previous
step.

2.2 Modules

The analysis methods used for each module are also shown in Figure 2. We use Green’s
functions[3] for the WPA module. Green’s functions are used to compute the earthquake wave
in the bedrock, using historical earthquake records and general characteristics of the Fourier
spectrum of the earthquake. The fault and crust models employ data including the velocity-
structure dispersion relation of the crust, which can be investigated experimentally using meth-
ods including deep-layer boring [4]. Results of WPA changes according to the position, therefore
WPA is carried out several times when the target area is huge. For the SAA module, we use a
one-dimensional finite element method (1D FEM) to model the wave propagation through non-
linear soil. The soil model was constructed based on boring data surveyed by government and
construction companies. Spatial interpolation was used to obtain the 3D soil structure, using
discrete boring data[5]. SAAs’ results sensitively changes according to each soil structure of the
position rather than WPA, therefore SAA is carried out for all target structures respectively.
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p : # of WPA O(10 ),   q: # of structures O(10 ),
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Figure 3: The flow of data within the MCS.

For the SRA module, we used a one component model (OCM), which is a frame model, where
beams and columns are modeled as combinations of nonlinear springs. The structures model
was constructed using GIS/CAD data[5] on only the position and shape of structures. We can
utilize a procedure for structure design to estimate a reliable structures model with only limited
information. Using these techniques, the earthquake wave is treated as time-series data, which
allows the SAA and SRA modules to carry out a nonlinear analysis.

2.3 Application of HPC

The number of implementations of each module in the MCS and the way of parallelization are
described in this section.

The flow of data between modules in the Monte Carlo earthquake disaster simulation is
shown in Figure 3. The result of WPA#1 is browsed by SAA#1-#k that carried out directly
under SRA#1-#k. WPA is carried out p times for divided p areas on the bedrock. m is the
number of stochastic models for each structure, namely the number of MCS. The SRA module
incurs the largest computational cost (of order 107 = q * m) to make the MCS of each structure
in the target area. Considerable computational cost is also incurred in the SAA module (of
order 103 = q), as this module models the wave at the surface under each structure. The
computational cost for the WPA module is the lowest, because only a few points (of order
of 101 = p) are calculated per city. Thus, we apply HPC methods to the SAA and SRA
modules only. We developed a parallel implementation, whereby the SAA and SRA modules
are separate processes, and wave data at the surface are passed between these modules via the
file system. The SAA and SRA modules were implemented in a procedural manner to analyze
one soil column or structure at a time. To compute many points and structures in a city, we
parallelized this calculation by distributing the soil columns and structures as separate processes
of a distributed computer, and executed these analyses in parallel. For the SAA module, we
use an all-worker model, with static load-balancing at the start of the simulation using the
measured runtime of a short input wave. This load-balancing is effective because the runtime
for each time step is similar regardless of the amplitude of the input wave.

Quotas of structures for processes in the MCS is shown in Figure 4. We group processes into
the m cases, each with the same number of processes, n, and each group carries out an analysis
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Figure 4: The distribution of structures in terms of computational processes.
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Figure 5: The data distribution between processes for SAA.

using different structural parameters. Load-balancing was carried out within each group using
the same method as that used in the SAA module.

File input/output (I/O) optimization is required for scalability, as considerable I/O is re-
quired to pass the time history data between modules. Outputting data for each point/struc-
ture to individual files leads to a large number of small files. Hence, we grouped the results
of points/structures to reduce the number of files and improved the I/O throughput. Figure 5
shows the data distribution for MCS using the SRA module. For the SAA module, the wave
computed at the surface by all processes is collated and outputted to a single file, using a collec-
tive write function of MPI-IO (i.e., MPI File write at all()). Processes in group #1 read wave
data at the surface using a collective read function (i.e., MPI File read all()), and broadcast
the input waves to all processes in the other groups. The maximum response of each case is
outputted to the file system by collecting the output and sending it to the root process of each
case, and outputting the results to the shared file system using serial output (MPI File write()).
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3 Application

3.1 Performance Measurement

Here, we measure the parallel performance of IES. In the SRA module, 1 node (8 processes)
of the K-computer calculates 2 cases of the simulation, i.e., 4 processes are used per case. We
obtained the ground motion data at the position of each of the building structures using the
deterministic SAA model, so that multiple calculations were carried out using the SRA module
for each dataset. The size of each input dataset describing the ground motion was 867 MB;
there were 3,038 building structures, and the number of time steps in the analysis was 25,000;
this leads to 50,000 output files with a total size of 25 GB, when analyzing 10,000 cases.

