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Abstract

Let �(u, v)=∑∞
m=0

∑∞
n=0 cmnu

mvn. Bouwkamp and de Bruijn found that there exists a power

series�(u, v) satisfying the equationt�(tz, z)= log
(∑∞

k=0
tk

k! exp(k�(kz, z))
)
. We show that this

result can be interpreted combinatorially using hypergraphs. We also explain some facts about�(u,0)
and�(u,0), shown by Bouwkamp and de Bruijn, by using hypertrees, and we use Lagrange inversion
to count hypertrees by number of vertices and number of edges of a specified size.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In [3], Bouwkamp and de Bruijn use algebraic methods to prove some results concerning
a power series expansion. Their original motivation arose from work by Harris and Park
[7], who showed the asymptotic normality of the distribution of empty cells when some
number of balls were placed in some number of equiprobable cells. To accomplish this,
Harris and Park employed factorial cumulants; in particular, they showed that in the power
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series expansion of

log

( ∞∑
k=0

(
N

k

)(
1 − k

N

)N
tk
)
,

the coefficient oftn isO(N). This work led Bouwkamp and de Bruijn (cf.[3, Section 4C])
to show that if�(u, v) is a double power series of the form

�(u, v) =
∞∑
m=0

∞∑
n=0

cmnu
mvn,

then there exists a power series�(u, v) such that

log

( ∞∑
k=0

tk

k! exp(k�(kz, z))
)

= t�(tz, z). (1.1)

That is, the left-hand side can be written ast
∑∞
n=0 t

n�n(z) = ∑∞
n=0 t

n+1�n(z), where
�n(z) is a power series which has no powers ofz less thann. Bouwkamp and de Bruijn
further demonstrate a result relating�(u) := �(u,0) and�(u) := �(u,0). Note that
�(u,0) yields the “leading terms” of (1.1), in the sense thatt�(tz,0) is the series which
contains all terms oft�(tz, z) in which the power ofz is one less then the power oft.
Bouwkamp and de Bruijn show that ifw is the power series iny satisfying

y = w exp(−�(w)− w�′(w)), (1.2)

then

�(y) = (w − w2�′(w))/y. (1.3)

We will show that these results from[3] are actually consequences of identities for
hypergraphs and hypertrees. We will also give combinatorial interpretations of many other
equations that were derived algebraically in [3].

A hypergraph is a generalization of a graph (the next section has exact definitions and
basic facts; see [1] for further background). In general, edges can consist not only of a set of
two vertices, but of a set of an arbitrary number of vertices. An edge consisting ofi vertices
will be called ani-edge. We will be concerned with hypergraphs without empty edges or
loops (i.e., without 0-edges or 1-edges); therefore, when we use the termhypergraph, it will
refer to hypergraphs whose edges have at least two vertices.

Bouwkamp and de Bruijn prove their results by analyzing the power series (see (1.2)
in [3])

∞∑
k=0

tk

k! exp

[ ∞∑
i=2

kixi−1

]
(1.4)
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and then substituting power series fort and thexi . We shall prove their results in a very
similar way, by substituting power series fort and for theui in the generating function

∞∑
k=0

tk

k! exp

[ ∞∑
i=2

(
k

i

)
ui

]
, (1.5)

which we interpret as a generating function for hypergraphs.
If we wanted, we could prove the result by considering (1.4) to be the exponential

generating function for a set of objects in which the “edges” are sequences of vertices
(with repetitions allowed). However, since hypergraphs seem more natural, we choose to
use them.

Section 2 provides definitions of hypergraphs and hypertrees. In Section 3, we prove
(1.1) by showing it is a consequence of the hypergraph analogue of the fact that every
connected graph withn vertices has at leastn− 1 edges. In Section 4, we interpret several
equations obtained by Bouwkamp and de Bruijn in terms of hypergraphs. Section 5 provides
interpretations of the leading terms,�(u)and�(u), using hypertrees.We conclude in Section
6 by showing how this work and Lagrange inversion can be used to obtain previously known
results on the enumeration of hypertrees.

