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Abstract

For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2)-invariant open spin-1/2
XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA) formalism of 
Sklyanin. However, when q is a root of unity (q = eiπ/p with integer p ≥ 2), the Bethe equations acquire 
continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two 
new types: eigenvectors corresponding to continuous solutions (exact complete p-strings), and generalized 
eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present 
many explicit examples, and we construct complete sets of (generalized) eigenvectors for various values 
of p and N .
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1. Introduction

In the pantheon of anisotropic integrable quantum spin chains, one model stands out for its 
high degree of symmetry: the Uqsl(2)-invariant open spin-1/2 XXZ quantum spin chain, whose 
Hamiltonian is given by [1]

H =
N−1∑
k=1

[
σx

k σ x
k+1 + σ

y
k σ

y

k+1 + 1
2 (q + q−1)σ z

k σ z
k+1

]
− 1

2 (q − q−1)
(
σ z

1 − σz
N

)
, (1.1)

where N is the length of the chain, �σ are the usual Pauli spin matrices, and q = eη is an arbi-
trary complex parameter. As is true for generic quantum integrable models, the Hamiltonian is a 
member of a family of commuting operators that can be obtained from a transfer matrix [2]; and 
the eigenvalues of the transfer matrix can be obtained in terms of admissible solutions {λk} of 
the corresponding set of Bethe equations [3,2,1]1

sh2N
(
λk + η

2

) M∏
j �=k
j=1

sh(λk − λj − η) sh(λk + λj − η)

= sh2N
(
λk − η

2

) M∏
j �=k
j=1

sh(λk − λj + η) sh(λk + λj + η) ,

k = 1 ,2 , . . . ,M , M = 0 ,1 , . . . , �N
2 � , (1.2)

where �k� denotes the integer not greater than k.
When the anisotropy parameter η takes the values η = iπ/p with integer p ≥ 2, and therefore 

q = eη is a root of unity, several interesting new features appear. In particular, the symmetry 
of the model is enhanced (for example, an sl(2) symmetry arises from the so-called divided 
powers of the quantum group generators); the Hamiltonian has Jordan cells [4–6]; and the Bethe 
equations (1.2) admit continuous solutions [7], in addition to the usual discrete solutions (the 
latter phenomenon also occurs for the closed XXZ chain [8–12]).

We have recently found [7] significant numerical evidence that the Bethe equations have 
precisely the right number of admissible solutions to describe all the distinct (generalized) eigen-
values of the model’s transfer matrix, even at roots of unity.

We focus here on the related problem of constructing, via the algebraic Bethe ansatz, all 
2N (generalized) eigenvectors of the transfer matrix. For generic q , the construction of these 
eigenvectors is similar to the one for the simpler spin-1/2 XXX chain: to each admissible solution 
of the Bethe equations, there corresponds a Bethe vector, which is a highest-weight state of 
Uqsl(2) [1,13,14]; and lower-weight states can be obtained by acting on the Bethe vector with 
the quantum-group lowering operator F .

However, at roots of unity q = eiπ/p with integer p ≥ 2, we find that there are two additional 
features:

i. Certain eigenvectors must be constructed using the continuous solutions noted above. These 
solutions contain p equally-spaced roots (so-called exact complete p-strings), whose centers 

1 In order to reduce the size of formulas, we denote the hyperbolic sine function (sinh) by sh.
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are arbitrary, see Proposition 3.1 for more details. This construction is a generalization of the 
one proposed by Tarasov for the closed chain at roots of unity [12].

ii. We propose that the generalized eigenvectors can be constructed using similar string config-
urations of length up to p − 1, except the centers tend to infinity. We refer to Proposition 4.3
for more details.

We demonstrate explicitly for several values of p and N that the complete set of (generalized) 
eigenvectors can indeed be obtained in this way.

