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Abstract

This paper studies online job scheduling on multiprocessors and, in particular, investigates the algorithms Shortest Remaining
Processing Time First (SRPT) and Shortest Job First (SJF) for minimizing total stretch, where the stretch of a job is its flow time
(response time) divided by its processing time. SRPT is perhaps the most well-studied algorithm for minimizing total flow time or
stretch. This paper gives the first resource augmentation analysis of the total stretch of SRPT, showing that it is indeed O(1)-speed
1-competitive. This paper also gives a simple lower bound result showing that SRPT is not s-speed 1-competitive for any s < 1.5.

This paper also makes contribution to the analysis of SJF. Extending the work of [L. Becchetti, S. Leonardi, A. Marchetti-
Spaccamela, K. Pruhs, Online weighted flow time and deadline scheduling, in: RANDOM-APPROX, 2001, pp. 36–47], we are able
to show that SJF is O(1)-speed 1-competitive for minimizing total stretch. More interestingly, we find that the competitiveness of
SJF can be reduced arbitrarily by increasing the processor speed (precisely, SJF is O(s)-speed (1/s)-competitive for any s �1). We
conjecture that SRPT also admits a similar result.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We study the problem of online job scheduling for minimizing total stretch. There is a pool of m�1 processors. Jobs
arrive at arbitrary times, and their processing times are known only when they arrive. Jobs are sequential in nature and
can be scheduled on at most one processor at a time. Preemption is allowed. The flow time (or response time) of a job
is the amount of time the job spent before it is completed, and the stretch of the job is the ratio of its flow time to its
required processing time. We are interested in scheduling algorithms that minimize the total stretch (or equivalently
the average stretch) of the jobs. Stretch is a useful indicator of system performance, and has received a lot of attention
in recent years (see, e.g., [3,5–7,11,12,19]). Roughly speaking, if the average stretch is �, a job on average takes �
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Table 1
SRPT and SJF using faster processors can be 1-competitive (or even better) for minimizing total stretch. Results given in this paper are marked with
asterisks

Single processor Multiprocessors

SRPT 2-competitive [19] 14-competitive [19]
2-speed 1-competitive * 5-speed 1-competitive *

SJF (1 + �)-speed (1 + 1
� )-competitive [4] (2 + 2�)-speed (1 + 1

� )-competitive [4]

2-speed 1-competitive [4,20] (24s)-speed ( 1
s )-competitive, for s �1 *

times the required processing time to complete, i.e., it appears to be processed by a 1/�-speed processor. 1 Competitive
analysis is often used to measure the performance of an online algorithm with respect to total stretch (or any other
objective function). An online scheduling algorithm A is said to be c-competitive for any number c > 0 if for any input
job sequence, the total stretch of the jobs as defined by A is at most c times that of the optimal offline algorithm.

Shortest Remaining Processing Time First (SRPT) is a popular online algorithm when the concern is the total flow time
or total stretch. With respect to total flow time, SRPT is 1-competitive for a single processor [2]. But for multiprocessors
(m�2), Leonardi and Raz [17] showed that SRPT is �(min(log P, log n/m))-competitive, where n is the number of
jobs and P is the ratio of the maximum possible processing time to the minimum possible processing time. To obtain
better performance guarantee for multiprocessor scheduling, Phillips et al. [20] applied resource augmentation analysis
(which was pioneered by Kalyanasundaram and Pruhs [16]) to SRPT, showing that SRPT is 1-competitive when using
processors that are two times faster, or in short, 2-speed 1-competitive. This result means that a modest increase in
the processor speed of the online scheduler can compensate its lack of future information. Recently, McCulloguh and
Torng [18] further showed that SRPT is s-speed (1/s)-competitive for any s�2 − 1/m. In a wider context, resource
augmentation analysis has been found useful in a number of difficult scheduling problems (see, e.g., [8–10,13–16,20]).

Muthukrishnan et al. [19] were the first to study total stretch. They showed that SRPT is 2-competitive on a single
processor and 14-competitive on multiprocessors, and no online algorithm can be 1-competitive. Chekuri et al. [12]
proposed a different algorithm (called SG) that is 9.81-competitive on multiprocessors. Existing resource augmentation
results are actually based on algorithms like Shortest Job First (SJF), which assigns fixed priorities to jobs independently
of the schedule. On a single processor, the work of Phillips (on weighted flow time) [20] implies that an algorithm
called Preemptively Schedule-by-Halves as well as SJF are 2-speed 1-competitive for minimizing total stretch. For
multiprocessors, there are two algorithms known to be O(1)-speed O(1)-competitive (namely, SJF is (2 + 2�)-speed
(1 + 1/�)-competitive [4], and IMD [1] is (1 + �)-speed O(1 + 1/�)-competitive [11]). Though SRPT is believed to
perform well and is known to be O(1)-competitive, no resource augmentation analysis has been given for SRPT and
it is generally agreed that SRPT is more difficult for resource augmentation analysis (see, e.g., [21]). In this paper we
show that SRPT is indeed 2-speed 1-competitive for minimizing total stretch on a single processor. A more elaborate
analysis further reveals that SRPT is 5-speed 1-competitive on multiprocessors. This is the first result on exploiting
extra speed to achieve 1-competitiveness. Table 1 gives a summary of the performance of SRPT and SJF. We also derive
a simple lower bound that for any s < 1.5, SRPT is not s-speed 1-competitive.