2. Definitions and background

We define a hypergraphH onn vertices to be an ordered pair(V ,E), whereV is the set
of vertices, with|V | = n, andE is a multiset of subsets ofV; we also require the subsets
in E contain at least two vertices. In particular, we allow multiple edges. For an arbitrary
hypergraphH, we letv(H) denote the number of vertices ofH ande(H) denote the number
of edges ofH. This definition differs from that in Berge [1] since we allow a hypergraph to
have vertices which belong to no edge. Our definition of a hypergraph nearly agrees with
that of Grieser [6]; the difference is that we do not allow loops.

In general, we will consider hypergraphs labeled so that if the hypergraph hasn vertices,
they are labeled by the elements of[n] := { 1,2,3, . . . , n }, and if the hypergraph has�i
i-edges, they are labeled by the elements of[�i]. For simplicity, we will call such objects
labeled hypergraphs.

In what follows, we will always have�1 = 0, since our hypergraphs have no loops. Let
u2, u3, u4, . . . be indeterminates. We define theweightof H to be

u
�2
2 u

�3
3 · · · u�n

n

and we define theedge magnitudeof H to be
∑k
i=2 (i − 1)�i .

An example of a labeled hypergraph is given in Fig.1. The 2-edges are denoted by a
segment connecting the two vertices; for edges with more than two vertices, the edge is
represented by a closed curve which contains the vertices of the edge inside it. The vertices
are labeled by numbers without subscripts; for clarity, the edges are labeled with subscripted
numbers in which the subscript refers to the size of the edge being labeled. (The subscripts
on the edge labels thus do not add structure to the hypergraph.) For the hypergraph in the
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Fig. 1. A sample labeled hypergraph.

figure,V = [5]; E = { { 1,2 }, { 1,2 }, { 3,5}, { 4,5}, { 1,3,4 }, { 1,3,4 }, { 3,4,5} };
�2 = 4, �3 = 3; the weight isu4

2u
3
3; and the edge magnitude is 10.

We define awalk in a hypergraph to be a sequence

v0, e1, v1, . . . , vn−1, en, vn,

where for alli, vi ∈ V , ei ∈ E, and for eachei , {vi−1, vi} ⊆ ei . We define apath in a
hypergraph to be a walk in which allvi are distinct and allei are distinct. A walk is acycleif
the walk contains at least two edges, allei are distinct, and allvi are distinct exceptv0 = vn.

A hypergraph isconnectedif for every pair of verticesv, v′ in the hypergraph, there is a
path starting atv and ending atv′. The hypergraph in Fig.1 is connected. For example, a
path between vertices 2 and 5 is

2, 12 = { 1,2 }, 1, 33 = { 1,3,4 }, 3, 32 = { 3,5}, 5.

We define ahypertreeto be a connected hypergraph with no cycles.
Thedegreeof a vertexv ∈ V , denoted deg(v), is defined as

deg(v) := |{e ∈ E | v ∈ e}|;
i.e., the degree ofv is the number of edges to whichv belongs. Two vertices in a hypergraph
areadjacentif there is an edge containing both.

We now note some basic facts about hypertrees. First, two edges in a hypertree have at
most one vertex in common; for if edgese1, e2 have two verticesv1, v2 in common, then the
hypergraph has a cyclev1, e1, v2, e2, v1. Next, we prove the following lemma. It is known;
for another proof, see[6].

Lemma. A connected hypergraph on n vertices is a hypertree if and only if it has edge
magnituden − 1. Furthermore, the minimum edge magnitude of a connected hypergraph
is n− 1.
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Proof. First we prove by induction onn that a hypertree onn vertices has edge magnitude
n− 1. This is clearly true forn = 1. Now suppose thatH is a hypertree withn > 1 vertices
and that every hypertree withn− 1 vertices has edge magnituden− 2.

Let v0, e1, . . . , em, vm be a longest path inH. Suppose thatvm is contained in some
edgee other thanem. We will show that this assumption leads to a contradiction. Ife ∈
{e1, . . . , em−1} thenH contains a cycle, soe /∈ {e1, . . . , em−1}. Let v be a vertex ofeother
thanvm. Thenv0, e1, . . . , em, vm, e, v is either a longer path thanv0, e1, . . . , em, vm (if
v /∈ {v0, . . . , vm−1}) or contains a cycle (ifv ∈ {v0, . . . , vm−1}). Since both are impossible,
vm cannot be contained in any edge ofH other thanem.

