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INTRODUCTION

Let e=e(t)e C[0, T] be a T-periodic function with {J e(s) ds=0. The
equation under consideration is the following:

x(t)+ Ax(t)+ksinx(t)=e(t)+c¢ M

x T-periodic,

where A, k,ce R and k> 0.

A simple integration shows that a necessary condition for (1) to have a
solution is that 3¢ € [ — /2, n/2] such that ¢ =k sin £&. On the other hand,
if |€| ==n/2 (i.e., ¢= +k) then (1) has a solution if and only if e=0. This
fact was first pointed out by Castro [3] for =0 and in any case follows
easily by integrating (1) in [0, T'].

Moreover, notice that if x = x(r) is a solution for (1) so is x+2nl, le Z.
In order to distinguish a solution among its 2zn-translations we give the
following:

DerFINITION 0.1.  x = x(1)) is called a true solution for (1) if

%frx(s) dse [0, 27).
0

Now observe that if A#0 and e=0, then (1) admits exactly two true
(constant) solutions x; <x, if c=ksin ¢ and ¢ e (—n/2, n/2), and exactly
one true (constant) solution if ¢ = +k.

In this note we will extend this result e #0 provided the coefficient of
friction A is large in absolute value. (Because of its physical meaning one
usually takes 1> 0.) Roughly, we obtain the following two results:
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(A) For every e=e(t), T-periodic, with for e(s) ds =0, there exists a
positive 1o=4,(k, e) depending on k and e, such that VAi: || > 4, there
exist two numbers

d=d(e, \)<0<D=Dle, 1) (depending on 1 and e)

with the following properties:

(i) if c¢[d, D], then problem (1) has no solution;

(ii) if c=d or ¢=D then problem (1) has exactly one true
solution;

(iii) if ce(d, D) then problem (1) has exactly two true solutions x,
and x, with x,(#) <x,(z) Vte [0, T].

(B) Let e=e(t) as above and & e (—mn/2, n/2). There exists a positive
number A, =4,(k, e, £) depending on k, e, and ¢ such that Vi:|A| >4,
problem (1) with ¢=ksin £ has exactly two true solutions x,(f) <x,(¢)
Vie [0, T].

See Theorems 1.1 and 1.2 for the precise statements.

We also derive the corresponding results for the frictionless case (i.e.,
/.=0) together with other remarks on the nature of the variational problem
induced by (1) when A=0. These last results seem to suggest a suitable
definition of “inflection point” for functionals defined on Hilbert spaces.

To conclude we mention that similar to the spirit of this work is the
result of Castro [3] for A=0 and its subsequent improvement and
generalization obtained in [4, 6]. More precisely, in [3] it was proved
that if A=0 and 0 <k <2x/T then (1) admits a solution if and only if ¢
satisfies suitable bounds. The restriction 0 <k <2n/T was removed inde-
pendently in [9, 10]. The first multiplicity results were obtained in [4],
where among other things it was shown that (1) with A=0 and ¢=0
admits at least two true solutions. These results were extended and com-
pleted in [6]. There Willem and Mawhin showed for example that for
given e=e(t) and k>0, if 1 is sufficiently large then there exists a closed
interval I < [ —k, k] with 0e 7 such that (1) admits zero, one, and two true
solutions if ¢ belongs respectively outside, at the boundary, or inside I
Thus Theorem 1.1 shows how this result becomes sharp for appropriate
values of A. Similar considerations apply to the frictionless case where
restrictions are imposed on e =e¢(t), k, and w = 2n/T.
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1. THE PENDULUM EQUATION WI1TH DAMPING
Set w=2n/T. We have

LEmMMA 1.1. Assume

12><-I£>2-—w2. (1.1)

(0]

Then for every £ e R there exists a unique solution x, for the problem:
k T
x+1x+ksinx——f sin x(s) ds = e
T/y
(P); x T-periodic
1 T
= jo x(s)ds=¢.

Moreover, the map
R- C?[0,T].
¢ X

is analytic and x; , ,, = x; + 2m.