Technically speaking, our analysis of SRPT is based on an observation that the optimal offline algorithm, at any time,
has no more finished jobs than SRPT does, and more interestingly, each finished job of the optimal offline algorithm
can be mapped to a unique finished job of SRPT with same or smaller processing time.

This paper also makes contribution to the analysis of SJF. It has been known that based on the result on weighted
flow time, SJF is 2-speed 1-competitive for minimizing total stretch on a single processor, and (2+2�)-speed (1+1/�)-
competitive on multiprocessors [4,20]. We improve the analysis of SJF on multiprocessors to show that SJF is indeed
24-speed 1-competitive and, in general, (24s)-speed (1/s)-competitive for any s�1, for minimizing total stretch. We
conjecture that SRPT also admits a similar result, i.e., SRPT is also O(s)-speed (1/s)-competitive.

Before moving on to the analysis of SRPT and SJF, we give a definition of these two algorithms. Suppose there are
m�1 processors. At any time, if there are at most m unfinished jobs, SRPT and SJF both schedule each job to a distinct

1 A speed-s processor, where s > 0, can process s units of work in one unit of time.
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processor; otherwise, SJF gives priority to the m jobs with the shortest processing times, and SRPT schedules the m
jobs with the shortest remaining processing times. A tie is simply broken by job ID.

Formally speaking, we say that SRPT (or SJF) is s-speed c-competitive if for any job sequence, SRPT (or SJF) using
m s-speed processors incurs a total stretch at most c times of that of the optimal offline algorithm using m unit-speed
processors.

Organization of the paper: Section 2 gives three useful properties of an SRPT schedule regardless of processor
speed. Section 3 presents a resource augmentation analysis of SRPT on multiprocessors, revealing that SRPT is 5-speed
1-competitive for minimizing total stretch. Section 4 shows a lower bound of SRPT. Section 5 analyzes the performance
of SJF. Section 6 shows that SRPT is 2-speed 1-competitive on a single processor. Section 7 discusses some future
work.

2. Preliminaries

In this section we give some basic definitions and three useful properties of an SRPT schedule regardless of processor
speed. Let I be an input sequence of jobs to be scheduled on m�1 processors. For any job J ∈ I , let p(J ) and r(J )

denote the processing time and release time of J, respectively. For any set K of jobs, p(K) is defined to be
∑

J∈K p(J ).

Let x > 0 be any number. A job J is said to be x-large if p(J ) > x, and x-small if p(J )�x. Consider a schedule S for
I on m processors. We assume that jobs can be preempted and later resumed at the point of preemption. The following
notations are concerned with a particular time t in the schedule S.
• Let wS

t (J ) and rwS
t (J ) denote the processed work and the remaining work, respectively, of a job J in S at time t.

Note that wS
t (J ) + rwS

t (J ) = p(J ). A job J is said to be partially processed if 0 < rwS
t (J ) < p(J ).

• Let QS
t denote the set of jobs released at or before time t and unfinished at time t, and let QS

t (x) ⊆ QS
t denote the

set of x-small jobs in QS
t .

• Let ShrinkS
t (x) denote the set of x-large jobs J in QS

t such that rwS
t (J )�x (note that any job J in ShrinkS

t (x) is
partially processed because p(J ) > x).

• Let FS
t denote the set of jobs finished at or before time t, and let FS

t (x) ⊆ FS
t denote the set of x-small jobs in FS

t .
When the context is clear, we will omit the superscript S in the above notations, which become wt(J ), rwt (J ), Qt ,
Qt(x), Ft , and Ft(x). Using the above definitions, the stretch of a schedule S can be expressed as

∫ ∞

0

∑
J∈Qt

1

p(J )
dt.

To ease our discussion, we use c-speed SRPT, for any c�1, to denote an online scheduler running SRPT on m c-speed
processors, and we let OPT denote an optimal schedule for I on m unit-speed processors. To compare the stretch of the
schedule defined by c-speed SRPT and OPT, we focus on analyzing the corresponding Qt and Ft . Hereafter, we use
the notations Q∗

t , Q∗
t (x), F ∗

t and F ∗
t (x) to denote the above concepts for OPT.

Before we move on to the analysis of 5-speed SRPT, we show in the rest of this section three useful properties of
an SRPT schedule regardless of processor speed. Precisely, let S denote the schedule defined by c-speed SRPT for
any c�1. Consider any x > 0. The properties are concerned with three categories of jobs defined at any time in S as
follows.
• There are at most m unfinished x-large jobs whose remaining work is at most x (Lemma 1).
• While there is an x-small job J waiting (i.e., not being processed by an processor), jobs that can be scheduled include

only x-small jobs or jobs in Shrinkr(J )(x) (Lemma 2).
• The accumulated processed work on all unfinished x-small jobs is less than mx (Lemma 3).