Let H ′ be obtained fromH by removing vertexvm and then either replacing edgeem
with em − {vm}, if |em| > 2; or deletingem, if |em| = 2. It is clear thatH ′ is a hypertree
and that its edge magnitude is one less than that ofH. By the inductive hypothesis,H ′ has
edge magnituden− 2, soH has edge magnituden− 1.

Now suppose thatH is a connected hypergraph onn vertices that is not a hypertree. Then
H has a cyclev0, e1, v1, . . . , en, v0. Replacinge1 with e1 − {v0} if |e1| > 2, or deletinge1
if |e1| = 2, leaves a connected hypergraph onn vertices with edge magnitude one less than
that ofH. Repeating this reduction on cycles eventually yields a hypertree. ThusH has edge
magnitude greater thann− 1. �

3. Proof of (1.1)

We turn our attention to proving the main result of[3] using the exponential generating
function for labeled hypergraphs. We adopt the convention that if� = (�2, �3, . . . ) is a
sequence of integers with finitely many non-zero parts, then

u� = u
�2
2 u

�3
3 u

�4
4 · · ·

and

u�

�! = u�

�2! �3! �4! · · · .
We do not useu1 since we will not consider hypergraphs with loops.

Using exponential generating functions, we now count labeled hypergraphs with vertices
and edges labeled as in Fig.1. (For background on the combinatorics of exponential gen-
erating functions, see [4, Chapter 3, Section 2], [11, Chapter 5], or, for an approach using
species [2, Chapter 1].) Consider the exponential generating function

(eui )

(
k

i

)
=
(

1 + ui + u2
i

2! + · · ·
)( k

i

)
.

We view the term
u
j
i

j ! in the expansion ofeui as representingj multiple copies of a particular

i-edge. Since there are

(
k

i

)
i-subsets of vertices in a hypergraph withk vertices, the

previous expression counts labeled hypergraphs onk vertices whose edges are all of sizei.
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Therefore,

∞∏
i=2

(eui )

(
k

i

)
= exp

[(
k

2

)
u2 +

(
k

3

)
u3 + · · ·

]
is the exponential generating function for labeled hypergraphs onk vertices, where the

coefficient ofu
�

�! is the number of labeled hypergraphs onk vertices with�i i-edges for each
i�2. From this, we see that the exponential generating function for labeled hypergraphs
with vertices weightedt andi-edges weighted byui is

∞∑
k=0

tk

k! exp

[ ∞∑
i=2

(
k

i

)
ui

]
.

Since the edge magnitude of a hypergraph counted by the coefficient ofu�

�! is
∑
i�2 �i (i−1),

we define themagnitudeof u� to be the same expression.
We now consider connected labeled hypergraphs. Since a labeled hypergraph is a set

of connected labeled hypergraphs, ifC := C(t; u2, u3, . . .) is the exponential generating
function for connected labeled hypergraphs, we have

eC =
∞∑
k=0

tk

k! exp

[ ∞∑
i=2

(
k

i

)
ui

]
.

Hence,

C = log

[ ∞∑
k=0

tk

k! exp

((
k

2

)
u2 +

(
k

3

)
u3 +

(
k

4

)
u4 + · · ·

)]
. (3.1)

We know from Section 2 that the edge magnitude of a connected hypergraph onkvertices
must be at leastk − 1. So if we write

C =
∞∑
k=1

tk

k! fk(u2, u3, u4, . . .), (3.2)

the minimum magnitude of terms offk is k − 1.
We finish the proof of (1.1) with an argument from Bouwkamp and de Bruijn [3, Section

1]. Form�1, letPm(z) = ∑
i�0pm,iz

i be power series inz. If we make the substitutions

t exp(P1(z)) �→ t, zm−1Pm(z) �→ um,

in (3.2), then the coefficient oftk is a power series inzwith no term of degree less thank−1.
Thus, the resulting power series is of formt�(tz, z). If we make the same substitutions in
(3.1), we obtain

C = log

 ∞∑
k=0

tk

k! exp

(∑
m�1

(
k

m

)
zm−1

∑
i�0

pm,iz
i

) .
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Here the argument of the exponential function may be written

∞∑
j=0

zj
j+1∑
m=1

(
k

m

)
pm,j−m+1. (3.3)

Now let�(u, v) = ∑∞
m,n=0 cmnu

mvn be any double power series, so

k�(kz, z) =
∑
m,n�0

km+1cmnz
m+n =

∞∑
j=0

zj
j+1∑
l=1

klcl−1,j−l+1. (3.4)

Since the polynomials

(
k

m

)
, for m = 1, . . . , j + 1, form a basis for the polynomials of

degree at mostj + 1 in k that vanish at 0, it is possible to choose power seriesPm(z) that
make (3.3) equal to (3.4) and thus make (3.1) equal to the left side of (1.1). This proves
(1.1).

