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I. INTRODUCTION 

We construct surfaces in R3 which are attractors of iterated function 
systems. These surfaces are graphs of continuous functions from the 
oriented standard simplex 0’ c R2 into R, and have in general a non- 
integral dimension. For this reason we refer to them as fractal surfaces. 
This construction of fractal surfaces can be extended to any topological 
space via singular simplices. 

Fractal surfaces are currently being considered in areas such as 
chemistry, metallurgy, and surface physics. We give a general construction 
for a fractal surface which we believe can be used to describe or better 
understand the surfaces in the above-mentioned areas. 

The structure of this paper is as follows:, In Section II we present a 
general introduction to iterated function systems (i.f.s.) and state some 
relevant results. In Section III we construct fractal surfaces using i.f.s.‘s. 
Projecting these fractal surfaces onto appropriate coordinate planes yields 
the graph of a fractal function. Section IV is devoted to the study of the 
code space and the dynamical system associated with the fractal surface. 
The Lyapunov dimension A is introduced and for a special class of fractal 
surfaces we present a formula for A. In Section V we look at p-balanced 
measures and the moment theory. The main result is then presented in Sec- 
tion VI; a formula for the fractal dimension d of a fractal surface is derived. 
This is done for a special case of afline generating maps. In Section VII we 
show Holder continuity and prove that the fractal surface has finite 
d-dimensional Hausdorff measure. 

II. FRELII~IINARIE~ 

Let X= (X, d) be a compact metric space or a closed subset of R”,. n E N, 
with metric d. Denote by H(X) the set of all non-empty closed subsets of 
X. With the Hausdorff metric h: H(X) x H(X) + R,+ , 
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h(A, B)=max{sup{d(x, B) :x&4}, sup{d(A,y):yEB}} 

(H(X), h) is a complete metric space. 
Let F = (fi: X+ X:i= 1, . . . . N) be a collection of continuous functions 

on X. The pair F,= (X, F) is called an iterated function system on X. If the 
mapsfi, iGI= (1, . . . . N}, are contractive then F, is called a hyperbolic i.f.s. 
If we define a set-valued map p: H(X) -+ H(X), by 

fv)= Ufi(4, VA E H(X) 

then p is a contraction on H(X), thus possessing a unique fixed point, 
called the attractor of the i.f.s. F, and denoted by A(F,) (we usually omit 
the dependence of A on F, if it is clear from the context which i.f.s. is 
used). Every i.f.s. F, admits a stationary measure p, called the p-balanced 
measure, given by 

Vg E C”(X) and a set of non-zero probabilities p = (pi: i E I}. 
For a more detailed and elaborate presentation of i.f.s.‘s we refer the 

reader to [l, 21. 
Now let X= [0, l] x R and consider a set of N + 1 interpolation points 

3= {(xj,yj): 0=x,< ... <x,=1, ~,ER, ~EJ= (O}uI}, define maps 
fi:X-+Xby 

with dxi=xi--xi-,, 6i=Y,-Yi-1-ei(YN-YO), ki-l=Yi-l-er.YO, 

leil < l, i E I. Then (X, 9) with 9((x, y), (2, p)) = Ix - ,? + 
(1 -max{dxi})(2&-’ ly-jl, where /?>max(IbiI}, is a complete metric 
space and the fi, i E I, are contractive on (X, $8). 

The unique fixed point of this i.f.s. is the graph of a continuous function 
f: [0, l] + R with f(xj) = yj, je J. Since the graph of f is in general a 
fractal, f is called a fractal function. At this point the reader may want to 
consult the following publications which deal with fractal functions and 
their properties: [ 1, 3-101. 

Figure 1 shows the construction of a fractal function. The first two 
iterates of a base set and the final attractor are shown. 

Recall that the fractal dimension (also called capacity or similarity 
dimension) of a bounded set S c R”, dim S, is defined as 

log C(E) lim sup - 
e-0 log(&-1)’ 



FRACTALSURFACES 277 

FIGURE 1 

where Z(E) = min{ [%‘(&)I :%( ) E cover of S by balls of radius E > O}. We 
remark that dim S remains unchanged if the continuous variable E is 
replaced by any sequence {E,} with E, J 0 and 

log&n+, +. 
log E” . 

