Volume 152, number 1

brought to you by CORE

FEBS LETTERS

Definitive ¹⁵N NMR evidence that water serves as a source of 'O' during nitrite oxidation by *Nitrobacter agilis*

Sharad Kumar, D.J.D. Nicholas and E.H. Williams*

Department of Agricultural Biochemistry, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, 5064 Australia and *Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide 5001, Australia

Received 13 December 1982

Using ¹⁸O isotope shifts in ¹⁵N NMR it has been shown that during oxidation of nitrite to nitrate by *Nitrobacter agilis*, the third 'O' in nitrate originates from water.

Nitrobacter agilis	Nitrite oxidation	¹⁵ N NMR	¹⁵ N- ¹⁸ O isotope shift
--------------------	-------------------	---------------------	--

1. INTRODUCTION

The chemolithotropic nitrifying bacterium, Nitrobacter agilis oxidises nitrite to nitrate thus generating ATP and reducing equivalents (NADH) for growth. It has been shown that the source of oxygen during nitrite oxidation by N. agilis is water [1] based on the incorporation of 0.044-0.078 atom % ¹⁸O into nitrate from 82 atom % H₂¹⁸O. Because we have been unable to demonstrate respiration-driven proton ejection in oxygen pulse experiments [2] we considered the possibility that, should the proton pump mechanism be absent, the bacterium might synby substrate type thesize ATP oxidative phosphorylation including a mixed anhydride between either NO_3^- and PO_4^{2-} or NO_3^- and ADP. Should this concept be correct, the 'O' in $NO_3^$ produced by NO_2^- oxidation in N. agilis would come from PO_4^{2-} . The ¹⁸O isotope shift in ¹⁵N NMR has recently been used [3] to demonstrate $H_2O-NO_2^-$ exchange reactions in *Nitrosomonas* europaea. The main advantage of this technique is that the reactants and products can be studied directly. Here, we report on the incorporation of ¹⁸O from $H_2^{18}O_1$, ¹⁸O₂ and $P^{18}O_4^{2-}$ during the oxidation of NO₂⁻ to NO₃⁻ by washed cells of N. agilis, using the secondary isotope effect; i.e., the shift in the ${}^{15}N$ resonance of NO₃⁻ when ${}^{16}O$ is substituted for ${}^{18}O$ [4].

2. MATERIALS AND METHODS

2.1. Bacterium and growth conditions

Nitrobacter agilis ATCC 14123 was grown in 8-1 batches for 5 days with vigorous aeration in an inorganic medium as in [5]. The cells harvested by continuous flow centrifugation at 4° C as in [6] were washed several times with cold 100 mM sodium phosphate, 5 mM K₂CO₃ buffer (pH 7.8) and finally suspended in the same buffer at about 500–600 mg wet wt/ml.

2.2. Isotope experiments

All the experiments were carried out in 50-ml Erlenmeyer flasks at 28° C in a waterbath shaker (120 rev./min). Freshly harvested cells oxidised about 50 nmol of NO₂⁻.min⁻¹.mg wet wt⁻¹. In thick cell suspensions, cells tend to become anaerobic quickly so that NO₂⁻ oxidation slows down. Thus oxygen was generated by the addition of catalase-H₂O₂ [6]. The following experiments were done:

 (i) 1 ml cell suspension (~500 mg wet wt) was diluted to 10 ml in 100 mM phosphate, 5 mM carbonate buffer;

- (ii) 1 ml cell suspension was diluted to 10 ml in the same buffer, and the flask closed with a serum septum. The flask was evacuated with an Edwards 2-stage pump and filled with 100% ¹⁸O₂ (99.2 atom % ¹⁸O);
- (iii) 1 ml cell suspension was added with 1 ml each of 200 mM phosphate, 10 mM carbonate (pH 7.8) and 97 atom % H₂¹⁸O;
- (iv) 1 ml cell suspension was centrifuged in an Eppendorf tube at $13000 \times g$ for 5 min and the pellet resuspended in 10 ml of ¹⁸O phosphate-5 mM carbonate buffer (pH 7.8).

