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INTRODUCTION 

Let e = e(t) E C[O, T] be a T-periodic function with Jl e(s) ds = 0. The 
equation under consideration is the following: 

jt(t)+~G(t)+ksinx(t)=e(t)+c 

x T-periodic, 
(1) 

where &k,c~[W and k>O. 
A simple integration shows that a necessary condition for (1) to have a 

solution is that 35, E [ - 42, n/2] such that c = k sin <. On the other hand, 
if 15 I= 742 (i.e., c = f k) then (1) has a solution if and only if e = 0. This 
fact was first pointed out by Castro [3] for 3, = 0 and in any case follows 
easily by integrating (1) in [0, T]. 

Moreover, notice that if x = x(t) is a solution for (1) so is x + 274 I E Z. 
In order to distinguish a solution among its 2x-translations we give the 
following: 

DEFINITION 0.1. x = x(t)) is called a true solution for (1) if 

1 = 
To I 

x(s) ds E [0, 27~). 

Now observe that if 1 #O and e =O, then (1) admits exactly two true 
(constant) solutions xi < x2 if c = k sin 5 and 5 E ( - 742, x/2), and exactly 
one true (constant) solution if c = + k. 

In this note we will extend this result e #O provided the coefficient of 
friction I is large in absolute value. (Because of its physical meaning one 
usually takes A 2 0.) Roughly, we obtain the following two results: 
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(A) For every e = e(t), T-periodic, with [or e(s) ds = 0, there exists a 
positive 2, = &(k, e) depending on k and e, such that VA: )I1 > & there 
exist two numbers 

d= d(e, A) -c 0 CD = D(e, A) (depending on 1 and e) 

with the following properties: 

(i) if c # Cd, D], then problem (1) has no solution; 
(ii) if c = d or c = D then problem (1) has exactly one true 

solution; 
(iii) if c E (d, D) then problem (1) has exactly two true solutions x1 

and x2 with x1 (t) <x,(t) Vt E [0, T]. 

(B) Let e = e(t) as above and r E (-r/2, n/2). There exists a positive 
number A, = I,(k, e, 5) depending on k, e, and 5 such that V1: [A[ >i, 
problem (1) with c = k sin < has exactly two true solutions x, (t) <x*(t) 
Vt E [O, T-J. 

See Theorems 1.1 and 1.2 for the precise statements. 
We also derive the corresponding results for the frictionless case (i.e., 

,I = 0) together with other remarks on the nature of the variational problem 
induced by (1) when ,?= 0. These last results seem to suggest a suitable 
definition of “inflection point” for functionals defined on Hilbert spaces. 

To conclude we mention that similar to the spirit of this work is the 
result of Castro [3] for 1=0 and its subsequent improvement and 
generalization obtained in [4, 63. More precisely, in [3] it was proved 
that if Iz = 0 and 0 < k < 24T then (1) admits a solution if and only if c 
satisfies suitable bounds. The restriction O< k<2n/T was removed inde- 
pendently in [9, lo]. The first multiplicity results were obtained in [4], 
where among other things it was shown that (1) with Iz = 0 and c = 0 
admits at least two true solutions. These results were extended and com- 
pleted in [6]. There Willem and Mawhin showed for example that for 
given e = e(t) and k > 0, if I is sufficiently large then there exists a closed 
interval Z c [ -k, k] with 0 E Z such that ( 1) admits zero, one, and two true 
solutions if c belongs respectively outside, at the boundary, or inside I. 
Thus Theorem 1.1 shows how this result becomes sharp for appropriate 
values of 1. Similar considerations apply to the frictionless case where 
restrictions are imposed on e = e(t), k, and o = 27c/T. 
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1. THE PENDULUM EQUATION WITH DAMPING 

Set o = 2x/T. We have 

LEMMA 1.1. Assume 

122 k 2-w2. 
0 w (1.1) 

Then for every 5 E !R there exists a unique solution xe for the problem: 

k T 
Z++x+ksinx-- s To 

sin x(s) ds = e 

(P)c x T-periodic 

1 T 
TO I 

x(s) ds = 5. 

Moreover, the map 

is analytic and xc + 2rr = x, + 27~ 

Proof: For the existence and uniqueness result we refer to [6,4]. In 
order to prove analyticity we shall apply the implicit function theorem. To 
this end set 

so that sr uc (s) u’s = 0. 