The outline of this paper is as follows. In section 2 we briefly review results and notations 
(specifically, the construction of the transfer matrix, the algebraic Bethe ansatz, and Uqsl(2)

symmetry) that are used later in the paper. In section 3 we work out in detail the construction 
noted in item i above with the result formulated in Proposition 3.1, see in particular Eqs. (3.7)
and (3.26). In section 4 we describe the construction noted in item ii above with the final result in 
Proposition 4.3, see in particular Eq. (4.44). These two constructions are then used in section 5
to construct all the (generalized) eigenvectors for the p = 2 root of unity case with N = 4, 5, 6, 
as well as selected eigenvectors with N = 7, 9. We present all the (generalized) eigenvectors for 
various values of p > 2 and N in section 6. We conclude with a brief discussion in section 7. 
Some ancillary results are collected in four appendices. In Appendix A, we explicitly describe 
the action of Uqsl(2) in tilting modules at roots of unity. In Appendix B, we present numerical 
evidence for the string solutions used in section 4 for constructing generalized eigenvectors. In 
Appendix C, we derive a special off-shell relation (similar to the one found by Izergin and Ko-
repin [15] for repeated Bethe roots), which we use in Appendix D to derive an off-shell relation 
for generalized eigenvectors.

2. Preliminaries

The transfer matrix and algebraic Bethe ansatz for the model (1.1) follow from the work of 
Sklyanin [2], which was already reviewed in [7]. However, we repeat here the main results, both 
for the convenience of the reader and also to explain a useful change in notation (see (2.8) and 
subsequent formulas).

2.1. Transfer matrix

The basic ingredients of the transfer matrix are the R-matrix (solution of the Yang–Baxter 
equation)

R(u) =

⎛⎜⎜⎝
sh(u + η) 0 0 0

0 sh(u) sh(η) 0
0 sh(η) sh(u) 0
0 0 0 sh(u + η)

⎞⎟⎟⎠ , (2.1)

and the left and right K-matrices (solutions of the boundary Yang–Baxter equations) given by 
the diagonal matrices

K+(u) = diag(e−u−η , eu+η) , K−(u) = diag(eu , e−u) , (2.2)

respectively. The R-matrix is used to construct the monodromy matrices

Ta(u) = Ra1(u) · · ·RaN(u) , T̂a(u) = RaN(u) · · ·Ra1(u) . (2.3)
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Finally, the transfer matrix t (u) is given by [2]

t (u) = tra K+
a (u)Ua(u) , (2.4)

where

Ua(u) = Ta(u)K−
a (u) T̂a(u) . (2.5)

The transfer matrix commutes for different values of the spectral parameter

[t (u) , t (v)] = 0 , (2.6)

and contains the Hamiltonian (1.1) H ∼ t ′(0) up to multiplicative and additive constants.

2.2. Algebraic Bethe ansatz

The A, B , C, and D operators of the algebraic Bethe ansatz are defined by [2]

Ua(u) =
(

A(u) B(u)

C(u) D(u) + sh η
sh(2u+η)

A(u)

)
, (2.7)

where [B(u) ,B(v)] = 0. However, in order to avoid a later shift of the Bethe roots (see e.g. 
Eq. (A.24) in [7]), we now introduce a shifted B operator

B(u) ≡ B(u − η
2 ) . (2.8)

We define the Bethe states using this shifted B operator

|λ1 . . . λM〉 =
M∏

k=1

B(λk)|�〉 , (2.9)

where |�〉 is the reference state with all spins up

|�〉 =
(

1

0

)⊗N

, (2.10)

and λ1 , . . . , λM remain to be specified. The Bethe states satisfy the off-shell relation

t (u)|λ1 . . . λM 〉 = �(u)|λ1 . . . λM〉 +
M∑

m=1

�λm(u)B(u)

M∏
k �=m
k=1

B(λk)|�〉 , (2.11)

where �(u) is given by the T-Q equation

�(u) = sh(2u + 2η)

sh(2u + η)
sh2N(u + η)

Q(u − η)

Q(u)
+ sh(2u)

sh(2u + η)
sh2N(u)

Q(u + η)

Q(u)
, (2.12)

with

Q(u) =
M∏

k=1

sh
(
u − λk + η

2

)
sh

(
u + λk + η

2

) = Q(−u − η) . (2.13)

Furthermore,
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�λm(u) = f(u,λm − η
2 )

[
sh2N(λm + η

2 )

M∏
k �=m
k=1

sh(λm − λk − η) sh(λm + λk − η)

sh(λm − λk) sh(λm + λk)

− sh2N(λm − η
2 )