At this point we quote a result from [S] or [7]: 

THEOREM 1. Let G= graph(f), h f w ere is as defined above. Suppose that 
Zleil > 1 and 3 is not collinear. Then dim G is the unique positive solution 
of 

1 lei 1 (dxi)d- ’ = 1; 

otherwise dim G = 1. 

Let us note that every compact one-dimensional Co-submanifold of R2 
containing 3 will converge in the Hausdortf metric to G. 
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III. CONSTRUCTION OF FRACTAL SURFACES 

Before we commence with the construction of fractal surfaces, let us 
briefly recall some basic notions from algebraic topology (see for instance 
[11] or [12]. In [12] n-dimensional parallelepipeds are used instead of 
n-dimensional simplices). 

DEFINITION 1. Let {u,,, . . . . uk} be a set of geometrically independent 
points in R”, n B k. The k-dimensional geometric simplex or k-simplex, 
denoted by ok, is defined as 

ak = x E R”:31,, . . . . ~,ER+, X= ~ ~jVj, i: S= 1 

j=O j=O 

The points { uo}, . . . . { vk} are called the vertices of the simplex ok. 

A simplex a”’ is called a face of a simplex ak, k 3 m, if each vertex of am 
is also a vertex of ak. We denote a k-simplex ak also by ak = ( vo, . . . . uk ), 
where {uo}, . . . . {ok} are the vertices of ak. The k-simplex ak endowed with 
the Euclidean subspace topology of R” is denoted by IakJ, and is called the 
geometric carrier of ak. 

DEFINITION 2. A k-dimensional singular simplex is a CO-map 
ZZ lakl + Y, Y a topological space. The compact set E(lakl) is called the 
trace of ak in Y; it is also denoted by lB1. The free abelian group 
Ck = C,(Y) generated by the k-dimensional singular simplices is called the 
group of k-chains of Y and its elements are called k-chains. 

A k-chain Ck on Y is thus a finite linear combination of k-dimensional 
singular simplices with coefficients in Z: K = Cm,E,. The zero chain, i.e., 
the zero element in Ck, is denoted by 0. The trace of 0 is defined as the 
empty set 0; the trace of an arbitrary chain K as IKI = tJ IE, 1. 

The boundary of a k-simplex ak is defined the usual way and extended 
to k-dimensional singular simplices via Z For ak = (vo, ,.., ok), and 
aqak = ( uo, . . . . Gq, . . . . uk ) 0 < q < k (where 6, indicates that the vertex vq is 
to be omitted) we have 

ask= C (-l)qaqak. 
q=o 

Since ak = id(ak), a,8= Sq, 0 < q < k, from which follows aE= 
~(-i)~za~. 

d induces a derivation from Ck into Ck- 1 by linearly extending it to a 
homomorphism a: Ck + CkP 1 (we use the same symbol, namely a, to 
denote the boundary operator and the derivation). 
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DEFINITION 3. A compact set Y,, c Y is called a singular complex if 

(a) Y,,= IKI, K n-chain on Y, 

(b) K= CE,~, with E, = f 1, EV injective on Bk, 

(c) for v#p, I& n $?‘,I =a, 

(d) if Fis any face of EV, then IFI n 18,l =a. 

If we set Y = R” and 8= id, then Y0 is called a geometric complex. I KI is 
called the polyhedron associated with K. 

DEFINITION 4. A topological space Y is called triangulable if there 
exists a geometric complex K such that Y = IKI. K is then called a 
triangulation of Y. 

We now commence with the construction of fractal surfaces in R3. Let 
v,=(0,O),u,=(1,0)andu,=(0,1),andleta2=(u,,o,,v,)withorienta- 
tion induced by 0 < 1 -C 2. Let X = Q x R, where Q = [0, 1 ] x [0, 11. 

Definef,:X-+Xby 

withrPi:Q-+Q, Yi:X+R,i~I={l ,..., N},N~N,N>2,andsuchthatfi 
maps 0’ onto subsimplices of=fi(a2), and C?O* =Z&r:, i.e., if of n a: = 
Fii c a2, i # j, then Fii has opposite orientations in r$ and a;, i, jg I. 