Lemma 1. At any time t �0 and for any x > 0, |Shrinkt (x)|�m.

Proof. We prove the lemma by contradiction. Suppose that Shrinkt (x) = {J1, J2, · · · , Jm′ }, for some m′ > m.
By definition, rwt (Ji)�x < p(Ji). Let y be a number such that x < y < minJ∈Shrinkt (x){p(J )}. For each job
Ji ∈ Shrinkt (x), let ti < t be the latest time such that rwti (Ji) = y. Note that Ji must be processed by some processor
at time ti and its remaining work is strictly less than y immediately after ti . Without loss of generality, we assume that
t1 � · · · � tm′ < t .
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Suppose that tm′−k < tm′−k+1 = · · · = tm′ for some integer k ∈ [1, m]. At tm′ , the jobs Jm′−k+1, . . . , Jm′ are each
being processed by a processor. And, for 1� i�m′ − k, rwtm′ (Ji) < y = rwtm′ (Jm′), which implies that all these Ji

are also being processed at time tm′ (because SRPT always processes jobs with smallest remaining work first). This
leads to a contradiction that m′ > m jobs are being processed at the same time. �

Lemma 2. Let J be any x-small job. Whenever J is waiting, S can only schedule other x-small jobs or jobs in
Shrinkr(J )(x).

Proof. Any x-large job J ′ /∈ Shrinkr(J )(x) has rwr(J )(J
′) > x�p(J ). Starting from r(J ), whenever J ′ is being

processed, J is also being processed. Therefore, the remaining work of J is always less than that of J ′. Thus, whenever
J is waiting, J ′ also needs to wait as J ′ has more remaining work. �

Lemma 3. At any time t �0 and for any x > 0, wt(Qt(x)) < mx, where wt(Qt(x)) = ∑
J∈Qt (x) wt (J ).

Intuitively, at any time t, there may be many unfinished x-small jobs, but the above lemma states that their total
processed work up to time t is less than mx. To prove the lemma, we let L be the set of jobs in Qt(x) that are partially
processed. Notice that wt(Qt(x)) = wt(L). Assume that L = {J1, J2, . . . , J|L|} where p(J1)�p(J2)� · · · �p(J|L|).

Below we show that jobs in L can be partitioned into m disjoint sets Y1, Y2, · · ·, Ym such that for 1�k�m, wt(Yk) < x.
Then wt(Qt(x)) = ∑

1�k �m wt(Yk) < mx and the upper bound follows. We construct the partition by inserting the

jobs in L one by one into the m sets. Denote by last(Yk) the last job inserted to Yk .
• Initially, set Y1 = {J1}, Y2 = {J2}, . . . , Ym = {Jm}.
• For i = m + 1 to |L|, insert Ji to the set Yk with the largest rwt (last(Yk)) value.

The following lemma gives a property on rwt (last(Yk)).

Lemma 4. Whenever a job Ji is inserted to a set Yk , p(Ji)�rwt (last(Yk)).

Proof. Suppose on the contrary that rwt (last(Yk)) < p(Ji). Notice that for all 1�z�m, we have (1) rwt

(last(Yz))�rwt (last(Yk)) because Ji is inserted to Yk; and (2) p(Ji)�p(last(Yz)). Therefore, all the m + 1 jobs
including Ji and last(Y1), · · ·, last(Ym) have processing time at least p(Ji) but remaining work at time t less than p(Ji).
So letting x = max{rwt (Ji), rwt (last(Yk))}, we have x < p(Ji) and |Shrinkt (x)|�m+1 > m, which is a contradiction
to Lemma 1. �

Consider any Yk . Suppose J ′
1(= Jk), J

′
2, . . . , J

′
h, for some h�1, are the jobs inserted to Yk (in that order). Then

by Lemma 4, wt(Yk) = ∑
1� i �h wt (J

′
i ) = ∑

1� i<h (p(J ′
i ) − rwt (J

′
i )) + wt(J

′
h)�

∑
1� i<h (p(J ′

i ) − p(J ′
i+1))+

wt(J
′
h) = p(J ′

1) − p(J ′
h) + wt(J

′
h) < p(J ′

1)�x. The second last inequality holds because J ′
h is not finished at time t.

Therefore, we have wt(Qt(x)) = ∑
1�k �m wt(Yk) < mx and Lemma 3 follows.

3. Resource augmentation analysis of SRPT

In this section we show that SRPT is 5-speed 1-competitive for minimizing total stretch on m�2 processors.
We analyze the schedule of 5-speed SRPT, denoted by S5 below, against OPT on a given input sequence, and in
particular, we show in Lemma 6 that at any time t, S5 outperforms OPT on finished jobs; precisely, for any x > 0,
p(Ft (x))�p(F ∗

t (x)). Then we show in Lemma 7 (Section 3.2) that there is a one-to-one mapping from F ∗
t to Ft such

that each job J ∗ ∈ F ∗
t can be mapped to a unique job J ∈ Ft with p(J ∗)�p(J ). In other words, at any time t, we

have
∑

J∈Ft
1/p(J )�

∑
J ∗∈F ∗

t
1/p(J ∗), implying that

∑
J∈Qt

1/p(J )�
∑

J ∗∈Q∗
t

1/p(J ∗). It is then easy to see that

the total stretch of S5 is no more than that of OPT (Theorem 8).