M∏
k �=m
k=1

sh(λm − λk + η) sh(λm + λk + η)

sh(λm − λk) sh(λm + λk)

]
, (2.14)

where

f(u, v) = sh(2u + 2η) sh(2v) shη

sh(u − v) sh(u + v + η) sh(2v + η)
. (2.15)

It follows from the off-shell equation (2.11) that the Bethe state |λ1 . . . λM 〉 (2.9) is an eigen-
state of the transfer matrix t (u) (2.4) with eigenvalue �(u) (2.12) if the coefficients �λm of 
all the “unwanted” terms vanish; that is, according to (2.14), if λ1 , . . . , λM satisfy the Bethe 
equations (1.2). In particular, the eigenvalues of the Hamiltonian (1.1) are given by

E = 2 sh2 η

M∑
k=1

1

sh(λk − η
2 ) sh(λk + η

2 )
+ (N − 1) chη . (2.16)

We can restrict to solutions that are admissible [7]: all the λk’s are finite and pairwise distinct 
(no two are equal), and each λk satisfies either

e(λk) > 0 and − π

2
< �m(λk) ≤ π

2
(2.17)

or

e(λk) = 0 and 0 < �m(λk) <
π

2
. (2.18)

Moreover, for the root of unity case η = iπ/p with integer p ≥ 2, we exclude solutions con-
taining exact complete p-strings, see section 3 below. All the admissible solutions of the Bethe 
equations (1.2) for small values of p and N are given in [7].

2.3. Uqsl(2) symmetry

For generic q , the quantum group Uqsl(2) has generators E , F , K that satisfy the relations

K E K−1 = q2E , K F K−1 = q−2F , [E ,F ] = K − K−1

q − q−1
. (2.19)

These generators are represented on the spin chain by (see e.g. [16])

E =
N∑

k=1

I⊗ · · · ⊗ I⊗ σ+
k ⊗ qσz

k+1 ⊗ · · · ⊗ qσz
N ,

F =
N∑

k=1

q−σz
1 ⊗ · · · ⊗ q−σz

k−1 ⊗ σ−
k ⊗ I⊗ · · · ⊗ I ,

K = qσz
1 ⊗ · · · ⊗ qσz

N . (2.20)
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The transfer matrix has Uqsl(2) symmetry [17]

[t (u) ,E] = [t (u) ,F ] = [t (u) ,K] = 0 . (2.21)

Moreover, the transfer matrix commutes with Sz

[
t (u) , Sz

] = 0 , Sz = 1
2

N∑
k=1

σz
k , (2.22)

and the Bethe states satisfy

Sz|v1 . . . vM 〉 = (N
2 − M)|v1 . . . vM 〉 . (2.23)

As reviewed in [7], the Bethe states are Uqsl(2) highest-weight states of spin-j representations 
Vj with

j = N

2
− M , (2.24)

and dimension

dimVj = 2j + 1 = N − 2M + 1 . (2.25)

For the root of unity case q = eiπ/p , the generators satisfy the additional relations

Ep = Fp = 0 , K2p = 1 . (2.26)

The Lusztig’s “divided powers” [18] are defined by (see e.g. [19])

e = 1

[p]q !K
p Ep , f = (−1)p

[p]q ! Fp , h = 1
2

[
e ,f

]
, (2.27)

where

[n]q = qn − q−n

q − q−1
, [n]q ! =

n∏
k=1

[k]q . (2.28)

The generators e, f, h obey the usual sl(2) relations

[h , e] = e ,
[
h ,f

] = −f . (2.29)

The transfer matrix also has this sl(2) symmetry at roots of unity.
The space of states of the spin chain is given by the N -fold tensor product of spin-1/2 repre-

sentations V1/2. As already reviewed in [7], for q = eiπ/p , this vector space decomposes into a 
direct sum of tilting Uqsl(2)-modules Tj characterized by spin j ,

(
V 1

2

)⊗N =
N/2⊕

j=0(1/2)

d0
j Tj , (2.30)

where the sum starts from j = 0 for even N and j = 1/2 for odd N . The multiplicities d0
j of 

these Tj modules are given by [20]

d0
j =

∑
dj+np −

∑
dj+np−1−2(j mod p) , (j mod p) �= p − 1

2
,
p − 1

2
, (2.31)
n≥0 n≥t (j)+1
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where dj is given by

dj =
(

N
N
2 − j

)
−

(
N

N
2 − j − 1

)
, dj = 0 for j >

N

2
, (2.32)

and

t (j) =
{

1 for (j mod p) >
p−1

2 ,

0 for (j mod p) <
p−1

2 .
(2.33)

If (j mod p) = p − 1
2 , p−1

2 , then d0
j = dj .