Furthermore we require that oi maps a* homeomorphically onto a:, 
and that Yj is Lipschitz in the first and second variable and contractive 
in the third, its I. We also assume that @,(O, 0) = (0, 0), Y,(O, 0,O) = 0, 
and 3i,,i,EI, such that @,(l,O)=(l,O), Qi,(O, l)=(O, l), !P,(l,O,O)= 
Yi, (0, LO) = 0 (see Fig. 2). 

The pair F,= (X, F) with F = {fi: X-P X:ieI} is an i.f.s. on X. To show 
that F,, with an appropriate metric, is a hyperbolic i.f.s. we need the 
following lemma whose proof is elementary. 

FIGURE 2 



280 PETER R. MASSOPUST 

LEMMA 1. Let d: R* -+R,+ be a metric on R. Then ~,,,J(x, y, z), 
(2, y, ?))=ctd(x, a)+/?d(y, j) +yd(z, 5) is a metric on R3, t/cc, j3, y >O. 

PROPOSITION 1. F, is a hyperbolic i.$s. on the complete metric space 
(X, a,), for fixed K > 1, where 

+l-max{contrQi(x,.),contrQi(-,y)} ,x3-y , 
K max{ Lip Yi(x, ., .), Lip Yi( ., y, .)} 

3 

ProojI The proof is straightforward and is omitted. i 

F, as a hyperbolic i.f.s. has a unique attractor A E H(X). The following 
theorem characterizes this attractor. 

THEOREM 2. A = A(F,), where F, is the i.Js. constructed aboue, is the 
graph of a Co-function x: o* -+ R, passing through the vertices of of, i E I. 

Proof Let @:R* + R be a function with domain dam(O) 3 a*, 
0 E BC’(R*, R) with O(0, 0) = O( 1,0) = O(0, 1) = 0. Denote this collection 
of functions by C*(R*, R). Let Y = {compact two-dimensional 
Co-submanifolds of R3 given by z= 8(x, y), 0 E C*(R’, R)}. Clearly 
Y#Z. 

Choose a metric D: Y x Y + R,+ , D(Q,,~,)=~~p{l~,(x,~)-~,(x,~)l: 
(x, y) E R2}. Then (9, D) is a complete metric space. Define an operator 
T:Y+Yby 

(TQ)b, Y) = Y,ki(X> YL QgA4 Y)), w, Y) E 0: 

with gi E Z(af, a2), where Y(af , a’) denotes the set of all nonsingular 
affine maps from cf onto g2 and i E I. 

The operator T is well-defined and contractive: D(TO,, T8,) < 
crD(O, gi, Q2 gi) d aD(O,, O,), where a = contr{ Yi(x, y, .):ie I} < 1. Thus 
by the Banach Fixed Point Theorem T has a unique fixed point 1~9’. 
That graph(X) c R3 contains (uo}, {u, }, and {u2} is clear. 1 

The graph of x is in general a fractal set, and graph(X) = Ufi(graph(X)); 
i.e., graph(X) is self-similar. We therefore refer to graph(X) as a fractal 
surface. Note that x is a fractal function from R2 into R. 

In what follows we shall mostly deal with a special class of maps L., i E I, 
namely affine ones. Let 

yj(x, y, Z)=kiX+ fiy+SiZ+ yi, 
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where the constants ai, bi, ci, dip kiy li, cl;, pi, and yi are determined by the 
conditions on fi, and the constants si, lsi] < 1, are arbitrary parameters. 

An even more special class of affine maps is obtained by choosing N+ 1 
equally spaced vertices on &r2, from which we then obtain N2 subsimplices 
oi and thus N2 mapsf,. Denote these maps by 21i, in I= (1, . . . . N’}. Then +’ 0 0 

-N 

%4x,y,z)= [ 1 0 -N +’ 0 (*) 

ki li si 

Associated with the i.Es. F, is the i.f.s. fl, = (a’, E), where @ = {QI: i E I}. 
The attractor a = A(F,) = (r2. We may call F, the projection of Fx onto R* 
via rc,: R3 + R2, x,(x, y, z) = (x, y), Vx, y, z E R. The notation F, = ~t:Fx is 
then self-evident. The i.f.s.‘s P,, = n,* Fx and fl,, = n,* Fx generate fractal 
functions from Rx (0) x R and (0) x R x R onto R, respectively. In the 
case of affine maps we obtain in particular: 

E . XZ. gi: [0, l] x (0) xR 5 

Q: hi:{O}x[O,l]xR 5 

If we have a geometric complex K consisting of a finite number of two- 
dimensional simplices, each having its own i.f.s. F, with attractor A(F,), 
we obtain a fractal surface from this complex by setting A(K) = tJ A(F,). 
Hence every triangulable topological space can be used to generate fractal 
surfaces. 