3.1. Outperforming the optimal schedule on finished jobs

In this section we show that 5-speed SRPT outperforms OPT on finished jobs. Consider the schedule S5 defined by
5-speed SRPT. For any x > 0, a time interval is said to be a �(x)-interval if at any time within the interval, there is an
x-small job waiting.
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Lemma 5. Let J be a job with p(J ) = x. Suppose that S5 does not complete J at time t �r(J ) + x.
• Then during [r(J ), t], S5 schedules at least 3m(t−r(J )) units of work on x-small jobs; and p(Ft (x))�p(Fr(J )(x))+

2m(t − r(J )).
• Furthermore, if r(J ) is inside a �(x)-interval starting from t ′ �r(J ), then during [t ′, t], the work scheduled by S5

on x-small jobs is at least 3m(t − t ′); and p(Ft (x))�p(Ft ′(x)) + 2m(t − t ′).

Proof. During [r(J ), t], J incurs a waiting time longer than t − r(J )−x/5� 4
5 (t − r(J )), and S5 must process at least

5m · 4
5 (t − r(J )) = 4m(t − r(J )) units of work; otherwise, J should have been finished in S5 at time t. By Lemma 2,

while J is waiting, S5 can only process other x-small jobs or jobs in Shrinkr(J )(x). By Lemma 1, |Shrinkr(J )(x)|�m.
Each job in Shrinkr(J )(x), by definition, has remaining work at most x at time r(J ). Thus, during [r(J ), t], the work
scheduled by S5 on x-small jobs is at least 4m(t − r(J )) − mx�3m(t − r(J )).

By Lemma 3, wt(Qt(x)) < mx. During [r(J ), t], the work scheduled by S5 on x-small jobs that are completed by
time t is at least 3m(t − r(J )) − mx�2m(t − r(J )). Consider jobs in Ft(x) but not in Fr(J )(x). They are all x-small
jobs scheduled by S5 to completion during [r(J ), t], and their total processing time is at least the work scheduled by
S5 on them during [r(J ), t], i.e., at least 2m(t − r(J )). Thus, p(Ft (x))�p(Fr(J )(x)) + 2m(t − r(J )).

Furthermore, if r(J ) is inside a �(x)-interval starting from t ′ �r(J ), we have Shrinkr(J )(x) ⊆ Shrinkt ′(x). During
[t ′, r(J )] and the waiting time of J, S5 can only process x-small jobs or jobs in Shrinkt ′(x). Using the same argument
above, we can conclude that during [t ′, t], the work scheduled by S5 on x-small jobs is at least 3m(t − t ′), and
p(Ft (x))�p(Ft ′(x)) + 2m(t − t ′). �

Lemma 6. At any time t �0 and for any x > 0, p(Ft (x))�p(F ∗
t (x)).

Proof. Let �u(x) denote the set of x-small jobs released before time u. We will use a property of F ∗
t (x) that for any

time u < t , p(F ∗
t (x))�p(�u(x)) + m(t − u).

We prove the lemma by contradiction. Suppose that t �0 is the earliest time such that at time t, there is a smallest x > 0
such that p(Ft (x)) < p(F ∗

t (x)). Then there must be an x-small job J with p(J ) = x such that at time t, J is finished
in OPT but unfinished in S5. Note that t − r(J )�x.

We consider two cases. First, if r(J ) is not within a �(x)-interval in S5, then at time r(J ) in S5, no x-small
jobs are waiting, and there are at most m unfinished x-small jobs. Thus, p(�r(J )(x))�p(Fr(J )(x)) + mx, and
p(F ∗

t (x))�p(Fr(J )(x))+mx +m(t − r(J ))�p(Fr(J )(x))+ 2m(t − r(J )). By Lemma 5, p(Ft (x))�p(Fr(J )(x))+
2m(t − r(J )), and thus p(Ft (x))�p(F ∗

t (x)). A contradiction occurs.
Second, if r(J ) is within a �(x)-interval starting from time t ′ �r(J ) in S5, then we can upper bound p(�t ′(x)) by

p(Ft ′(x))+mx. Then p(F ∗
t (x))�p(Ft ′(x))+2m(t−t ′). Together with Lemma 5, we can again derive the contradiction

that p(Ft (x))�p(F ∗
t (x)). �

3.2. 5-speed SRPT is 1-competitive

Based on Lemma 6, we can prove that 5-speed SRPT is 1-competitive. First, we show that at any time t, there is a
one-to-one mapping between F ∗

t and Ft .

Lemma 7. Consider any time t �0. Assume that p(Ft (x))�p(F ∗
t (x)) for any x > 0. Then there is a one-to-one

mapping from F ∗
t to Ft such that each job J ∗ ∈ F ∗

t is mapped to a unique job J ∈ Ft with p(J ∗)�p(J ).