To all the cell suspensions in 50 ml Erlenmeyer flasks, was added catalase (1 mg) and 40% v/v H_2O_2 (5 µl) (except for expt b), followed by incubation at 28°C in water bath shaker. Then 50 μ mol K¹⁵NO₂ (97 atom % ¹⁵N) was added to each flask to start the reaction. Aliquots, $5-10 \mu l_{1}$, were withdrawn from the reaction mixtures to check NO_2^- concentration as in [7]. As soon as the nitrite was utilized completely, another 50 µmol of $^{15}NO_2^-$ was added and the reaction continued until at least 200 µmol of total nitrite had been oxidised to nitrate. The initial rate of NO_2^- oxidation was relatively fast (50–70 μ mol.mg wet wt⁻¹.min⁻¹) but after 2-3 additions of NO_2^- it slowed down presumably because of NO_3^- accumulation. This effect was more pronounced when the total reaction volume was 3 ml (expt c). Cells in 10 ml (expts a,b and d) oxidised about 400 μ mol of NO₂⁻ in 4-5 h, whereas in a 3 ml volume (expt c) they required 7-8 h. At the end of the reaction, cell suspensions were centrifuged at 20000 \times g for 10 min at 4°C and the supernatant fractions were carefully dispensed with a Pasteur pipette. The volume of each fraction was made 10 ml with phosphate-carbonate buffer, the pH adjusted to 8.0 if needed and then immediately frozen in liquid N₂ until used in NMR studies.

2.3. ¹⁵N NMR analysis

30.42 MHz ¹⁵N-NMR spectra were obtained on a Bruker CXP 300 NMR spectrometer operating at a field strength of 7.05 T. Spectra were acquired from 2 dm⁻³ samples in 10 mm NMR tubes as the result of about 200 scans into an 8 K data table. A 15°C (10 μ s) pulse was used with a 4.1-s recycle time and no ¹H-decoupling. After acquisition, a line broadening of 0.1 Hz was applied, together with apodisation. The data were zero filled to 16 K before Fourier transformation.

2.4. Isotopes

¹⁵N-labelled HNO₃ (97 atom % ¹⁵N) was purchased from Isomet, NJ; K¹⁵NO₃ was prepared by the titration of H¹⁵NO₃ with KOH; K¹⁵NO₂ was prepared by the reduction of K¹⁵NO₃ in the presence of lead at 420°C; H₂¹⁸O (97 atom % ¹⁸O) was obtained from Merck Sharp and Dohme (Montreal); ¹⁵N,¹⁸O-labelled nitrate standards were prepared by the method in [8]; H₃P¹⁸O₄ (~97 atom % ¹⁸O) was prepared by the reaction of H₂¹⁸O on PCl₅.

All other chemicals used in the study were the highest purity grade available. Double glass distilled water was used throughout.

3. RESULTS

The signals of various ${}^{15}N^{18}O$ nitrate standards (fig.1A) were essentially as in [3], but only 3 peaks were observed, corresponding to ${}^{15}N^{16}O_3^-$, ${}^{15}N^{16}O_2^{18}O^-$ and ${}^{15}N^{16}O_2^-$ as confirmed by spiking the ${}^{15}N^{16}O_3^-$ resonance. The peaks were well resolved and separated by 1.71 Hz (0.0563 ppm). A visible signal was observed after a few scans when the concentration of ${}^{15}NO_3^-$ was more than 40 mM. Smaller concentrations required longer accumulation time.