The construction of fractal surfaces from singular simplices and com- 
plexes is done via the maps E’, as defined above; the i.f.s. consists of maps 
of the form Eoof,, of,, 0 . . . of,,,,, where ol, . . . . o, E I, m E N. 

Fractal surfaces on compact two-dimensional Riemannian manifolds are 
a special case of the above-mentioned construction: the E’s are the charts 
in the differentiable atlas of the manifold. 

By restricting the i.f.s. Fx to n,*Fx or z,* Fx we are able to construct 
fractal functions from topological spaces into R, including compact two- 
dimensional Riemannian manifolds. 
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IV. THE CODE SPACE AND THE DYNAMICAL SYSTEM 

ASSOCIATED WITH AN I.F.S. 

Let Fx be an i.f.s. consisting of N maps fi E F. Let A be the attractor of 
Fx. Define Q = IN. Q endowed with the Frtchet metric I., ‘1: Q x 52 + R,+ , 

is a compact metric space, homeomorphic to the classical Cantor set on N 
symbols. 

It can be shown (see for instance [2]) that there exists a surjection 
SE CO(sz, A), 

with o = (w,) E 52, m E N, x0 E X, and this limit is uniformly independent 
of x0. 

Convention. From now on we use the notation f,, .w, to denote 
fco,~fw,o ... ofoh. 

Now let Fx be the i.f.s. defining a fractal function in R3 as defined in III. 
Every point (x, Y)E~’ =A$,) can then be written as (x, y)= S(W)= 
lim @ w,..,w,(xo, yo), some (x0, y,) E I?, where s is a continuous surjection 
from Q onto o2 (the code spaces for Fx and F, are clearly identical). Since 
A(F,) = graph(X) with x E C”(a2, R) we have 

x(&0) = lim Yv,,( Scr + 0, ul,,(&< w, . . . . !Pv,J &J”, 0, zo))...) 
m-r +a0 

some z. E R. 
As we can associate a code space with every i.f.s. F,, we can also 

associate a dynamical system D = D(f, r, & ii) with Fx. This can be done 
as follows (see also [3] or [13]): 

Let p be the p-balanced measure of Fx and let m be the uniform 
Lebesgue measure on [0, 11. Let w  = Xx [0, 1 ] and let p = p x m be a 
measure on 2. Denote by B = B(W) the o-algebra of all p-measurable sub- 
sets of 2. Let p = {pi: i E I} be a set of non-zero probabilities. Define a 
p-measurable map r w+ 8 by 

for (x, t) E [Zj-, , Zi] with .Zi = pi + . . . + pi, Co = 0, iEI. 
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It is easy to see that the attractor of D is A(g) = A(X) x [0, 11, and thus 
dim A(8) = 1 + dim A(X). Let us now introduce the Lyapunov dimension 
of a dynamical system: 

DEFINITION 5. Let D = D(%, r, B, ji) be the dynamical system 
associated with the i.f.s. F,, where % is a compact k-dimensional Rieman- 
nian manifold. Let A, > A, 2 ‘.. 2 A, be the Lyapunov exponents of r. 
Let m,=sup{m~{l,...,k):;l~+ ... +A,>O}. If l<m,<m, then the 
Lyapunov dimension A@) of j? is defined as 

4a=mo+ 
1, + ... +/I,, 

,AmO+l, . 

If m, = m, then A@) = k and if no such m, exists, A(b) = 0. 

Remark. The Lyapunov exponents are calculated via Oseledec’s Multi- 
plicative Ergodic Theorem (see [ 143). 