Proof. Suppose that the processing times of the jobs in F ∗
t have d distinct values, denoted by x1 < x2 < · · · < xd .

We construct a mapping from F ∗
t to Ft incrementally, each time we consider jobs in F ∗

t with the same processing
time.

Consider all jobs in F ∗
t that have the smallest processing time (i.e., equal to x1). Given that p(Ft (x1))�p(F ∗

t (x1)),
Ft(x1) must contain at least as many jobs as F ∗

t (x1). Thus, each job in F ∗
t (x1) can be mapped to a unique job in Ft(x1)

with processing time at most x1.
Assume that for some k�1, we have constructed a mapping from F ∗

t (xk) to Ft as required by Lemma 7. Next, we
consider jobs in F ∗

t with processing time xk+1. Let Y ⊂ Ft be the set of jobs to which jobs in F ∗
t (xk) are mapped.

As each job in F ∗
t (xk) is mapped to a job with the same or shorter processing time, we have p(F ∗

t (xk))�p(Y ).
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The number of jobs in F ∗
t with processing time xk+1 is exactly

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1
.

The number of unmapped jobs in Ft(xk+1) is at least

p(Ft (xk+1)) − p(Y )

xk+1
� p(F ∗

t (xk+1)) − p(F ∗
t (xk))

xk+1

because p(Ft (xk+1))�p(F ∗
t (xk+1)) and p(F ∗

t (xk))�p(Y ). Thus, each job in F ∗
t with processing time xk+1 can be

mapped to a unique job in Ft with the same or shorter processing time. �

We are now ready to show our main theorem.

Theorem 8. SRPT is 5-speed 1-competitive for minimizing total stretch.

Proof. For any time t �0, let �t denote the set of jobs released at or before time t. (Note that �t equals the union
of the set of jobs released at time t and �t , the set of jobs released before time t.) The set of unfinished jobs in S5 is
Qt = �t − Ft ; and the set of unfinished jobs in OPT is Q∗

t = �t − F ∗
t .

Total stretch of 5-speed SRPT =
∫ ∑

J∈Qt

1

p(J )
dt =

∫ ∑
J∈�t

1

p(J )
dt −

∫ ∑
J∈Ft

1

p(J )
dt.

By Lemma 7, each job J ∗ in F ∗
t is mapped to a unique job in Ft with processing time at most p(J ∗), so we have∫ ∑

J∈Ft

1

p(J )
dt �

∫ ∑
J ∗∈F ∗

t

1

p(J ∗)
dt.

Thus,

total stretch of 5-speed SRPT �
∫ ∑

J∈�t

1

p(J )
dt −

∫ ∑
J ∗∈F ∗

t

1

p(J ∗)
dt =

∫ ∑
J ∗∈Q∗

t

1

p(J ∗)
dt,

which is equal to the stretch of OPT. Hence, 5-speed SRPT is 1-competitive. �

4. Speed requirement for SRPT to be 1-competitive

In this section we give a lower bound on the speed requirement for SRPT to be 1-competitive.

Theorem 9. For minimizing total stretch, SRPT is not c-speed 1-competitive for any c<1.5.

Proof. Let c = 1.5 − � where 0 < � < 1.5. We construct a sequence of jobs such that the total stretch of c-speed
SRPT schedule is larger than that of OPT. At time 0, m jobs J1, J2, . . . , Jm of equal processing time are released. (The
processing time p will be fixed shortly.) Each job is processed in a distinct processor at time 0. Just after c-speed SRPT
has started the last unit of work, i.e., at time (p − 1)/c + �, for some small 0 < � < 1/c, m more jobs J ′

1, J
′
2, . . . , J

′
m,

all of which have processing time equal to 1, are released. In this case, c-speed SRPT continues processing Ji , and
starts processing J ′

i only after finishing all Ji .
We analyze the total stretch of c-speed SRPT and OPT. For c-speed SRPT, the stretch of Ji is 1/c. Since J ′

i is
processed after Ji is finished, J ′

i is finished at p/c + 1/c and thus with stretch 2/c − �. Therefore, the total stretch
of c-speed SRPT is m(3/c − �). On the other hand, a unit-speed schedule can start processing J ′

i immediately after
the job is released and then resume processing Ji ; the stretch of J ′

i and Ji is 1 and (p + 1)/p, respectively. Therefore,
the total stretch of OPT is at most m(2 + 1/p). We can fix the value of p > 1/(4�/(3 − 2�) − �), then we have
3/c − � = 3/( 3

2 − �) − � > 2 + 1/p. (Notice that 0 < � < 3
2 and if we choose � < 4�/(3 − 2�), then we

can ensure p to be positive.) The total stretch of c-speed SRPT is greater than that of OPT and thus the theorem
follows. �
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5. Resource augmentation analysis of SJF

In this section we analyze the performance of SJF for scheduling m�2 processors. We show that the total stretch of
the schedule of (24c)-speed SJF is at most 1/c times the total stretch of an optimal schedule using unit-speed processors.
Recall that SJF gives higher priority to jobs with shorter processing times, with tie broken by job ID.