When the cells were incubated with ${}^{15}NO_2^-$ (expt a) with $H_2^{16}O$ in 100 mM $P^{16}O_4^{2-}$ buffer, only one resonance was observed which corresponded to $^{15}N^{16}O_3^-$ (not shown). In fig.1B, the NMR spectrum of the product of ${}^{15}NO_2^-$ oxidation in the presence of 100% ¹⁸O₂ (expt b) is shown. Again only one peak was observed with an isotopic configuration of ${}^{15}N^{16}O_{3}$ indicating that none of the 'O' in nitrate produced by ${}^{15}NO_2^-$ oxidation was derived from $^{18}O_2$. When cells were incubated with $^{15}NO_2^-$ and $H_2^{18}O$ (expt c) two major peaks and a minor one were observed, separated by 1.71 Hz and representing ${}^{15}N^{16}O_3^-$, ${}^{15}N^{16}O_2^{-18}O^-$ and $^{15}N^{16}O^{18}O_2^-$, respectively (fig.1C). The ratio of the areas of 3 peaks was 31.6:6:1. Thus ¹⁵N¹⁶O₂¹⁸O⁻ and ${}^{15}N^{16}O^{18}O_2^{-}$ isotope combinations were about 19% and 3.2%, respectively, of ${}^{15}N^{16}O_{3}^{-}$. Expt d was designed to check for substrate level phosphorylation in Nitrobacter that might involve an anhydride-like intermediate between either NO_3^- and PO_4^{2-} or ADP and NO_3^- . Thus cells were incubated in ¹⁸O phosphate (all 4 'O' atoms labelled with ¹⁸O). Fig.1D shows the spectrum of nitrate

Fig.1. NMR of ${}^{18}\text{O}/{}^{16}\text{O}$ derivatives of nitrate: (A) 100 mM standard ${}^{15}\text{N}{}^{18}\text{O}$ nitrate derivatives produced by chemical exchange; (B) 40 mM, ${}^{15}\text{N}{}^{16}\text{O}_3^-$ produced by cells in presence of ${}^{18}\text{O}_2$; (C) 20 mM (${}^{15}\text{N}{}^{16}\text{O}_3^-$ + ${}^{15}\text{N}{}^{16}\text{O}{}^{20}$) produced by cells in presence of $H_2{}^{18}\text{O}$; (D) 50 mM ${}^{15}\text{N}{}^{16}\text{O}{}^3$ produced by cells in presence of $P{}^{18}\text{O}{}^2_4^-$. For further details see section 2.

produced from the oxidation of ${}^{15}NO_2^-$ in the presence of ${}^{18}O$ phosphate (100 mM). Only one

peak was observed which corresponded to ${}^{15}N^{16}O_3^$ indicating that none of the 'O' in ${}^{15}NO_3^-$ is derived from $P^{18}O_4^{2-}$ during nitrite oxidation by *N. agilis*. In another experiment when cells were incubated for 18 h with $P^{18}O_4^{2-}$ and ${}^{15}NO_2^-$, the NMR spectrum was similar to that observed in fig.1D (expt c). Thus there appears to be no measurable biological or chemical exchange of ${}^{18}O$ between either $P^{18}O_4^{2-}$ and H_2O , $P^{18}O_4^{2-}$ and ${}^{15}NO_3^-$ or $P^{18}O_4^{2-}$ and ${}^{15}NO_2^-$.

4. DISCUSSION

One of the advantages of using ¹⁵N NMR is that with the aid of stable isotopes $(^{15}N \text{ and } ^{18}O)$ the reactants and products of a biochemical reaction can be analysed directly. This overcomes any dilution or exchange reactions associated with the processing of the samples. The technique of ¹⁸O isotope shift in ¹⁵N NMR has recently been used in [3] to demonstrate the 'O' exchange reactions between NO_2^- and H_2O catalysed by Nitrosomonas europaea. This is a powerful technique to study the oxidations and reductions of inorganic nitrogen compounds; e.g., NH⁺₄, NH₂OH, NO⁻₂ and NO⁻₃. Here, we show that during the oxidation of nitrite by Nitrobacter agilis the 3rd 'O' in NO_3^- arises from water. Our results substantiate the mass spectrometric data in [1].