In the case of aftine maps ‘?Ii, i E I, it is straightforward to calculate the 
Lyapunov exponents and thus the Lyapunov dimension of the associated 
dynamical system D. Indeed, t: 8+ w  is given by 

N + B 
.x+liy+siz 

LJ 

Y 

t-Ci- 1 0 

for (x, y, z, t)eXx [C,_ ,, C,], i= 1, . . . . N2 (a, /I, and y are determined by 
the constraints on 21z,), from which follows that (using the law of large 
numbers to determine the resulting limit of random products) 

1, = E p;log L 
i= 1 di) 

12= 5 Pil”g(lsil) 
i= 1 

&=A,=log ; . 
0 
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If C lsiI >N (which ensures that dim A(f) > 3), then A, a,& > A3 = &. 
Thus 

n(F 

3 
p)=3 + CP~~~g(l~iII~pf) 

log N . 

If C (si 16 ZV, A@, p) = 3. Using methods from advanced calculus we find a 
set of probabilities p* that maximizes A@, p). This maximized Lyapunov 
dimension A* is then given by 

,4*=2+10g(clsil) 
1ogN . 

V. P-BALANCED MEASURES AND MOMENT THEORY 

The i.f.s. Fx, as defined in III, admits a stationary measure p whose sup- 
port is graph(X). The “projected” i.f.s. F, also admits a stationary measure 
fi with supp fi= 10’1. Denote by A(02) and A!(G), G=graph(~), the 
measure spaces of a2 and G, respectively. We can define a homeomorphism 
H: o2 + G, H(x, y) = (x, y, x(x, y)), and obtain the following relation 
between measures on Fx and measures on F,: 

THEOREM 3. H: o2 + G, as defined above, induces a contravariant 
homeomorphism A(H): M(G) + &(a’). Furthermore, fi(l?) = p(Z-Z(&), 
V~?E~(CT~). IfgEL’(X,p) then 

Proof. Define .4(H): d(G) + Jl(a’) by J(H)(p)($) = p(H(Z?)), 
V,!?~&(cr’), VIE A(G). Now let p be any p-balanced measure on A(G); 
then p(E)=Cpip(f,~‘(E)), VEeB(G). Also Jl(H)(,a)(l?)=p(H(k))= 
Z;Dip(f;’ (H(k))) = zpip(H@,:’ (k)) = Cpifi(@,:’ (8)). But for the 
p-balanced measure fi we have p(8) = ,Xp$(@;’ (8)), V,??.E A(o’). Hence 
M(H)(p) = fi. The integral identity follows now easily. 1 

Theorem 3 implies the following integral relation: 

COROLLARY 1. Zf the probabilities pi are chosen according to 
pi = area( i E I, and if dA denotes two-dimensional Lebesgue measure on 
R2, then 
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Proof With the above choice of probabilities we have dA(@i’ (b)) = 
dA(B), VSEB(02). 1 

Corollary 1 together with the stationarity of the p-balanced measure p 
can be used to calculate moments. Let gE L’(X, p) and let pi= area(rr;), 
i E I. Then 

s d4 Y? z) 44X? Y? z) 
graph(x) 

=Tp:SgofA x, Y, z) 44x, Y, z) 

Also 

s iv&(x) 
dx> Y, z) 44x, Y, 2) = 1 P; jc2 g(@i(x, y), yyi(x, y> x(x> y))) dA. 

i 

Hence 

jo2 g(x, y, x(x, Y)) dA = &4 jo2 g(@;(x, Y), yiui(x, Y, x(x, ~1)) dA. 
I 

DEFINITION 6. Let p be the p-balanced measure for the i.f.s. F,. Then 
the n th moment of x with respect to p is defined as 

and the generalized moment of x with respect to p as 

Convention. Since we only consider moments with respect to p, we 
simply write M, for M(p; p) and Mp,o,r for M(p, 0, t; p). 

THEOREM 4. Let graph(z) be the fractal surface generated by F, with 
fi = %i, i E I. Then the moments M, and Mp,c,r are determined uniquely and 
recursively by the lower order moments. 
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Now the right-hand side equals 

where 

P,=~(2N2)-1f~~(~+~i)~(~i~+l,y+yi)dA. 
I 

Hence 

%=C ; +%+gi; (y.) g&w+p, 

oM = Ci CFZ,’ (fXafp’s,/2N’+3) M, + P, 
P 1 - xi si/2N’+ 3 

(note that C Isi/ > N). 
For Mp,O,r we obtain 

M p,o,r = s 
xpy”xT dA 

02 

=c (2N2)-’ 
i 

II(%+a;)~(~+~i)~(kix+iiV+SiX+gi)’dA 

=c (2N2)-’ 
SC I CT2 r,s,, 

f’,,,(Ny ai, pi, yi, ki, lit Si) X’fX’ dA 

+~(2N2)-‘Ii~~siy’dA, 
i 

where f’,, f is an appropriate polynomial. Thus 

M fJ,a,r = 
Ci Cr.,,, (2NZ)-’ Pr,s,rMr,s,t 

1 -xi (s;/~N~+O+~) . I 
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VI. THE FRACTAL DIMENSION OF GRAPH(X) 