The computational time for simulations of 2 cases and 10,000 cases are listed in Table 1. The
problem is first initialized, which includes reading the configuration file, static load-balancing,
and converting the structure data. Following this, the input includes reading and broadcasting
the earthquake wave data to each structure of the many-case analysis (see Figure 5). The
analysis includes running the SRA module. During output, the maximum displacement and
story drift angles are written to a file. The vast majority of the time for computation was
incurred by the SRA module, which shows that the file I/O is not a significant part of the
computational cost of the simulation. We can check the weak scalability, i.e., how the simulation
time changes with the number of cases, where the number of processes used to analyze each
case is fixed. Comparing the time for computation between the 10,000-case simulation and
2-case simulation, the weak scaling is more than 97.5%. Therefore, we may conclude that
parallelization of the many-case simulation was effective.

initialization
input of

analysis output total
ground motion

2-cases (1 node)
Max 17.10 8.11 19668.51 7.30 19701.0
Min 17.09 7.99 19621.99 0.00 19693.7

Average 17.10 8.05 19647.64 4.51 19698.2
10,000-cases (5,000 nodes)

Max 116.80 22.33 19708.61 352.80 20199.1
Min 114.86 18.02 19587.40 0.00 19846.3

Average 116.14 21.22 19647.02 88.36 19934.7

Table 1: The time for computation for each process in seconds.

3.2 Deterministic Simulation

First, we discuss a single-case deterministic simulation in Onagawa, Tohoku, Japan, which had
3038 structures and was severely damaged by the Tohoku Earthquake and Tsunami in 2011.
We used the fault model of the Tohoku Earthquake proposed by Kurahashi and Irikura[6] for
the Stochastic Green’s Function (SGF) simulation. The 1D FEM soil model was constructed
using geologic cross-section data, as well as data on the deep layer structure[7], as shown in
Figure 6. We used a B-spline to interpolate between soil layers, and we used GIS data from
NTT-GEOSPACE[8] to construct the structure model of the OCM. The duration of earthquake
was approximately 250 s, and the number of time steps was set to 25,000, at 0.01 s intervals.

A Monte Carlo earthquake disaster simulation Homma, Fujita, Ichimura, Hori, Citak and Hori

860



elevation [m]
ground layer

1st layer
2nd layer

3rd layer

30

-30

0

Figure 6: The ground elevation and boundary surfaces of the soil.

The target area does not contain an available observation point, and so we choose the
nearest observation point[9] in Ishinomaki and to compare the results of our simulation with
the measured data. A comparison of calculated and observed velocity waves at the surface is
shown in Figure 7. In the north-south (NS) direction, the phase was consistent, although the
amplitude of the calculated wave was smaller than the observed data. In the east-west (EW)
direction, we can see four features in both the measured and simulated data; however, the
amplitude was smaller in the simulation. We may improve the precision using, for example, 3D
FEM[10] for the WPA module; however, this is very computationally expensive, and therefore
the high-frequency component of the earthquake should be calculated using a SGF and the low-
frequency component using 3D FEM. Improving the precision of the earthquake wave model
has been identified as an area for further development.

Figure 8 shows the maximum story drift angles of each structure, their spatial distribution,
and the elevation of the surface. We can use the maximum story drift angle as an index of the
damage to each structure. If the maximum story drift angle is larger than 0.02◦, we may expect
serious damage to occur. The simulated response was large around the coastal area, which is
due to the thickness of subsurface soil: compared to the results shown in Figure 6, we can see
that the subsurface soil was thicker in this large response area. It is generally expected that
the thicker the soft subsurface soil is, the stronger the earthquake will be.