4. Further combinatorial interpretations

We remark here that some calculations done by Bouwkamp and de Bruijn [3, Sections 2–3]
correspond to simple manipulations involvingCwhich yield various ways of decomposing
hypergraphs into other hypergraphs. Differentiation ofeC with respect touj yields (cf. [3,
Section 2])

�eC

�uj
=

∞∑
k=0

tk

k!
(
k

j

)
exp

((
k

2

)
u2 +

(
k

3

)
u3 +

(
k

4

)
u4 + · · ·

)

= tj

j !
�j eC

�tj
. (4.1)

By properties of exponential generating functions[4, pp. 167–168],�e
C

�uj
counts hyper-

graphs rooted at an unlabeledj-edge. (The generating functionuj �eC
�uj

would count those

rooted at a labeledj-edge.) Also, operating oneC by tj �j

�tj counts hypergraphs which are

equipped with an orderedj-tuple ofj distinct vertices. By dividing byj ! as in (4.1), we count
hypergraphs rooted atj vertices. Therefore (4.1) represents a bijection between hypergraphs
rooted at an unlabeledj-edge and hypergraphs withj rooted vertices.

From (4.1) in the casej = 2, we obtain (cf. [3, (2.1)])

�C
�u2

= t2

2!
[(

�C
�t

)2

+ �2
C

�t2

]
. (4.2)

This represents a way to decompose connected hypergraphs rooted at an unlabeled 2-edge.
By removing the rooted 2-edge, we either obtain two vertex-rooted connected hypergraphs
or else we obtain a doubly vertex-rooted connected hypergraph. See Fig.2 for an example;
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(a) Removing the 2-edge yields two hypergraphs

(b) Removing the 2-edge yields one hypergraph
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Fig. 2. Decomposition of (4.2).

in the figure, rooted objects are marked heavily (thick lines or larger dots). Since(t �C�t )
2

counts ordered pairs of rooted hypergraphs,1
2! (t

�C
�t )

2 counts sets containing two rooted

hypergraphs, as in Fig. 2(a). Also, sincet2 �2
C

�t2 counts hypergraphs rooted at an ordered pair

of vertices,t
2

2!
�2
C

�t2 counts doubly vertex-rooted hypergraphs, as in Fig. 2(b).

Next, note that (4.1) implies

�eC

�uj
= 1

j

(
t
�
�t

− (j − 1)

)
�eC

�uj−1
.

From this we obtain (cf.[3, (2.2)])

�C
�uj

= 1

j

[
t
�C
�t

�C
�uj−1

+ t
�2
C

�t �uj−1
− (j − 1)

�C
�uj−1

]
. (4.3)

Combinatorially, the termt �C�t
�C

�uj−1
on the right-hand side of (4.3) counts pairs of connected

hypergraphs, in which one of the pair is rooted at a vertex and one is rooted at an unlabeled

(j − 1)-edge. The next term,t �2
C

�t �uj−1
, counts connected hypergraphs rooted at both an

unlabeled(j − 1)-edge and a vertex. Finally,(j − 1) �C
�uj−1

counts connected hypergraphs

rooted at an unlabeled(j−1)-edge and at a vertexin that rooted edge. Thus, (4.3) says there
arej ways to decompose a connected hypergraph rooted at an unlabeledj-edge either into a
pair of connected hypergraphs, one rooted at a vertex and the other rooted at an unlabeled
(j − 1)-edge (for example, see Fig. 3(b)(i)); or into a single connected hypergraph, rooted
at an unlabeled(j − 1)-edge and at a vertexnot in the rooted edge(see Fig. 3(b)(ii), (iii)).
To perform the decomposition given a hypergraph rooted at an unlabeledj-edge, simply
choose a vertexv in the rooted edgee. Then remove the edgee, add the edgee− { v }, and
root the new object atv and at the added edge.
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(a) Original hypergraph

(b) Decompositions

(i) (ii) (iii)

Fig. 3. Decompositions according to (4.3).