Consider the i.f.s. F, withfi = ‘91i, i E I = { 1, . . . . N’}. We derive a formula 
for the fractal dimension of graph(X), where x: a2 + R is the fractal 
function representing the fractal surface generated by F,. 

THEOREM 5. Assume that Z= ,JY IsiI> N and U Iof ( is not coplanar. 
Then the fractal dimension d of G = graph(X) is given by d = 1 + 
log,(Z 1~~1); otherwise d= 2. 

Before we proceed with the proof of this theorem, let us state a lemma 
which we use in the proof. 

LEMMA 2. Let B, denote a ball of radius E > 0 in R3. Let A, be the 
e-triangular set &02 x &I, Z= [0, 1] (&A of a bounded set A c R” is the image 
of A under E: R” -+ R”, E(x) = EX, E > 0, usually E 3 1). Let S be a bounded 
set in R’ and let X(B,) be the minimum number of balls B, needed to cover 
S. Then JV( B,) < N(A,) < 8&“( B,), where Jlr(A,) is the minimum number of 
E-triangular sets necessary to cover S. 

Proof Every B, can be covered by at most 8A,, and every A, can be 
covered by one B,. m 

Proof of Theorem 5. By the remark following the definition of fractal 
dimension it suffices to choose E = E, = (l/N)“, m E N. 

Let %‘m be a collection of covers of G by &,-trianular sets A = A(m, p, q) 
of the form xzA=la~l, p=l,...,N*“, r$=f,,(o*), 0~~52, and lw,I=m, 
q = 1, . ..) J(m, p), where M(m,p)E N denotes the number of such 
&,-triangular sets above Ia; I. Furthermore require that A(m, p, q) and 
A(m, p, q + 1) intersect along their respective faces. Let C, E %?,,, be a cover of 
minimal cardinality M(m) EN (note that the existence of such a minimal 
cover is guaranteed by the compactness of G). Observe that J(m)= 
z&“(m,p). Let G, = U A(m,p, q), p = 1, . . . . N’“. Then Hk(G,) = 0, 
k = 0, 1, 2, where Hk denotes the kth homology functor. 

Now apply map fi, ie Z, to G,. 
a; x R2, 

GPi = fi(Gp) is then a compact set in 
above the ith subsimplex azi of 0:. Since G = U fi(G) we have 

G c U f.( lJ Gp). GPi is contained in the triangular set ( Nm+ ‘) - ’ 1 [Y’I x 
(JW,p) bil + lkil + I~iI)(N-“)Z. H ence if we denote by M(m + 1, p, i) 
the number of E,, i -triangular sets above a$, we obtain Jf(m + 1, p, i) < 
N(h”(m,p) ISiI + lkil+ lZil)+ 1. Observe that X(m+ l)=.ZL’.N(m+ l,p, i). 
Summing the above inequality over p and i yields N(m + 1) < (NZ) M(m) 
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+~,N~“+~,withc,=C(lk~I+Il~I+N)>O.IfZ$Ninductiononmyields 
JV(~)GV(~)+~,~N-‘) N2”‘, then it follows that (see Fig. 3) 

lim sup log 4m) < 2 
m-cc log(N”‘) ’ ’ 

Hence dim(G) = 2. If U 1~: 1 is coplanar, i.e., if U Iof 1 c Z7, L7 any hyper- 
plane of R3, then G = I7 and thus dim(G) = 2. 

If Z > N, we again obtain by induction on m 

<(NZY’ JW++~ , 1 
which implies dim(G) = lim sup(log X(,))/(log(N”)) 6 1 + log,(Z). 