As shown in fig.1C for cells incubated with $^{15}NO_2^-$ and $H_2^{18}O$ (expt c) 3 resonances in the NMR-spectrum represented ${}^{15}N^{16}O_{3}^{-1}$ (100%), $^{15}N^{16}O_2^{-18}O^-$ (19%) and $^{15}N^{16}O^{18}O_2^-$ (2.3%). As the incubation mixture contained 1 ml of 97 atom % H₂¹⁸O in a final volume of 3 ml, the final enrichment of ¹⁸O would be about 32%. The observed enrichment of ¹⁸O in N¹⁸O₃ produced by $^{15}NO_2^-$ oxidation was 19 + 3.2 = 22.2%. If all the 'O' in NO_3^- is derived from water, the ${}^{15}N^{16}O_2{}^{18}O^$ peak should be about 32% of ${}^{15}N^{16}NO_3^{-1}$. The $^{15}NO_2^-$ used in these experiments prepared by the reduction of ${}^{15}NO_{3}$ with Pb was found to contain about 30% ¹⁵NO₃ (analysed by ¹⁵N NMR). When this correction is applied, the ratio of ${}^{15}N^{18}O_{3}$ and $^{15}N^{16}O_3$ produced by the oxidation of $^{15}NO_2^{-}$ by N. agilis would be close to the theoretically expected value (32%). This proves that all the ¹⁸O in $^{15}N^{18}O_3^{-}$ was derived from H₂¹⁸O. The oxidation of nitrite to nitrate by N. agilis requires only one oxygen atom which is supplied by water [1,9]. The appearance of ${}^{15}N^{16}O^{18}O_2^-$ resonance in ${}^{15}N$ -NMR spectrum is thus unusual. A chemical exchange of ${}^{18}O$ between $H_2{}^{18}O$ and ${}^{15}N^{16}O_2{}^{18}O^-$ at alkaline pH is highly unlikely. Thus a possible explanation

of the appearance of ${}^{15}N^{16}O_2^{-18}O_2^{-18}$ could be associated with the recycling of ${}^{15}NO_2^{-18}$ by nitrite oxidase and nitrate reductase [9,10] in thick cell suspensions which tend to become anaerobic.

The results of experiments (a) and (d) proved that none of the oxygen in NO₃⁻ was derived from either ¹⁸O₂ or P¹⁸O₄²⁻ because the only peak observed had an isotopic configuration of ¹⁵N¹⁶O₃⁻. This rules out the possibility of an P-O-N type intermediate during nitrite oxidation by *N. agilis*. The results presented here constitute definitive evidence that during NO₂⁻ oxidation, H₂O, and not O₂ gas (air), serves as 'O' donor.

ACKNOWLEDGEMENTS

This work was supported by a generous grant to D.J.D.N. from the Australian Research Grants Committee. S.K. is grateful to the University of Adelaide for a postgraduate award. We also thank Dr T.C. Hollocher for helpful discussion.

REFERENCES

- Aleem, M.I.H., Hoch, G.E. and Varner, J.E. (1965) Proc. Natl. Acad. Sci. USA 54, 869-873.
- [2] Hollocher, T.C., Kumar, S. and Nicholas, D.J.D. (1982) J. Bacteriol. 149, 1013–1020.
- [3] Andersson, K.K., Philson, S.B. and Hooper, A.B. (1982) Proc. Natl. Acad. Sci. USA 79, 5871-5875.
- [4] Van Etten, R.L. and Risley, J.M. (1981) J. Am. Chem. Soc. 103, 5633-5636.
- [5] Wallace, W., Knowles, S.E. and Nicholas, D.J.D. (1970) Arch. Microbiol. 70, 26–42.
- [6] Kumar, S. and Nicholas, D.J.D. (1981) FEMS Microbiol. Lett. 11, 201-206.
- [7] Nicholas, D.J.D. and Nason, A. (1957) Methods Enzymol. 3, 981–984.
- [8] Bunton, C.A., Halevi, E.A. and Llewellyn, D.R. (1953) J. Chem. Soc. 2653.
- [9] Aleem, M.I.H. and Sewell, D.L. (1981) Curr. Microbiol. 5, 267-272.
- [10] Sewell, D.L. and Aleem, M.I.H. (1979) Curr. Microbiol. 2, 35-37.