5. Interpretations of the leading terms

We now consider the combinatorial interpretation of the results in[3] about the leading
terms of (1.1). It turns out that much of the work leading to the results in [3] involves
differential equations related to decompositions of hypertrees.

We define forn�1,

Cn = Cn(u2, u3, . . .) :=
[
tn

n!
]
C;

that is,Cn is the coefficient oft
n

n! in the power seriesC. Thus, the coefficient ofu
�

�! in Cn is
the number of connected labeled hypergraphs on[n] with �j j-edges forj�2. From (4.2)
we obtain (cf. [3, (2.3)]),

�Cn
�u2

= 1

2!

[
n−1∑
i=1

(
n

i

)
i(n− i)CiCn−i + n(n− 1)Cn

]
(5.1)

and from (4.3) (cf. [3, (2.4)]),

�Cn
�uj

= 1

j

[
n−1∑
i=1

(
n

i

)
(n− i)

(
�Ci

�uj−1

)
Cn−i + (

n− (j − 1)
) �Cn
�uj−1

]
. (5.2)

Now, we define

Tn = Tn(u2, u3, . . .) := all terms of magnituden− 1 in Cn,

and let

T (t; u2, u3, . . .) =
∞∑
n=1

tn

n!Tn(u2, u3, . . .). (5.3)
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The generating functionT contains the “leading terms” ofC, in the senseTn is the sum of
the terms of minimal magnitude inCn. Hence, if�n,� is the number of labeled hypertrees
on [n] with �i i-edges, we have

Tn =
∑

�=(�2,�3,...)

�n,�
u�

�! ,

where�n,� = 0 unless
∑
i�2(i − 1)�i = n − 1. We note thatTn corresponds to�∗

n in [3,
Section 3].

We can get differential equations forT using the differential equations forCn. By taking
terms with the minimal magnituden− 2 on both sides of (5.1) we get (cf. [3, (3.1)])

�Tn
�u2

= 1

2!
(n−1∑
i=1

(
n

i

)
i(n− i)TiTn−i

)
.

There is no contribution to this equation from the term1
2n(n− 1)Cn in the summation on

the right-hand side of (5.1). That term corresponds to the case in which the removal of a
2-edge from a connected hypergraph yields a single connected hypergraph. For hypertrees,
removing a 2-edge must yield two hypertrees.

From the last equation, we obtain

�T
�u2

= 1

2!
(
t
�T
�t

)2

. (5.4)

If we take terms with the minimal magnituden− 1 − (j − 1) = n− j on both sides of
(5.2), we get (cf. [3, (3.2)])

�Tn
�uj

= 1

j

(n−1∑
i=1

(
n

i

)
(n− i)

�Ti
�uj−1

Tn−i
)
,

implying

�T
�uj

= 1

j

(
t
�T
�t

)(
�T

�uj−1

)
. (5.5)

We can then conclude from (5.4) and (5.5) that (cf. [3, (3.4)])

�T
�uj

= 1

j !
(
t
�T
�t

)j
. (5.6)

This equation describes a correspondence between hypertrees rooted at an unlabeledj-edge
and sets ofj hypertrees each rooted at a vertex. Husimi[8] was the first to obtain (5.6).

We now return to (5.3), the definition ofT. We apply the operatoruj �
�uj

to both sides;

note that this will count hypertrees rooted at a labeledj-edge. Writing
∑

� �n,�
u�

�! for Tn,
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we get

uj
�T
�uj

=
∞∑
n=1

tn

n!uj
�Tn
�uj

=
∞∑
n=1

tn

n!uj
�

�uj

(∑
�

�n,�
u�

�!
)

=
∞∑
n=1

tn

n!
∑
�

�n,� �j
u�

�! .

Multiplying both sides byj − 1 and then summing onj yields
∞∑
j=2

(j − 1)uj
�T
�uj

=
∞∑
j=2

(j − 1)
∞∑
n=1

tn

n!
∑
�

�n,��j
u�

�!