Proof. For the existence and uniqueness result we refer to [6,4]. In
order to prove analyticity we shall apply the implicit function theorem. To
this end set

xe(t)=ue(t)+ ¢ (1.2)
so that [ u,(s) ds=0.
Define the map F: C% [0, T]x R — C% [0, T] as follows:
1 T
Flu, €)=ﬁ+li4+ksin(u+€)—?,f sin(u(s) + &) ds—e,
0

where for s=0,2, C%, [0, T] = {xe C°[0, T]: x — T periodic [} x(s) ds=0}
is a Banach space equipped with the standard sup norm. As is well known,
since sin x is analytic, the map F is analytic in CZ [0, T]x R.

Given ¢,e R, we have Fuy,, &) =0; moreover, Vve C% [0, T']

oF 1,7
o (uges Co)v =0+ A0+ k cos x40 —}fo COs X, () v(¢) dt.
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Thus if (0F/0u)(u,,, £o)v =0, following [4] we obtain:

0=J.T(i}'+ii))2+ijcosxé o(5 + Ab)
0 0 0
T T 172 T
>fo (i;+zv)2—k<jo u2> [jo (v+li;)]
T 1/2 T 172
;UO (i)‘+/{i))2] ((w2+12)1/2—§)<j0 iﬂ) ®

But by assumtion (1.1), k < w(w?+ 4?)"/? so necessarily v=0. In fact, if
v#0 then 2#0 (since v has mean value zero) so the inequalities above
become strict. Therefore by a standard application of the Fredholm alter-
native we conclude that (0F/0u)(u;,, &;) defines an invertible operator
which maps C%[0,7] onto C%[0, T]. Henceforth by the implicit
function theorem (see [7]), there exists ¢>0 and an analytic map
y:(—e+& E+e)> C?[0,T] such that y(&)=u, and F(y(¢), &)=0
V¢ |£ —&y| <e. By the uniqueness of (P),, it then follows that

1/2

x:=7(8)+¢

which in turn implies that the map & — x, is analytic. Again by the unique-
ness of (P), it follows that x,,,,=x:+2n V¢ |

¢5 & = sin xf A} ds" “3)

so ¢(&) defines an anlytic, 2n-periodic function. This readily implies that
given e =e(?), T-periodic with zero mean value, either 3¢y € R such that if
¢ =c, then problem (1) has a (unique) solution with any prescribed mean
value, and no solution if ¢ #c,, or for every ce R problem (1) admits a
finite (maybe zero) number of true solutions.

Since for every ¢ e R we have

Ze(t) + Axe (1) + K sin x,(2) = e(t) + $() (1.4)

if we denote by dx,/0¢ the derivative of the map £ — x, we have that for
every fixed ¢, Ox,/0¢ is T-periodic, (1/T) [ (0x/0;)(s) ds=1, and

d2 axé d 5x¢ ax{ '
g EF: +lE—a?+kcosx5¥—¢(f)- (1.5)
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Similarly if we denote by 02x,/d¢? its second derivative, then 0°x,/0&” is
T-periodic, [ (3%x,/0&%)(t) dt=0, and

d* ?x, , ddx; 0%x; , ox:\* |,
?d?afz +)»Ea€2 +kcosx¢a—éz—ksmx¢<-(¥) =¢"(£). (1.6)

In particular if for some &, € R, ¢'(¢,) =0, then

dx, |
J’(t)—a—‘f

E=&

defines a T-periodic function with mean value 1, which satisfies

y+Ay+xcosxg,y=0. (1.5)
LEMMA 1.2. Assume
i 2
<§> >k—w? (1.7)

Then y(t)>0Vte [0, T].