3.3 Stochastic Simulation

We construct all structure models assuming reinforced concrete (RC) structures, and focus
on the uncertainty in the parameters describing concrete. Concrete has wider variation in
performance than most other building materials. We estimated the probability distributions of
the elasticity and strength of concrete, together with the correlation between the two, based on
the open database[11]. We assume that both the elasticity and strength can be described by
a normal distribution for simple application. Figure 9 shows the probability density function
(PDF) and the survey data. If the given value excesses the μ ± 2σ or μ ± 3σ (μ and σ are
the mean and standard deviation values of the PDF), we try to get the value again in order to
avoid getting negative values. In this simulation, the number of cases was m = 10, 000 and the
number of processes in each group was n = 4 (see Figure 5).

3.3.1 One stochastic parameter

Here we treat only elasticity as a stochastic parameter. The time for computation of these sim-
ulations was 20,199 s (5.6 h), and 40,000 processes were run on 5,000 nodes of the K-computer.
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Figure 7: The observed and calculated surface velocity at the Ishinomaki observation point.
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Figure 8: The spatial distribution of building damage using the deterministic simulation, show-
ing the maximum story drift angles of structures in Onagawa. The position of structure A is
also illustrated.

Figure 10 shows the spatial distribution of the maximum story drift angle for all 10,000 cases,
together with the mean and standard deviation of these data. The spatial distribution of the
mean story drift angle showed a stronger correlation with the maximum values than with the
standard deviation. It follows that the response of structures depends mainly on the input
earthquake wave; however, we also need to consider the levels of earthquake resistance of the
structures. Consider structure A, a three-story building shown in Figure 8. Figure 11 shows
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Figure 9: The survey data of the mechanical properties of concrete (black dots[11]) and the
two-dimensional fitted normal distribution in color scale.
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Figure 10: The maximum, mean, and standard deviation of the story drift angles. The top
row shows data for the stochastically varied elasticity, and the bottom row shows data for
stochastically varied elasticity and strength.

histograms of the number of times that structure A exhibited a given maximum story drift
angle. These data are bimodal, which can be explained by considering that, once the response
of a structure becomes large, we may expect nonlinear behavior, which leads to a large response
once a threshold has been reached.
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Figure 11: Histograms showing the maximum story drift angle of structure A for simulations
with one and two stochastic parameter.

3.3.2 Two stochastic parameters

Here we consider strength as a stochastic parameter in addition to elasticity. The time for
computation here was 20,208 s (5.6 h), with 40,000 processes running on 5,000 nodes of the
K-computer. Again, we obtained the maximum story drift angles for each structure, together
with the mean and standard deviation, as shown in Figure 10. The maximum and the standard
deviation of the data were larger than with only one stochastic parameter; however, the mean
values did not change significantly. Consider structure A again; the histograms shown in Fig-
ure 11 also converge to a bimodal distribution. The peak corresponding to small drift angles
was very sharp, and the second peak was broader than for the case when only one stochastic
parameter was used. In this case, histograms seem converged enough with 10,000 MCS. And
we can see that with the increase of the number of uncertain values, the needed number of
MCS for convergence increased. It is expected that the number of uncertain values in soil and
earthquake fault are larger than that of structures. In the future research, we would like to
discuss the utilization of these results for prevention or reduction of disaster, and quantitatively
show the necessary number of MCS.

4 Conclusion

We have described an MCS approach for physics-based earthquake disaster simulations, which
accounts for uncertainty in the input parameters of the building structures model. We created a
stochastic structures model and examined the influence of the uncertainties in the parameters on
the maximum story drift angle. We obtained a spatial distribution of damage to structures. This
high-precision and high-resolution earthquake disaster simulation is expected to be useful for
evaluating disaster mitigation policies and implementing efficient risk assessment by insurance
or finance companies. We would like to study the utilization of these results and how to
quantitatively show the reliability of earthquake disaster estimation. Furthermore, we need to
tackle the problem of uncertainty of ground motion which has larger uncertainty than structures.
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