The dimensions of the tilting modules are given by [7]

dimTj =
{

2j + 1, 2j + 1 ≤ p or s(j) = 0,

2(2j + 1 − s(j)), otherwise ,
(2.34)

where we set2

s(j) = (2j + 1) mod p . (2.35)

2.4. General structure of the tilting modules

For our analysis, we need an explicit structure and the Uqsl(2) action on the tilting modules 
Tj that appear in the decomposition (2.30). The structure of the tilting Uqsl(2)-modules was 
studied in many works [1,21,18,22,20]. The tilting Uqsl(2)-modules Tj in (2.30) for 2j + 1 less 
than p or divisible by p are irreducible and isomorphic to the spin-j modules (or Vj in our no-
tations).3 Otherwise, each Tj is indecomposable but reducible and contains Vj as a submodule 
while the quotient Tj/Vj is isomorphic to Vj−s(j), where s(j) is defined in (2.35). Both the 
components Vj and Vj−s(j) are further reducible but indecomposable: Vj has the unique sub-
module isomorphic to the head (or irreducible quotient) of the Vj−s(j) module, and Vj−s(j) has 
the unique submodule isomorphic to the head of the Vj−p module. We denote the head of Vj

by 〈j〉. Then, the sub-quotient structure of Tj in terms of the irreducible modules 〈j〉 can be 
depicted as

Tj :

〈j − s(j)〉

〈j − p〉 〈j〉

〈j − s(j)〉

(2.36)

where arrows correspond to irreversible action of Uqsl(2) generators and we set 〈j〉 = 0 for 
j < 0.

2 (j mod p) is the remainder on division of j by p.
3 The tilting modules Tj with 2j + 1 < p are the type-II representations in [1], while all others are of type I.
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To compute dimensions dim〈j〉 of the irreducible subquotients in (2.36), we note the relation 
dim〈j〉 = 2j + 1 − dim〈j − s(j)〉 that follows from the discussion above (2.36). It is then easy 
to check the following formula for dimensions4 by induction in r ≥ 0:

dim〈j〉 = s(j)(r + 1), where 2j + 1 ≡ rp + s(j). (2.37)

Note that the highest-weight vector in the irreducible module 〈j〉 has Sz = j .
We shall refer to the four irreducible subquotients in (2.36), starting from the top 〈j − s(j)〉

and going around clockwise, as the “top” Tj , “right” Rj , “bottom” Bj , and “left” Lj nodes, 
respectively. We refer the interested reader to Appendix A for the description of the basis and 
Uqsl(2)-action in Tj .

3. Bethe states for exact complete p-strings

For η = iπ/p with integer p ≥ 2 (so that q = eη is a root of unity), the Bethe equations (1.2)
admit exact solutions consisting of p λ’s differing by η, e.g.

{v , v + η , v + 2η , . . . , v + (p − 1)η} (3.1)

where v is arbitrary. Such solutions have been noticed in the context of (quasi) periodic chains 
[8–12], and were called in [9] “exact complete p-strings.” Such solutions do not lead to new 
eigenvalues of the transfer matrix, and therefore, we do not regard such solutions as admissible. 
Nevertheless, Bethe states corresponding to such solutions are necessary in order to construct the 
complete set of states when one or more tilting modules are spectrum degenerate [7].

The Bethe states (2.9) corresponding to such solutions are naively null, since

p−1∏
r=0

B(v + rη) = 0 , (3.2)

as already noticed by Tarasov for the (quasi) periodic chain in [12,23,24].5 We proceed, following 
[12] (see also [10]), by regularizing the solution and taking a suitable limit. Therefore, we now 
define

η0 ≡ iπ

p
, μ ≡ η − η0 , (3.3)

and we consider the limit μ → 0. Given a usual Bethe state |λ1 . . . λM 〉 (2.9), we define the 
operators6

Bμ(v) = 1

μ

p−1∏
r=0

B(v + rη + μxr+1) (3.4)

4 If s(j) = 0, then 2j + 1 is divisible by p, so the tilting module is irreducible (of dimension 2j + 1 as noted above), 
and therefore the sub-quotient structure is trivial.