X&)=UgW+t (1.2) 

Define the map F: Ci [0, T] x R + Co, [0, T] as follows: 

wherefors=0,2,C”,[O,T]={xECS[O,T]:x-Tperiodic~~x(s)ds=0} 
is a Banach space equipped with the standard sup norm. As is well known, 
since sin x is analytic, the map F is analytic in Ci [0, T] x IR. 

Given to E R, we have F(ucO, to) = 0; moreover, Vvc C: [0, T] 
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Thus if (~F/&)(u~,, 4,,)u=O, following [4] we obtain: 

But by assumtion (1.1 ), k < o(02 + 12)lj2 so necessarily u = 0. In fact, if 
u #O then b # 0 (since v has mean value zero) so the inequalities above 
become strict. Therefore by a standard application of the Fredholm alter- 
native we conclude that (W/&)(z+,, <,) defines an invertible operator 
which maps C’, [0, T] onto CO, [0, TJ. Henceforth by the implicit 
function theorem (see [7]), there exists E > 0 and an analytic map 
y: (--E + <, 5 + E) --) C*[O, T] such that r(&,) = uc,, and F(y(<), 5) = 0 
V<: 15 - &,I <E. By the uniqueness of (P)<, it then follows that 

which in turn implies that the map t + xg is analytic. Again by the unique- 
ness of (P)t; it follows that xy + Zn = xc + 2~ V<. 1 

Set 

(1.3) 

so 4(l) defines an anlytic, 2rr-periodic function, This readily implies that 
given e = e(t), T-periodic with zero mean value, either 3c, E R such that if 
c = c,, then problem (1) has a (unique) solution with any prescribed mean 
value, and no solution if c # cO, or for every c E IF! problem (1) admits a 
finite (maybe zero) number of true solutions. 

Since for every 5 E R we have 

n,(r)+ES(t)+ksinxe(t)=e(t)+#(r) (1.4) 

if we denote by &x,/a< the derivative of the map 5 + xc we have that for 
every fixed 5, ax,/a< is T-periodic, (l/T) Jr (ax,@,)(s) dr = 1, and 

(1.5) 
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Similarly if we denote by a2xs/at2 its second derivative, then i?2xe/a<2 is 
T-periodic, sr (a2x,/ag2)(t) dt = 0, and 

d2 a3 t 
zar’+ 

AdaZxe 
dt?+ 

kcosx a2xc -- 
t; at2 = d”(t). (1.6) 

In particular if for some L&, E R, $‘(tO) = 0, then 

defines a T-periodic function with mean value 1, which satisfies 

j+&J+XCOSX~Oy=O. 

LEMMA 1.2. Assume 

(1.5)’ 

2 2 
0 2 >k-m2. (1.7) 

Then y(t) > 0 Vt E [0, T]. 

Proof: Arguing by contradiction, assume that y vanishes somewhere. 
Since y and j cannot vanish at the same time (otherwise y = 0) and y is 
T-periodic, there must exist t, , 2 t E [0, T) with 0 <t,- tl < T/2 such that 
y(tl) = y(t2) = 0. Thus y = y(t) satisfies the boundary value problem 

j;+Aj+kcosxtoy=O 

v(t1) = y(t2) = 0. 

Set 

w(t) = i 

,r(-i+Jx7z/2) if 111 ZJZ 
e-(A/2)r sin [(JiZ3/2)(t-t,+E)] if 111 <JZ, 

where E > 0 is chosen so small to have 

(this is possible by (1.7)). Therefore w(t) > 0 Vt E [tl, t2] and it satisfies 

ti++G+kcosx<,w<O. 

So the maximum principle applies to y( t)/w(t) (see [S] ) and gives y = 0 in 
[tl, t2], and so y = 0 in [0, T] (by the uniqueness of the Cauchy problem 
for (1.5)‘). This gives a contradiction since y has mean value 1. 1 
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Remark 1. By a similar use of the maximum principle one can obtain 
uniqueness for (P), under the different assumption (n/2)* > k - (0/2)~ 
which improves ( 1.1) for large values of k. 