Our analysis makes use of the result by Becchetti et al. [4] that HDF (Highest Density First) is (2 + 2�)-speed
(1 + 1/�)-competitive for minimizing weighted flow time. If we define the weight of a job J to be 1/p(J ), then the
stretch of J is equal to the weighted flow time of J. Furthermore, HDF is equivalent to SJF (since the density of a job
is defined to be its weight divided by its processing time). Thus, the work of Becchetti et al. [4] implies that SJF is
(2 + 2�)-speed (1 + 1/�)-competitive for minimizing total stretch.

The framework of our analysis of SJF is as follows. Let � = (2 + 2�), for some � > 0 to be fixed later, and let
c�1 be any number. We compare the schedules of (c�)-speed SJF and �-speed SJF. We show that the flow time of
each job in the former schedule is at most 3/c times of the flow time in the latter schedule. Combining with the result
of Becchetti et al., we conclude that SJF is c(2 + 2�)-speed (3/c)(1 + 1/�)-competitive, or equivalently, (24c)-speed
((2 + 2�)(1 + 1/�)/(8c))-competitive. Putting � = 1 (so as to minimize (2 + 2�)(1 + 1/�)), we obtain the result that
SJF is (24c)-speed (1/c)-competitive.

Lemma 10. Consider any real numbers z�z′ �1. Given an input job sequence, denote the schedules of z-speed SJF
and z′-speed SJF as S and S′, respectively. At any time t �0 and for any job J, we have rwS

t (J )�rwS′
t (J ).

Proof. We prove the lemma by contradiction. Let t be the earliest time such that there is a job J with rwS
t (J ) > rwS′

t (J ).
If there are more than one such J, then we pick the one with the highest priority, i.e., the shortest processing time. We
can assume that, at time t, J is processed by some processor in S′ but not by any processor in S, otherwise, t can be
smaller because z�z′. By the definition of SJF, as J is processed in S′ at time t, there are at most m− 1 unfinished jobs
with priority higher than J. On the other hand, since J is not processed in S at time t, there are at least m unfinished jobs
with priority higher than J, and one of these m jobs must have already been finished in S′. It contradicts the assumption
that t is the earliest time and J is the job with highest priority that rwS

t (J ) > rwS′
t (J ). �

Corollary 11. Assume that z�z′ �1. For any job J, the flow time of J in the schedule of z-speed SJF is at most that of
J in the schedule of z′-speed SJF.

Lemma 12. Consider a schedule S of (any speed) SJF. At the time when a job J is finished, the total remaining work
of the unfinished jobs arrived before J is finished and with priority higher than J is at most (m − 1)p(J ).

Proof. At the time when J is finished, there are at most m − 1 unfinished jobs arrived before r(J ) and with priority
higher than J. Otherwise, J will be preempted and cannot finish at the time. Since a job with priority higher than J has
processing time at most p(J ), the total remaining work of those jobs is at most (m − 1)p(J ). �

Let S� denote the schedule of �-speed SJF. We denote the flow time of a job J in S� as flow�(J ), which can be divided
into two parts, wait�(J ) and busy�(J ), corresponding to the amount of time J is waiting for a processor and J is being
processed by a processor, respectively. Similarly, we use the notations Sc�, flowc�(J ), waitc�(J ) and busyc�(J ) for the
schedule of (c�)-speed SJF.

Consider any job J. Our goal is to show that flowc�(J )�(3/c)flow�(J ). This is done by proving busyc�(J )�(1/c)

flow�(J ) and waitc�(J )�(2/c)flow�(J ). The former is straightforward because busyc�(J ) = p(J )/(c�) = busy�(J )/c

�flow�(J )/c.
The rest of this section is devoted to showing that the work scheduled by Sc� while J is waiting, denoted W

below, is upper bounded by 2m� flow�(J ). Then it follows that waitc�(J )�W/(mc�)�(2/c)flow�(J ). Let G be
the set of jobs that have ever been scheduled by Sc� while J is waiting. Note that jobs in G must arrive before
r(J ) + flowc�(J ), and they all have priority higher than J. We partition G into two subsets G1 and G2 such that G1
contains jobs arriving before r(J ) and G2 the rest. The work scheduled by Sc� while J is waiting, i.e., W, is at most∑

J ′∈G1
rw

Sc�
r(J )(J

′) + p(G2). To relate W with the flow time of J in S�, we consider two sets of jobs H1 and H2 in the
schedule S�.
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• H1 contains jobs with priority higher than J that arrive before r(J ) and are unfinished at r(J ) in S�.
• H2 contains jobs J ′ with priority higher than J such that r(J )�r(J ′) < r(J ) + flow�(J ).

It is not difficult to see that G1 ⊆ H1 and G2 ⊆ H2 (see Lemma 13), and hence W can be bounded by the remaining
work of H1 in S� at r(J ) plus the processing time of H2. Details are as follows. Consider any set K of jobs, at any
time t, rwS

t (K) is defined to be
∑

J∈K rwS
t (J ) for any schedule S.