Proof. Arguing by contradiction, assume that y vanishes somewhere.
Since y and y cannot vanish at the same time (otherwise y=0) and y is
T-periodic, there must exist ¢,, t,€ [0, T) with 0 <?,—¢, < 7/2 such that
y(t,)= p(t,) =0. Thus y = y(z) satisfies the boundary value problem

J+Ay+kcosx,y=0
(1) = y(1;)=0.
Set
H(— i+ A= 4k/2) . S
= { e 141> /2%

e~ sin [( /4k—12/2)(t—t1 +¢)] if |A] < /4k,

where ¢ > 0 is chosen so small to have

./4k—-12<T )
| 5ste|<m

2 2
(this is possible by (1.7)). Therefore w(¢) >0 Vze [¢,, t,] and it satisfies
W+ AW +k cos x;,w< 0.

So the maximum principle applies to y(z)/w(t) (see [8]) and gives y=0in
[t,,t,], and so y=0in [0, T] (by the uniqueness of the Cauchy problem
for (1.5)). This gives a contradiction since y has mean value 1. §
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Remark 1. By a similar use of the maximum principle one can obtain
uniqueness for (P), under the different assumption (4/2)*>k — (w/2)?
which improves (1.1) for large values of k.

LemMAa 1.3. Let (1.7) be satisfied, and assume that |u;|  «<mn/4
V¢e [0, 2n] (u; as given in (1.2)). We have:

(i) if ¢ achieves a local maximum at &,,€ [0, 2n] then ¢(&,,) > 0;
(ii) if ¢ achieves a local minimum at £,,€ [0, 2rn] then ¢(&,,) <O.

Proof. Let us start by proving (i). Since &,, is a local maximum for ¢
we have

#'(Er)=0 and  ¢"(£,)<0. (1.8)

In particular this implies that there exists y* = y*(z) T-periodic such that
J*—Ap*+kcos x,, y*=0 (1.9)

with
1 r7T
y*(1)>0 Vee[0,T] and —j yH(t)di=1.
TJo :
Now take £ =¢,, in (1.6) and multiply it by y*, then integrate to obtain

1) 2
T"(Ey) = —kf sin x,, (1) (aaxf ( ) y*(t) dt
¢

E=tu

0°x

+ *— Ay*+kcos x <
'[ y 4 i )652 = fM

That is,
k Ox .| 2

=7 s 0r0(3] Ya

§1é=¢m

Arguing by contradiction assume ¢(&,,)<0. Thus the following have to
hold simultaneously:

(@) ¢(&y)=(K/T) [§ sin(ug, (1) + &) dr <O0;

(b)  ¢'(Ea) = (K/T) [ cos(ug, (1) + & )0x:/0:) ¢ = ¢, (1) dt = O;

()  8"(Ea)=—(k/T) g sin(ue, (1) + &4 ) y*()((0x/0 ) ¢ e, (1)) d1 <0,
with y*(2), (0x;/0,)] ¢, (1) >0 Vre [0, T1.
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Since by assumption |u,, (f)| <n/4 Vte [0, T], by (b) we must have
&> /4, which in turn implies

Xe,()=ug, (1) +Ep>0  Vie[0,T].

So by (a) there must exist 7,e[0, T] such that x;, (f,)>n Thus
Ey>n—m/d=3m, thatis, x;, (f)>n/2 Vte [0, T]. Again (b) then requires
that x;,, (¢,)> 3 = for some ¢, € [0, T'], which implies &,,> 3 7 and therefore
X, (1)>n Vte [0, T]. Notice that up to this point we only have used (a)
and (b). Now because of (c) we must have x., (#,)>2n for some
t,€ [0, T] that, as above, implies

In<xg,(1)<2m+mn/4

which contradicts (b).
A similar argument gives (ii). |}

LemMa 1.4, Under the assumptions of Lemma 1.3 there exist unique
Erts Em€ [0, 21) such that ¢(&,) and $(&,) are, respectively, the only
(global) maximum and minimum of ¢ in [0,2n). Furthermore,

(&) <0 <(Enr):

Proof. We shall show that if ¢ achieves a local maximum at
&€ [0, 2n) and a local minimum at &, € [0, 27) then necessarily &£,,<¢,,.
This fact together with the analyticity of ¢ implies that ¢ does not have
local minima or maxima and that the global maximum and minimum of ¢
are uniquely achieved in [0, 27).