LEMMA 1.3. Let (1.7) be satisfied, and assume that llur IjLrn <z/4 
Vt E [0, 27~1 (ut as gioen in (1.2)). We haue: 

(i) if 4 achieves a local maximum at 5M~ [0, 27~1 then &r,,,,) > 0; 

(ii) if q5 achieves a local minimum at 5, E [0,27c] then #(<,) < 0. 

Proof: Let us start by proving (i). Since ticI is a local maximum for 4 
we have 

d’(5,)=0 and 4”(5,)<0. (1.8) 

In particular this implies that there exists y* = y*(t) T-periodic such that 

with 

j*-Aj*+kcosxCMy*=O 

y*(t)>0 kE[O, T] and 
1 = 
To I 

y*(z) dr = 1. 

Now take [ = tM in (1.6) and multiply it by y*, then integrate 

W’(5Mu) = -k JOT sinxy,(t) (~1~~t,)2y*C~) dt 

+I=(j*-@*+kcosxeMy*)- 
a*x5 

0 at* 5=cM’ 

That is, 

4”(5W) = -kloT sinxSM(t) y*(t) (Fi:‘I,,)‘dt. 

(1.9) 

to obtain 

Arguing by contradiction assume d(rM) ~0. Thus the following have to 
hold simultaneously: 

(4 4(L) = (k/T) frsin(u,,(t) + tM) df G 0; 
@I 4’(5M) = (k/T) JOr CoS(Q,(t) + td~aX&&+,(f) dt = 0; 
(cl 4”(5,w)= -(k/T)f,T ’ sln(u,,(t)+r,)Y*(t)((axria,)15=rM(t))*d~~0, 

with I*, (ax,ia,)ltc=e,w-o VIE co, z-1. 
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Since by assumption h.+,(t)l <n/4 Vt E [0, T], by (b) we must have 
tM > n/4, which in turn implies 

xc,w=~eMw+Lf>o Vt E [O, T]. 

So by (a) there must exist t, E [0, T] such that xeM(t,) > n. Thus 
tM > n- 7r/4 = 3 rc, that is, xCM (t) > 7r/2 Vt E [0, T]. Again (b) then requires 
that xeM(t,) > i rc for some tl E [0, T], which implies ticI > i n and therefore 
xCM(t) > x Vt E [0, T]. Notice that up to this point we only have used (a) 
and (b). Now because of (c) we must have xerM(t,) > 27~ for some 
t2 E [0, T] that, as above, implies 

q71<XCM(t)<2n+7c/4 

which contradicts (b). 
A similar argument gives (ii). 1 

LEMMA 1.4. Under the assumptions of Lemma 1.3 there exist unique 
r,,,,, (,,,E [0,27c) such that &r,,,,) and &t,) are, respectively, the only 
(global ) maximum and minimum of 4 in [0, 271). Furthermore, 
d(L) < 0 < 45,). 

Proof We shall show that if $ achieves a local maximum at 
tM E [0,27c) and a local minimum at 5, E [0,27r) then necessarily rM < l,. 
This fact together with the analyticity of C$ implies that d does not have 
local minima or maxima and that the global maximum and minimum of 4 
are uniquely achieved in [0,2x). 

Let <,, <,,, E [0,271) be, respectively, a (local) minimum and maximum 
for 4. Hence @(<,)=O and #(c&) CO (as follows by Lemma 1.3). As seen 
in the proof of Lemma 1.3 these two conditions imply <,,,, > i z Now if 
<M>t,>zrr then 

which is impossible since #‘(<,,,,) = 0. Lemma 1.3 also gives minCo,zxId < 
0 < maxCo,2n14. I 

Set 
2 

p’(k) = max 
K > 

% -02,4(k-02) . 
1 

THEOREM 1.1. Gioen e E C[O, T] T-periodic with jl e(s) ds = 0, assume 
that 

14 > max . (1.10) 
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Then d= d(e, A) = minCo,2nl# and D = D(e, A) = max C0, 2n, 4 are well defined 
and d < 0 < D. Furthermore, 

(i) if c $ [d, D] then problem (1) has no solutions; 

(i) if c = d or c = D then problem (1) has exactly one true solution; 

(iii) ly CE (d, D) then problem (1) has exactly two true solutions, 
x1 (t) <x2(t) Vt e 10, T]. 