5 For the closed chain, the corresponding product of B operators is a component (top-right corner) of a fused [25,
26] monodromy matrix; and, for η = iπ/p, this fused monodromy matrix becomes block diagonal, and therefore the 
top-right corner becomes zero. (See Proposition 5 parts (i) and (ii) in [23], and Lemmas 1.4 and 1.5 in [24].) The same 
logic applies to the open chain, in view of the open-chain generalization [27] of the fusion procedure.

6 For simplicity, we assume here that the λi ’s are fixed and do not depend on μ. In principle, the analysis presented 
here could be generalized by not making any assumptions about the λi ’s at the outset, which in fact is the approach 
taken in [12] for the closed chain. However, the result of such an analysis is that, in order to obtain an eigenvector of the 
transfer matrix, the λi ’s must indeed be solutions of the Bethe equations with μ → 0.
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and7

B(v) = lim
μ→0

Bμ(v) , (3.5)

as well as the corresponding new states

‖v;λ1 . . . λM 〉〉μ = Bμ(v) |λ1 . . . λM 〉 (3.6)

and

‖v;λ1 . . . λM 〉〉 = B(v) |λ1 . . . λM 〉

= lim
μ→0

1

μ

p−1∏
r=0

B(v + rη + μxr+1) |λ1 . . . λM 〉 , (3.7)

where the transfer matrix t (u) and the B operators (including those used in the construction 
of the Bethe state |λ1 . . . λM 〉 of course) should be understood to be constructed with generic 
anisotropy η instead of η0, and x1, . . . , xp are still to be determined. To this end, we obtain the 
off-shell relation for this state (cf. (2.11))

t (u)‖v;λ1 . . . λM〉〉μ = X(u)‖v;λ1 . . . λM〉〉μ

+ 1

μ

M∑
m=1

Ym B(u)

p−1∏
r=0

B(v + rη + μxr+1)

M∏
k �=m
k=1

B(λk)|�〉

+ 1

μ

p−1∑
r=0

Zr B(u)

p−1∏
s �=r
s=0

B(v + sη + μxs+1)

M∏
k=1

B(λk)|�〉 , (3.8)

and the limit μ → 0 remains to be performed. Evidently, there are now two kinds of “unwanted” 
terms.

It is easy to see from (2.12) that X(u), which appears in the first line of (3.8), is given by

X(u) = sh(2u + 2η)

sh(2u + η)
sh2N(u + η)

Q(u − η)

Q(u)
E−(u)

+ sh(2u)

sh(2u + η)
sh2N(u)

Q(u + η)

Q(u)
E+(u) , (3.9)

where Q(u) is given by (2.13), and the E±(u) are defined by

E±(u) = Q(u ± η)

Q(u)
, (3.10)

where

7 The operator (3.5) is well defined, since 
∏p−1

r=0 B(v + rη + μxr+1) = O(μ) for μ → 0, as follows from (3.2) and 
the fact B(u) =B(u)

∣∣∣ + O(μ), and non-zero in general, as follows from examples we studied.

μ=0
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Q(u) =
p−1∏
r=0

sh(u − v − (r − 1
2 )η − μxr+1) sh(u + v + (r + 1

2 )η + μxr+1)

=
p−1∏
r=0

sh(u − v − (r − 1
2 )η) sh(u + v + (r + 1

2 )η) + O(μ) . (3.11)

In the second line of (3.11), we keep explicitly only the first term in the expansion around μ = 0
and neglect contributions that vanish when μ vanishes. We see that E±(u) → 1 in the limit 
μ → 0, and therefore X(u) → �(u).