Let &,., &,,€ [0, 2n) be, respectively, a (local) minimum and maximum
for ¢. Hence ¢'(¢,,) =0 and ¢(&,,) <0 (as follows by Lemma 1.3). As seen
in the proof of Lemma 1.3 these two conditions imply &,,> 3. Now if
Ey> &> 2w then
T

3
§n<x¢M(t)<2n+4

which is impossible since ¢'(¢,,)=0. Lemma 1.3 also gives mingg 5,6 <
0 <maxpg .9 1

Set ,
u*(k)=max {(g) — o, 4k — wz)}.

THEOREM 1.1. Given ee C[0, T] T-periodic with jg e(s)ds =0, assume
that

2T
|4| > max {u(k),;\/T; IIeIILz}- (1.10)
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Then d=d(e, A\)=min, »,1¢ and D= D(e, 1) =max, ;,1¢ are well defined
and d <0< D. Furthermore,

(1) if c¢[d, D] then problem (1) has no solutions;,
(i) if c=d or ¢ =D then problem (1) has exactly one true solution;

(i) if ce(d, D) then problem (1) has exactly two true solutions,
x (1) <x,(t) Vte [0, T].

Proof. Notice that if x=x(¢) is a true solution for (1) then for some
&o€ [0, 21) we have x = x,, and ¢ = @(&,) where x; = x.(t) and ¢ = ¢() are
defined according to the above notations. So (i) follows immediately. In
order to obtain the rest, we show how (1.10) ensures that |u;| .« < n/4.
Thus by Lemma 1.4 we conclude that d<0<D, ¢ '(c)n[0,2n)=
{1 point} if c=d or c=D and ¢ '(¢)n [0, 27) = {2 points} if d<c<D.
By (1.4) we have

T T T T
f )‘éf)'c§+lf 5c§+kf smx¢x¢=f eXe.
0 0 0 0

Thus
T T T T
5 2 22 o .
ifo ué—ljo xé—-L exf—‘[0 eilg,
that is,
. el .2
< .
ligll > <=

On the other hand, if we set u,(t) =Y, .o ¢;e*”"’ we have

1 172 1/2
luglie< 3 nc,is(z F) (z ﬂc,v)

J#0 #0 J#0

2T pe Y
o S <3

Finally in (ii) if x,(¢) and x,(¢) are the two given solutions with
{5 x,(£)de< {5 x, (1) dt, set w=x,—x,. Thus w is T-periodic and satisfies
W(t)+ Aw(r) + () w(z) =0 Vte [0, T] where

sin x, (t) —sin x, ()
x5 (t) —xy(2)

1 if x,(t)=x,(2)

if x4 (1) % x, (£)
h(t)=
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so |h(2)] € 1. Therefore as for Lemma 1.2, one sees via the maximum
principle that w cannot change sign in [0, T ]. This concludes the proof. |

THEOREM 1.2. Let e=e(t) as in Theorem 1.1 and ¢e(—mn/2, n/2).
Assume that

2T 2
|A| > max {H(k)’ \/——3\/; ”e” L2 CO[ZT(I ”_ellln |él)]l/2} (111)

Then problem (1) with ¢ =k sin ¢ admits exactly two true solutions x, and
x, with x,(t) < x,(t) Vte [0, T].

Proof. We shall show that under assumption (1.11) necessarily

d(e, A) <ksin & < Die, ).

Assume first £ e [0, /2), so d(e, ) <0 <sin &
On the other hand, if for £,=n/2 we assume that

. |
smé?ijo sin x, (1) dt,

then by Jensen’s inequality applied to the convex function % x? + sin x we
have

. 17
1—sinég —?L sin x. + 1
te? ,dt T . dt
=1+§<[0 x§°—T—_fo I:Ex§0+smx¢0:|?