Proof. Notice that if x =x(t) is a true solution for (1) then for some 
to E [O, 271) we have x = xc, and c = #(to) where xe = xc(t) and 4 = b(t) are 
defined according to the above notations. So (i) follows immediately. In 
order to obtain the rest, we show how (1.10) ensures that lj~+))~~ <n/4. 
Thus by Lemma 1.4 we conclude that d<O< D, qS-‘(c)n [0,277)= 
{lpoint} if c=dor c=D and &‘(c)n[O,2n)={2points} if d<c<D. 
By (1.4) we have 

J 

T 

0 
g<,t,+A JoTi:+k JoTsinxckc= JoTei,. 

Thus 

that is, 

On the other hand, if we set ut; (t) = c,zo cje’(ZniT)J’ we have 

Finally in (ii) if x1(t) and x,(t) are the two given solutions with 
f,+dt)dt~f,TxAWt, set w = x2 - x1. Thus w is T-periodic and satisfies 
ti(t)+Ati(t)+h(t) w(t)=0 tlte [0, TJ where 

sinx,(t)-sinx,(t) 
if x1(t) #x1 (t) 

h(t) = 
xz(t)-x1(t) 

1 ifx*(t)=x,(t) 
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so Ih(t)l < 1. Therefore as for Lemma 1.2, one sees via the maximum 
principle that w cannot change sign in [0, 7’1. This concludes the proof. 1 

THEOREM 1.2. Let e = e(t) as in Theorem 1.1 and c E (-z/2, n/2). 
Assume that 

II4 L= 
“e”L2’ w[2T(l -sin [<1)]‘/’ ’ 

(1.11) 

Then problem (1) with c = k sin t; admits exactly two true solutions x, and 
x2 with xl(t)<xz(t) VIE [0, T]. 

Proof We shall show that under assumption (1.11) necessarily 

d(e, ,I) < k sin [ c D(e, A). 

Assume first g E [0, z/2), so d(e, A) < 0 < sin t. 
On the other hand, if for lo = n/2 we assume that 

sinlal s 
T 

To 
sin xtO (t ) dt, 

then by Jensen’s inequality applied to the convex function f x2 + sin x we 
have 

l-sin<< -lJ-Tsinxi,+l To 

which contradicts (1.11). Therefore k sin r < 442) < D(e, 2). A similar 
argument gives the result for c E (-n/2,0). 1 
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2. THE PENDULUM EQUATION WITHOUT FRICTION 

We are now concerned with problem (1) in the case A= 0. Namely, we 
seek solutions for the following, 

f(t)+ksinx(t)=e(t)+c 

x T-periodic, k > 0, 
(2) 

where e = e(t) is T-periodic and Jl e(s) ds = 0. 
Since friction has the effect of stabilizing the motion of the mechanical 

system corresponding to (1 ), once friction is neglected the situation is more 
delicate. In fact, even to have that all possible solutions for (2) with e=O 
are the constants one must require 

(see [4], the case k < u? was already done in [3]). 
Given e = e(t) E C( [0, T] ) set 

We have: 

THEOREM 2.1. Assume k < 02. For every e = e(t) E C( [0, T] ) T-periodic 
with s,T e(t) dt = 0 and satisfying 

Ill4 d 7c/4 (2.2) 

there exist two numbers d = d(e) < 0 < D = D(e) (depending on e) such that 

(i) if c$ [d, D] then (2) has no solutions; 
(ii) if c = d or c = D then (2) has exactly one true solution; 

(iii) zf c E (d, D) then (2) has exactly two true solutions x1(t) <x*(t) 
Vt E [0, T]. 

Furthermore given < E ( -z/2,7~/2) if 

llellL2<W2(1 -sin 1<1)“’ J%(I -k/co2) (2.3) 

then problem (2) with c = k sin < has exactly two true solutions x1 (t) < x2(t) 
Vte [0, T]. 