To obtain a lower bound for dim(G) if Z > N and lJ 1~; 1 not coplanar, 
we proceed as follows. Apply fL:’ to G,, assuming si # 0, i E I. f; ’ (G,) is 
then contained in a triangular set (N-“+l) Icry I x Nem(Jr/-(m,p) IS;’ 1 + 
Ikis;’ I N) I. Hence with the same notation as above: ,Ir(m - l,p, i) < 
1~~:’ 1 M(m, p, i) + Ik,.r; ’ I N + ll,si ’ ( N + 1. Summing over p and i yields 
N(m) 2 (NZ) A’-(m - 1) - cJV2’+‘, c2 = NZ( (k;s,:’ 1 + Il,s;’ 1 + N) > 0 
(let us remark that the above inequality holds trivially for si=O), and 
induction on m for all m, E { 1, . . . . m}: A-(m) Z (NZ)m-mo (M(m,) - 
c*N~~O(Z- N)-‘). L emma 3 below shows that one can choose m. 
large enough to guarantee M(m,) > c2N2”O(Z- N)-‘. If we set c3 = 
(NZ)-“‘O (~V(rn,) - c*N*~O(Z - N)-‘) > 0, we get .4@(m) 3 c3(NZ)“‘. 
Hence lim sup (log M(m)/log(N”)) 2 1 + log,,,(Z). 1 
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LEMMA 3. rf Z > N and U [gf ) is not coplanar, then 

N 2m 

-=o. 
,“f”, N(m) 

Proof: Since U 102 1 is not coplanar %,,E I such that V= JziOl > 0. 
Notice that V~max{~zi--zj,,~:i~l\{i,}}. We then have X(m)> VN2m, 
and consequently M(m) 3 E Isi) VNZm, m E N. By induction 

N(rn)>~~-~ Isi,-sipI VN2m, VpJpm, 
il iz 6 

and thus M(m) > [ V(C Is~I)~- l] N2”. 1 

Let us remark that dim(G) = A*(p) - 1. 

VII. HOLDER CONTINUITY 

We show that x is Holder continuous with Holder exponent 
6 = 3 -dim(G). Throughout this section we assume that G = graph(X) is 
generated by ai~F, ieI= (l,..., N2}. 

THEOREM 6. Let x be the fractal function representing the fractal surface 
G=graph(x) generated by Fx with ‘91i~ F, ~EI= { 1, . . . . N*}. Then zf 
O<h<l, 

Ix@ + h, y + h) - x(x, v)l < ch6, 

V(x, y) E 02, with c > 0 and 6 = 3 -dim(G) = 2 - log,(Z). 

Proof Let h E [0, 1) be given. Let m be the least integer such that there 
exists a code w  E Q with IwI = m, so that (x, y) and (x + h, y + h) E f,(a’). 
Then [x(x+ h,y+h)-x(x,y)J 6N-“max{~V(m,p):p= 1, . . . . N2m} (we 
use here the same terminology and notation as in the proof of Theorem 5). 
Thus since max~(m,p)BN-2”M(m)3cN-2m(N-m)~-d, where d= 
dim(G), it follows that 

lwlx(x + h, Y + h) - x(x, v)l 3 log(cN -3mWm)-d) 
log h log h 

log c 
%gi+ 

log( N - 3mNmd) 
lo&N -“) 

log c 
=-+3-d, 

log h 
since h < N--m. 1 

40!9/151/1-20 
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The fact that x is Hijlder continuous with exponent 6 = 3 -dim(G) has 
the following consequence. 

THEOREM 7. Suppose that x is Hiilder continuous with exponent 
6 = 3 -dim(G). Then Xdim(G)(G) < +co. 

Proof. Let h E (0, 1) and let m be the least integer such that h 6 N -“‘. 
Let r$ be any of thk N*” subsimplices of g2. Then GI., may be covered by 
at most N*“(ch’ + 1) N-“-triangular sets. Thus 

~~~~G)(G) < N2m(Ch3-dim(G) 
m \ 

+ l)(~-m)dim(W 

6 N2"(cN' mN3~ dim(G)) + I)(N m)dim(G) 

dim(G) - 2 

=cN-~ +(~-“‘)dim(G)-*<i+ k 

0 

< +co. 

Hence XdimCG)(G) < +a~. 1 
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