Lemma 13. G1 ⊆ H1 and G2 ⊆ H2. Furthermore, rw
Sc�
r(J )(G1)�rw

S�
r(J )(H1),

Proof. Consider any job J ′ in G1. By definition, J ′ is unfinished in Sc� at r(J ) and has priority higher than J.
By Corollary 11, J ′ is also unfinished in S� at r(J ). Therefore, we have J ′ ∈ H1. Furthermore, by Lemma 10,
rw

Sc�
r(J )(J

′)�rw
S�
r(J )(J

′). Together with G1 ⊆ H1, we have rw
Sc�
r(J )(G1)�rw

S�
r(J )(H1).

Consider any job J ′′ in G2. By definition, r(J )�r(J ′′) < r(J )+ flowc�(J ). By Corollary 11, flowc�(J )�flow�(J ),
and hence r(J ′′) < r(J ) + flow�(J ). Therefore, G2 ⊆ H2. �

Corollary 14. W �rw
S�
r(J )(H1) + p(H2).

Lemma 15 further shows that the upper bound of W is 2m� flow�(J ).

Lemma 15. rw
S�
r(J )(H1) + p(H2)�2m� flow�(J ).

Proof. Let us consider how S� schedules the work in H1 and H2 starting from time r(J ). First, we note that the total
amount of such work is exactly rw

S�
r(J )(H1) +p(H2). During [r(J ), r(J ) + flow�(J )], the work scheduled by S� is at

most m� flow�(J ). At time r(J ) + flow�(J ), S� may not complete all work in H1 and H2; yet, by Lemma 12, at the
time when J is finished, all unfinished jobs arriving before J is finished and with priority higher than J have a total
remaining work at most (m − 1)p(J ), and thus, from r(J ) + flow�(J ) onwards, S� can schedule at most (m − 1)p(J )

units of work on H1 and H2. In conclusion, rw
S�
r(J ′)(H1) + p(H2)�m� flow�(J ) + (m − 1)p(J )�2m� flow� because

p(J )�� flow�(J ). �

The waiting time of the job J in Sc� (i.e., waitc�(J )) is at most W/mc�, which, by Corollary 14 and Lemma 15, is
at most (2/c)flow�(J ).

Corollary 16. flowc�(J )�(3/c)flow�(J ).

Proof. By definition, flowc�(J ) = waitc�(J ) + busyc�(J ). The corollary follows from the facts that waitc�(J )�
(2/c)flow�(J ) and busyc�(J )�(1/c)flow�(J ). �

The following theorem follows from Corollary 16 and that SJF is (2 + 2�)-speed (1 + 1/�)-competitive.

Theorem 17. SJF is (24c)-speed (1/c)-competitive, for any c�1.

6. 2-speed SRPT on a single processor

In the previous sections we have analyzed SRPT and SJF in the multiprocessor setting. In this section, we show that
on a single processor, SRPT admits a better analysis than that in Section 3; precisely, we show that SRPT is indeed
2-speed 1-competitive. The analysis takes a similar approach as before. First, we attempt to bound the total processing
time of finished x-small jobs, yet based on one 2-speed processor, we can only derive a weaker bound, namely, at
any time t �0 and for any x > 0, p(Ft (x)) + x > p(F ∗

t (x)) (see Lemma 19). This weaker result is still sufficient
for establishing a one-to-one mapping between the finished x-small jobs of OPT and that of 2-speed SRPT exists
(Lemma 20). Following the same argument as in the proof of Theorem 8, we can then conclude that SRPT is 2-speed
1-competitive.

Consider the schedule S defined by 2-speed SRPT. The following lemma helps to establish the bound in Lemma 19.



438 W.-T. Chan et al. / Theoretical Computer Science 359 (2006) 430 –439

Lemma 18. Let J be a job with p(J ) = x. Suppose that S does not complete J at time t �r(J ) + x and t ′ < r(J ) is
the latest time in S that there is no unfinished x-small job. Then during [t ′, t], S schedules at least 2(t − t ′) − x units
of work on x-small jobs; and p(Ft (x)) + x > p(Ft ′(x)) + t − t ′.

Proof. Throughout [t ′, t], there is at least one unfinished x-small job. With a single processor, any x-large jobs released
after t ′ would not be processed during [t ′, t]; in other words, during [t ′, t], S can only schedule unfinished x-small jobs
or jobs in Shrinkt ′(x). Since, by Lemma 1, |Shrinkt ′(x)|�1, during [t ′, t], the work scheduled by S on x-small jobs is
at least 2(t − t ′) − x.

Since, by Lemma 3, wt(Qt(x)) < x, during [t ′, t], the work scheduled by S on x-small jobs that are completed by
time t is strictly more than 2(t − t ′) − 2x. Consider jobs in Ft(x) but not in Ft ′(x). They are all x-small jobs scheduled
by S to completion during [t ′, t], and their total processing time is at least the work scheduled by S on them during
[t ′, t], i.e., strictly more than 2(t − t ′)− 2x. Thus, p(Ft (x))+ x > p(Ft ′(x))+ 2(t − t ′)− 2x + x�p(Ft ′(x))+ t − t ′
as t − t ′ �x. �

Lemma 19. At any time t �0 and for any x > 0, p(Ft (x)) + x > p(F ∗
t (x)).