<14} 7t2+L "2
SiTI\z) Tarl, Me

1 T dt 2 . T dt
_E(L .X'go(t)?) —s1n<j0 xio“)?)
. 1 r 2 .2 1 2
—ﬁjo “¢0<2Tw2J‘0 U S STl llell 22

which contradicts (1.11). Therefore & sin & < ¢(n/2)< D(e, ). A similar
argument gives the result for £e(—n/2,0). ||
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2. THE PENDULUM EQUATION WITHOUT FRICTION

We are now concerned with problem (1) in the case A =0. Namely, we
seek solutions for the following,

() +ksinx(t)y=e(t)+c

. (2)
x T-periodic, k>0,

where e = e(r) is T-periodic and {] e(s) ds=0.

Since friction has the effect of stabilizing the motion of the mechanical
system corresponding to (1), once friction is neglected the situation is more
delicate. In fact, even to have that all possible solutions for (2) with e=0
are the constants one must require

k < 0?

(see [4], the case k < w? was already done in [3]).
Given e=e(t)e C([0, T]) set

(T kN JT k!
|||e||4=mm{ﬁ(1—;) Hﬂhum(l*a}‘j) nean}. @1)

We have:

THEOREM 2.1. Assume k < w”. For every e=e(t)e C([0, T]) T-periodic
with [ e(t) dt =0 and satisfying

llell < =/4 (22)

there exist two numbers d=d(e) <0< D = D(e) (depending on e) such that

(i) if c¢[d, D] then (2) has no solutions;
(i1) if c=d or c=D then (2) has exactly one true solution;

(iii) if ce(d, D) then (2) has exactly two true solutions x,(1) < x,(t)
Vie [0, T].

Furthermore given e (—n/2, n/2) if
lell .2 < @(1 —sin [¢])"2 /2T (1 — kje?) (23)

then problem (2) with ¢ =k sin & has exactly two true solutions x(t) < x,(t)
Vee [0, T].

Proof. First of all, notice that assumptions (1.1) and (1.7) when A=0
give exactly k <w?® Hence Lemmata 1.1-1.4 continue to hold in this case.
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So with the notation of the previous section, we need to show that (2.2)
implies |lu; | .~ <7/4 V€€ R, and that (2.3) implies

d(e)= min ¢ <k sin £ < D(e)= max 4.
[0,2n] [0,2n]
This will follow by basically known estimates which, for the sake of com-

pleteness, we will derive anyway. Thus if %,+ksinx.=e+¢(£) and
x;=us+ ¢, then

T T T
f ité—kf [sin(u; + &) —sin 5]u5=f uze.
0 0 0
That gives

k\ (T T
(“E) fo |a¢|2<jo leue . (24)

So V&€ [0, 2n) we have

Iu IILw<ﬁ<fT|ﬂ 7)< ﬁ( ) el 22
¢ 2\/5 o ¢ 2\/— ? Lo

that is,

T k\!
el g3 (1-33) el

||u¢||Lw<%(j:|af|2)m 2*\/; (1-5)  tel

In conclusion, we have obtained

or

e |l L= < Nl el

Finally, as for Theorem 1.2, if, for example, we take £e [0, n/2) and
assume sin & = (1/T) {§ sin x, (¢) dt with &, =n/2, then

T dt
(1—sin &)< —jo sin xg,(1) 7+ 1

_J ( x3,(1) +smx¢(,(t))d

1T Lt
+§fo X3, () T+ 1
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Ler a7 d
< —E(fo xéo(t)?t)—mn(jo xéo(t)?t>

T 2 d 1 2 1< 1 2 .
+—jo u (1) di 3 3+ 1 <5 lug, I 5o
and by (2.4),

1 1 k\~!
g < 3 Vi 3 < 3 (1= ) el o

We conclude
. 1 kN2
(l—Slné)Sﬁzu—Z;(l—F) lleliZ:

which contradicts (2.3). The case —n/2 <& <0 is treated similarly. [

We would like to conclude with some remarks on the nature of the
variational problem induced by (2), mostly because it seems to suggest a
suitable notion of “inflection point” for functionals defined in infinite
dimensional spaces. To this end let H be a Hilbert space with scalar
product {, > and /e C*(H, R). We give the following

DEFINITION.  Let x, € H be a critical point for I. We call x, an inflection-
type point for I, if x, is a fold singularity for I' e C*(H, H). That is,
(a) dimker I"(xy)=1;
(b) if voekerI"(x,) and v, #0 then I"(x,)(vo, vo)¢ Range I"(x,)
(see [1,2]).