=
∞∑
n=1

tn

n!
∑
�

�n,�
u�

�!
n∑
j=2

(j − 1)�j

=
∞∑
n=1

tn

n!
∑
�

�n,�
u�

�! (n− 1)

=
∞∑
n=1

(n− 1)
tn

n!Tn.

In the above, the third equality follows from the second because�j is the number ofj-edges
in a hypertree, and the edge magnitude of a hypertree isn − 1. We conclude that (cf.[3,
(3.5)])

∞∑
j=2

(j − 1)uj
�T
�uj

= t
�T
�t

− T . (5.7)

This equation describes two ways to count each hypertree onn vertices with multiplicity
n − 1. It is clear that the right-hand side does this. The terms on the left-hand side count
every hypertree rooted at a labeledj-edgej − 1 times. But since the edge magnitude of a
hypertree on[n] is n− 1, the left-hand side counts every hypertreen− 1 times.

We now defineR to be

R = t
�T
�t
.

In [3, (3.9)], the expressionwcorresponds toR, which is the exponential generating function
for hypertrees rooted at a labeled vertex, counting hypertrees by weight and number of edges.
We shall refer to the objects counted byRasrooted hypertrees. Using this definition, and
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using (5.6) and (5.7), we obtain

T = R −
∞∑
j=2

(j − 1)uj
1

j !R
j , (5.8)

which was also first derived by Husimi[8].
We now obtain a functional equation forR, using a slightly different path from that in

[8]. Differentiating both sides of (5.8) with respect tot, we get

R

t
= �T

�t
= �R

�t
−

∞∑
j=2

(j − 1)uj
1

j !j R
j−1 �R

�t
,

so

dt

t
= �R

R
−

∞∑
j=2

uj
1

(j − 2)!R
j−2 �R. (5.9)

Integrating this yields

R

t
= exp

( ∞∑
j=1

uj+1
Rj

j !
)
, (5.10)

where we obtain the constant of integration by noting thatR
t
|t=0 = 1 (since the number of

rooted hypertrees on a single vertex is 1). We can rewrite this as (cf.[8])

R = t exp

( ∞∑
j=1

uj+1
Rj

j !
)
. (5.11)

Eq. (5.11) describes a way of decomposing rooted hypertrees into a set of other rooted
hypertrees. Note that in a rooted hypertree, ifv1 andv2 are both adjacent to the root of the
original hypertree, thenv1 andv2 cannot both be in an edge which does not contain the root.
Thus, if the root of a hypertree is contained ini edges containingj1 + 1, j2 + 1, . . . , ji + 1
vertices, then when we remove the root and those edges from the original hypertree, we
are left withi sets of hypertrees, containingj1, j2, j3, . . . , ji hypertrees. In addition, each
hypertree in each set is rooted at the vertex formerly in an edge with the root.

This is exactly what (5.11) is describing. For a givenj, the termuj+1
Rj

j ! corresponds to
a set ofj rooted hypertrees and another edge ofj + 1 vertices; this extra edge consists of
the roots of thej hypertrees and a new vertex (counted by the leadingt in (5.11)) which
becomes the root of the new hypertree.

Fig. 4 depicts a hypertree rooted at the vertex labeled 1 and, below, the decomposition
resulting from removing the root and all edges containing it. The roots of the hypertrees
resulting from the decomposition are denoted by larger dots. The original hypertree that is
shown is decomposed into three sets of hypertrees, indicated in the figure.

We note here that (5.11) and (5.8) can be obtained from (1.2) (which is [3, (1.6)]) and
(1.3) (which is [3, (1.7)]), respectively. In (1.2) and (1.3), we substitutet for y; R for w; T

for y�(y); and set�(x) equal to the power series
∑∞
i=1

ui+1x
i

(i+1)! .
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(a) A hypertree H

3

527

6
4 8

9 10

{T1,T2 ,T3} { T4 ,T5} { T6 }

(b) Decomposition of H into sets of hypertrees

Fig. 4. Decomposition of (5.11).