Similarly, from (2.14) we find that Ym, which appears in the second line of (3.8), is given by

Ym = f(u,λm − η
2 )

[
sh2N(λm + η

2 )E−(λm − η
2 )

M∏
k �=m
k=1

sh(λm − λk − η) sh(λm + λk − η)

sh(λm − λk) sh(λm + λk)

− sh2N(λm − η
2 )E+(λm − η

2 )

M∏
k �=m
k=1

sh(λm − λk + η) sh(λm + λk + η)

sh(λm − λk) sh(λm + λk)

]
, (3.12)

and therefore Ym → �λm as μ → 0. Hence, the “unwanted” terms of the first kind in (3.8) vanish 
provided that λ1 , . . . , λM satisfy the usual Bethe equations (1.2) at η = η0. (The factor 1/μ in 
the second line of (3.8) is canceled by the contribution from 

∏p−1
r=0 B(v + rη + μxr+1) which 

vanishes as fast as O(μ) for μ → 0, as we noticed above.)
Finally, again from (2.14) we find that Zr , which appears in the third line of (3.8), is given by

Zr = f(u, v + (r − 1
2 )η)

[
sh2N(v + (r + 1

2 )η)
Q(v + (r − 3

2 )η)

Q(v + (r − 1
2 )η)

Z−
r

− sh2N(v + (r − 1
2 )η)

Q(v + (r + 1
2 )η)

Q(v + (r − 1
2 )η)

Z+
r

]
, (3.13)

where

Z−
r =

p−1∏
s �=r
s=0

sh((r − s − 1)η + μ(xr+1 − xs+1)) sh(2v + (r + s − 1)η)

sh((r − s)η) sh(2v + (r + s)η)
,

Z+
r =

p−1∏
s �=r
s=0

sh((r − s + 1)η + μ(xr+1 − xs+1)) sh(2v + (r + s + 1)η)

sh((r − s)η) sh(2v + (r + s)η)
, (3.14)

and we have again neglected contributions that vanish when μ vanishes. We find

lim
μ→0

Z−
r

μ
= −(xr+1 − xr)

sh(2v + 2rη0)

shη0 sh(2v + (2r − 1)η0)
, r �= 0 , (3.15)

while for r = 0 the above result continues to hold except with x0 = xp + p. Similarly,

lim
Z+

r = −(xr+2 − xr+1)
sh(2v + 2rη0)

, r �= p − 1 , (3.16)

μ→0 μ shη0 sh(2v + (2r + 1)η0)
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while for r = p − 1 the above result continues to hold except with xp+1 = x1 − p. We conclude 
that the “unwanted” terms of the second kind in (3.8) vanish provided that x1, . . . , xp satisfy

xr+1 − xr

xr+2 − xr+1
=

(
sh(v + (r − 1

2 )η0)

sh(v + (r + 1
2 )η0)

)2N
sh(2v + (2r − 1)η0)

sh(2v + (2r + 1)η0)

Q(v + (r + 1
2 )η0)

Q(v + (r − 3
2 )η0)

(3.17)

for r = 0, 1, . . . , p − 1, where

x0 = xp + p , xp+1 = x1 − p , (3.18)

and Q(u) in (2.13) is to be evaluated with η = η0.
In order to solve (3.17) for x1, . . . , xp , we now make (along the lines of [12]) the following 

ansatz

xr = 1 − r − G(v + rη0)

F (v)
, r = 0, . . . , p + 1 , (3.19)

where F(u) and G(u) are functions with periodicities η0 and iπ , respectively,

F(u + η0) = F(u) , G(u + iπ) = G(u) . (3.20)

Then the boundary conditions (3.18) are satisfied, and

xr+1 − xr

xr+2 − xr+1
= H(v + rη0)

H(v + (r + 1)η0)
, (3.21)

where

H(u) = G(u + rη0) − G(u) + F(u) . (3.22)

The conditions (3.20) and (3.22) can be satisfied by setting

F(u) = 1

p

p−1∑
k=0

H(u + kη0) , G(u) = 1

p

p−1∑
k=1

kH(u + kη0) . (3.23)

Comparing (3.17) and (3.21), we see that H(u) must obey the functional relation

H(u)

H(u + η0)
=

(
sh(u − η0

2 )

sh(u + η0
2 )

)2N
sh(2u − η0)

sh(2u + η0)

Q(u + η0
2 )

Q(u − 3η0
2 )

, (3.24)

which is satisfied by8

H(u) = sh2N(u − η0
2 ) sh(2u − η0)

Q(u − η0
2 )Q(u − 3η0

2 )
. (3.25)

We have therefore proved the following proposition.