Remark. If I"(x,) is self-adjoint, condition (b) reduces to (b)
{I"(x0)(vo, Vo), 0o # 0.

As is well known, solutions of (2) are the critical points for the func-
tional

I(x)= for B %2() + k cos x(1) + (e(t) + ¢) x(t)] dt

defined on the Hilbert space H= {xe H'[0, T]: x(0)=x(T)}. It is easily
verified that Je C*(H, R) Yke N. We have:

THEOREM 2.2. Assume k <w?. If x4 is a critical point for I then x, is a
local minimum or a point of mountainpass type or of inflection type.

Recall that a critical point x, is said to be of mountainpass type if for
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every sufficiently small neighborhood U of x, the set Un {xeH:
I(x)<I(x,)} is neither empty nor path-connected (see [5]).

Proof. Denote by 4, <Ai,< --- the sequence of eigenvalues of I”(x,)
under T-periodic boundary conditions. If A, >0, then x, is a local mini-
mum for 7. Hence assume A, <0. We claim that necessarily 4, >0. To see
this notice first that if v is an eigenvector for I”(x,) with corresponding
eigenvalue 4 and {J v(s) ds =0 then 4> 0. Arguing by contradiction, let v,
and v, be two eigenvectors of I”(x,) corresponding to the eigenvalues
A, <2, <0. Since 7 v, [T v, #0 we can assume {§ v, (1) dt = [§ v,(t) dt and
[&v,(2)-vy(1) dr=0. Set w=10v,—v,. We have

k\ (T T
(1——2)J wzsj w2 — (A, + k cos x4 )w?
0 0

w
T T
=+ =4 [ vyw=—(a—)) [ 03
0 0

which is impossible. Now if 4, <0 then x; is a point of mountainpass type.
Finally assume that A,=0; ie., x, is a singular point for I'. By the
arguments above we have dim ker /”(x,) = 1. Furthermore since x, is a
solution for (2), with the notation of the previous section, there exists
£oe [0, 2m) such that: x; =x,+ 2nl for some /e Z, ¢(&o)=c, ¢'(£,) =0,
and (0x:/0¢)|; _ ¢, €ker I"(x,). Since

2

Xe
+kcos xo —
&=¢o 56

& Pxe
dr? o2

E=¢&o

—k sin x, (%

)2=¢"(¢o)

3
) #0
s=¢%o

which gives exactly the fold condition at x,; so in this case x, defines an
inflection-type point. Finally, if ¢"(£,) =0, i.e.,

L 0x; ?
bl =0
J sinxo (5 ¢=<0) ,

&=2%o

we conclude that

T 0
#(E)#0=[ sinx, (;"g




92 GABRIELLA TARANTELLO

then

) I(x,) +sl’(x0)
E=¢o

g2
( 0 GE %

&=2%o

>2

&=2o
)3

§=2%o

)4 +0(s°)

Ox,

s2
+51 (xo) (ﬁ

0
Im( ) ( 6‘2&

4
5 e Ox;
+4!I (x0)<6§

§=2%

— Kzt 1““( %) (%

N 5
% ) +0(s°)

&=%

)4
¢=%o

and

4
1(4)(x0)(%;E €~€> =k'[:cos Xo <§gg—

[T (% )
o dt? 8 |s_\ 0 |y

T(d ox 2 (0x 2
(G5 )G ) e
L (d’ 0 le=eo/ \ O leego

Thus x, is a (degenerate) local minimum in this case. §
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