Proof First of all, notice that assumptions (1.1) and (1.7) when A=0 
give exactly k < 02. Hence Lemmata 1.1-1.4 continue to hold in this case. 
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So with the notation of the previous section, we need to show that (2.2) 
implies 11 ut; 11 Lm 6 71/4 Vg E IR, and that (2.3) implies 

This will follow by basically known estimates which, for the sake of com- 
pleteness, we will derive anyway. Thus if j;< + k sin xc = ei Q(r) and 
xt, = ut; + r, then 

That gives 

(2.4) 

So Vt E [0,27r) we have 

that is, 

In conclusion, we have obtained 

Finally, as for Theorem 1.2, if, for example, we take 5 E [0,7c/2) and 
assume sin < > (l/T) 1: sin xc,(t) dt with co = n/2, then 

(1-sirit)< -joTsinx,,(t)$+l 

T 
= - J ( 0 

~x,&(~)+sinxLa(l) $ 
> 

+ifoT x:,(t)++ 1 
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and by (2.4), 

We conclude 

1 
(1 -sin <)<- 

2Tw2 

-2 

II4 22 

which contradicts (2.3). The case - 7r/2 < r < 0 is treated similarly. 1 

We would like to conclude with some remarks on the nature of the 
variational problem induced by (2), mostly because it seems to suggest a 
suitable notion of “inflection point” for functionals defined in infinite 
dimensional spaces. To this end let H be a Hilbert space with scalar 
product ( , ) and ZE C3(ZZ, [w). We give the following 

DEFINITION. Let x0 E H be a critical point for I. We call x0 an inflection- 
type point for Z, if x0 is a fold singularity for Z’ E C’(ZZ, H). That is, 

(a) dim ker Z”(x,) = 1; 
(b) if u0 E ker Z”(x,) and u,, # 0 then Z”‘(xO)(uO, uO) 4: Range Z”(x,) 

(see CL 21). 
Remark. If Z”(xO) is self-adjoint, condition (b) reduces to (b)’ 

(Z”‘(%)(%, h), 00) z 0. 

As is well known, solutions of (2) are the critical points for the func- 
tional 

defined on the Hilbert space H= {xEH’[O, T]: x(0)=x(T)). It is easily 
verified that ZE Ck(ZZ, [w) Vk E N. We have: 

THEOREM 2.2. Assume k < 02. Zf x0 is a critical point for Z then x,, is a 
local minimum or a point of mountainpass type or of infection type. 

Recall that a critical point x0 is said to be of mountainpass type if for 
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every sufficiently small neighborhood U of x0 the set U n {x E H: 
Z(X) < Z(x,)) is neither empty nor path-connected (see [S]). 

Proof. Denote by 1, < A2 < . . . the sequence of eigenvalues of Z”(X,) 
under T-periodic boundary conditions. If 1, > 0, then x0 is a local mini- 
mum for I. Hence assume AI < 0. We claim that necessarily AZ > 0. To see 
this notice first that if u is an eigenvector for Z”(x,) with corresponding 
eigenvalue 1 and JF u(s) ds = 0 then A> 0. Arguing by contradiction, let u1 
and u2 be two eigenvectors of Z”(x,) corresponding to the eigenvalues 
;1,<1,~O.Since~~u1,~~u2#Owecanassume~,Tu1(t)df=~~u2(f)dtand 
jrul(t)-uz(t)dt=O. Set W=Q-vi. We have 

= +(i24joTu,w= -(n2-n,)~oTu: 

which is impossible. Now if 1, < 0 then x0 is a point of mountainpass type. 
Finally assume that 1, = 0; i.e., x,, is a singular point for I’. By the 
arguments above we have dim ker Z”(x,) = 1. Furthermore since x0 is a 
solution for (2), with the notation of the previous section, there exists 
&, E [0,27r) such that: xe,, = x0 + 2x1 for some IE Z, d(&,) = c, @(&,) = 0, 
and ( c?x,/~[) I e = eo E ker Z”(xO). Since 

d2 iT2x a2xe -- 
dt2 a$ r=TO +kcosxo,,, 5=50 

we conclude that 

which gives exactly the fold condition at x0; so in this case x0 delines an 
inflection-type point. Finally, if #“(co) = 0, i.e., 



92 GABRIELLA TARANTELLO 

s2 axe 2 
+~z”(xo) ag r=so 

( I > 
s3 axr 3 

+y!I’“(xoJ ag 5=50 ( I > 
s4 axe: 4 

+4!z’4’(xo) z c=50 ( I > 
+ O(2) 

=z(xo)+; P4)(xo) 2 = 
( I ) 

4 

+ O(2) 
c to 

and 

Thus x0 is a (degenerate) local minimum in this case. 1 
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