Proof. We prove the lemma by contradiction. Suppose that t is the earliest time such that at time t, there is a smallest x >

0 such that p(Ft (x)) + x�p(F ∗
t (x)). There must be an x-small job J with p(J ) = x such that J is finished in OPT

at time t but not finished in S. Let t ′ < r(J ) be the latest time in S that there is no unfinished x-small job. Note that
t − t ′ > t − r(J )�x. By Lemma 18, p(Ft (x)) + x > p(Ft ′(x)) + t − t ′.

On the other hand, since at time t ′ there is no unfinished x-small job, p(Ft ′(x)) = p(�t ′(x)) where �t ′(x) denotes
the set of x-small jobs released before time t ′. Using a property of F ∗

t (x) that p(F ∗
t (x))�p(�t ′(x)) + t − t ′, we have

p(F ∗
t (x))�p(Ft ′(x)) + t − t ′ < p(Ft (x)) + x, which is a contradiction. �

Lemma 20. Consider any time t �0. Assume that p(Ft (x))+x > p(F ∗
t (x)), for any x > 0. Then there is a one-to-one

mapping between F ∗
t and Ft such that each job J ∗ ∈ F ∗

t can be mapped to a unique job J ∈ Ft with p(J ∗)�p(J ).

Proof. Suppose that the processing times of the jobs in F ∗
t have d distinct values, denoted by x1 < x2 < · · · < xd . We

construct a mapping from F ∗
t to Ft incrementally, each time we consider jobs in F ∗

t with the same processing time.
Consider all jobs in F ∗

t that have the smallest processing time (i.e., equal to x1). Given that p(Ft (x1)) + x1 >

p(F ∗
t (x1)), Ft(x1) contains strictly more than p(F ∗

t (x1))/x1 − 1 jobs, which is the number of jobs in F ∗
t (x1) minus 1.

Since both the number of jobs in Ft(x1) and F ∗
t (x1) are integers, Ft(x1) must contain at least as many jobs as F ∗

t (x1).
Thus, each job in F ∗

t (x1) can be mapped to a unique job in Ft(x1) with processing time at most x1.
Assume that for some k�1, we have constructed a mapping from F ∗

t (xk) to Ft as required by Lemma 20. Next, we
consider jobs in F ∗

t with processing time xk+1. Let Y ⊂ Ft be the set of jobs to which jobs in F ∗
t (xk) are mapped.

As each job in F ∗
t (xk) is mapped to a job with the same or shorter processing time, we have p(F ∗

t (xk))�p(Y ). The
number of jobs in F ∗

t with processing time xk+1, denoted by K is exactly

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1
.

On the other hand, the number of unmapped jobs in Ft(xk+1), denoted by U is at least

p(Ft (xk+1)) − p(Y )

xk+1
>

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1
− 1

because p(Ft (xk+1))+xk+1 > p(F ∗
t (xk+1)) and p(F ∗

t (xk))�p(Y ). Since both K and U are integers, we have U �K .
Thus, each job in F ∗

t with processing time xk+1 can be mapped to a unique job in Ft with the same or shorter processing
time. �

Following the same argument as in the proof of Theorem 8, we have the following theorem.

Theorem 21. SRPT is 2-speed 1-competitive for minimizing total stretch on a single processor.
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7. Concluding remarks

In this paper we have studied online job scheduling on multiprocessors and showed that, with respect to total stretch,
SRPT is 5-speed 1-competitive and not c-speed 1-competitive for any c < 1.5.An interesting direction is to close the gap
between the speed requirement for SRPT to be 1-competitive. We also show that SJF is (24c)-speed (1/c)-competitive,
for any c�1. We believe that SRPT also admits a similar result as SJF, and, in particular, we conjecture that SRPT is
(10c)-speed (1/c)-competitive for large enough c (say, c�3). SJF is simpler than SRPT in terms of implementation.
Intuitively, SRPT is more adaptive than SJF in the sense that SRPT also takes into account the work that has already
been done on the jobs. A job that has been processed would get a higher priority, thus, the set of unfinished small
jobs could be minimized. SJF does not have this merit. Our results that SRPT is 5-speed 1-competitive while SJF is
24-speed 1-competitive on multiprocessors also suggest this is the case.

It is also interesting to analyze the performance of SRPT and SJF when the online algorithm is given extra processors
instead of extra speed, and to determine whether 1-competitiveness can be achieved. Another open problem is to derive
a c-speed 1-competitive online algorithm for minimizing weighted flow time on multiprocessors. Note that both SRPT
and SJF require job migration. A further direction is to consider non-migratory algorithms, i.e., once a job is assigned
to a processor, it cannot be migrated to other processors, though it may be preempted.
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