To count hypertrees only according to the total number of vertices, we can setuj = 1 in

(5.8) for all j. Let T̃ be the expression obtained fromT by this substitution, and let̃R be the
analogous expression forR. From (5.8), we get a simple expression relatingT̃ to R̃, where
each exponential generating function now counts hypertrees only by number of vertices:

T̃ = R̃ − R̃

∞∑
j=1

R̃j

j ! +
∞∑
j=2

R̃j

j !
= R̃ − R̃(eR̃ − 1)+ (eR̃ − 1 − R̃)

= (eR̃ − 1)− R̃(eR̃ − 1)

= (eR̃ − 1)(1 − R̃). (5.12)

We can understand (5.12) by considering the penultimate form of the equation. The
expression

u2
�T
�u2

+ u3
�T
�u3

+ u4
�T
�u4

+ · · · (5.13)

counts hypertrees rooted at an edge. Thus, each unrooted hypertreeH is countede(H)
times in (5.13). From (5.6), we see that if we replace eachuj by 1 in (5.13), the resulting

expression is equal toeR̃ − R̃ − 1. But each unrooted hypertreeH is countedv(H) times
by R̃, so that each hypertreeH is counted byeR̃ − 1 with multiplicity e(H) + v(H). On
the other hand, we can decompose a hypertree rooted at an edge and a vertex in the rooted
edge by removing the rooted edge (but no vertices). We are left with a hypertree rooted at
the previously rooted vertex and a set of hypertrees each rooted at a vertex which used to
be in the rooted edge. These objects are exactly counted byR̃(eR̃ − 1), which therefore
counts (with multiplicity one) each hypertree rooted at an edge and a vertex in that edge. If
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as before we denote the number ofi-edges ofH by �i , then the number of ways to root it at
an edge and a vertex in that edge is

∑
i i�i . But∑

i

i�i =
∑
i

(i − 1)�i +
∑
i

�i = (v(H)− 1)+ e(H).

Therefore, inR̃(eR̃ − 1), each hypertreeH is countedv(H) − 1 + e(H) times, and so
subtracting that expression fromeR̃ − 1 produces an expression in which every hypertree
is counted exactly once. This explains (5.12).

6. Application to enumeration of hypertrees

By Lagrange inversion, we can find an explicit formula for rooted hypertrees by weight
and number of edges. The numbers are well-known; cf. Husimi [8], Greene and Iba [5], and
Kreweras [9] (in which hypertrees are called “dendroids”).

Since we can write, from (5.11),

R = t

∞∏
j=1

e
uj+1

Rj

j ! , (6.1)

we get, using Lagrange inversion ([4, Theorem 1.2.4, p. 17]),

[tn]R = 1

n
[tn−1]

∞∏
j=1

1 +
(
nuj+1

tj

j !
)

+
(
nuj+1

tj

j !
)2

2! +
(
nuj+1

tj

j !
)3

3! + · · ·
 .

Letting ��n − 1 denote that� is a partition ofn − 1 andai denote the number of parts of
sizei in �, we calculate[

tn

n!
]
R =

∑
��n−1

(
n− 1

�1, �2, . . .

)∏
i

(nui+1)
ai

ai ! . (6.2)

Since there arenways to root a hypertree onnvertices,
[
tn

n!
]
T = 1

n

[
tn

n!
]
R, so for hypertrees

on no more than 6 vertices,[
t

1!
]
T = 1,[

t2

2!
]
T = u2,[

t3

3!
]
T = u3 + 3u2

2,[
t4

4!
]
T = u4 + 12u2u3 + 16u3

2,[
t5

5!
]
T = u5 + 20u2u4 + 15u2

3 + 150u3u
2
2 + 125u4

2,
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t6

6!
]
T = u6 + 30u2u5 + 60u4u3 + 360u4u

2
2 + 540u2u

2
3 + 2160u3u

3
1 + 1296u5

2.

If we setuj = u for all j in (6.1), we can obtain the enumerator for rooted hypertrees on
[n] by number of edges. If we let̄R be the generating function resulting from settinguj = u

in R, then from (6.1),R̄ = teu(e
R̄−1). However,eu(e

t−1) = ∑
n�0

tn

n!
(∑n

k=0 S(n, k)u
k

)
is

the generating function for Stirling numbers of the second kind (cf. [10, p. 34]). Therefore,
Lagrange inversion yields[

tn

n!
]
R̄ = 1

n
n![tn−1]enu(et−1)

=
n−1∑
k=1

(nu)kS(n− 1, k),

so the number of rooted hypertrees on[n] with k edges isnkS(n− 1, k). In particular, the
total number of rooted hypertrees on[n] is

∑
k n

kS(n− 1, k).
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