Proposition 3.1. If |λ1 . . . λM 〉 is an eigenstate of the transfer matrix t (u) with eigenvalue �(u), 
then for any v ∈ C the corresponding state ‖v; λ1 . . . λM 〉 〉 constructed in (3.7) using an exact 
complete p-string, where xr are given by (3.19), (3.23) and (3.25) using (2.13), is also an eigen-
state of the transfer matrix with the same eigenvalue �(u).

8 One can multiply this solution by any function with periodicity η0, and it will still be a solution of (3.24), though it 
will not change the values of xr ’s. We are not aware of any other solutions of the functional equation, and expect that 
this one will be enough to construct the complete basis of eigenstates.
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By this proposition we see that the operator B(v) in (3.5) maps the specific eigenstate 
|λ1 . . . λM 〉 defined in (2.9) to another eigenstate of t (u). But acting with B(v) on other Bethe 
states does not give in general eigenstates, or saying differently the operator B(v) does not in 
general commute with t (u), as its definition involves Bethe roots λi via the function Q(u).

Remark 3.2. For the particular case p = 2, the Q(u) function obeys Q(u + 2η0) = Q(u), and 
therefore the ratio of Q(u) functions in (3.24) equals 1, which implies that H(u) can be chosen 
independently of {λi}, e.g. H(u) = sh2N(u − η0

2 ) sh(2u − η0); and therefore {xr} and thus B(v)

are independent of {λi}. This suggests that B(v) might be a symmetry of t (u) as it maps any 
Bethe state to another eigenstate of the same eigenvalue. We have verified numerically for p = 2
and up to N = 6 that B(v) indeed commutes with t (u) for any complex numbers u and v.

Several examples of the construction in Proposition 3.1 with p = 2 can be found in Sec. 5, see 
e.g. Secs. 5.2, 5.3, and 5.4. For p > 2, the first appearance of an exact complete p-string is for the 
case p = 3, N = 8, M = 0, see Section D.6 in [7]. We have constructed the vector ‖v; −〉 〉 (3.7)
numerically for this case, with a generic value for v, and we have verified that it is an eigenvector 
of the Hamiltonian with the same eigenvalue as the reference state (namely, E = 3.5), yet it is 
linearly independent from the reference state. Moreover, it is a highest-weight vector with spin 
j = 1, exactly as required for the right node of the tilting module T1 (recall the structure in (2.36)
and its description above), which is spectrum-degenerate with the tilting module T4 containing 
the reference state.

Remark 3.3. The generalization to the case of more than one exact complete p-string is straight-
forward: a vector with m such p-strings is given by

‖v1, . . . , vm;λ1 . . . λM 〉〉 =
m∏

i=1

B(vi)|λ1 . . . λM 〉 , (3.26)

where B(vi) is constructed as in (3.5) and with {xi,r} given by

xi,r = 1 − r − G(vi + rη0)

F (v)
, r = 0, . . . , p + 1 , i = 1, . . . ,m , (3.27)

with the same boundary conditions on xi,r . We note that the Sz-eigenvalue of (3.26) is N
2 −

M + mp and thus the operators 
∏m

i=1 B(vi) describe t (u) degeneracies between Sz-eigenspaces 
that differ by a multiple of p. We stress that these degeneracies are extra to the degeneracies 
corresponding to the action by the divided powers of Uqsl(2) that also change Sz by ±p. We 
discuss below this new type of degeneracies. An example with two exact complete p-strings (i.e., 
m = 2, with p = 2) is given in Sec. 5.5.

4. Generalized Bethe states

The usual Bethe states (2.9) are, by construction, ordinary eigenvectors of the transfer matrix 
t (u). In order to construct generalized eigenvectors (which, as noted in the Introduction, appear 
at roots of unity), something different must be done. We recall that generalized eigenvectors |v〉
are defined as9

9 The power in (4.1) is 2 because there are Jordan cells of maximum rank 2, and here |v〉 and |v′〉 belong to a Jordan 
cell of rank 2.
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(
t (u) − �(u)1

)2|v〉 = 0 , (4.1)

or equivalently

t (u) |v〉 = �(u) |v〉 + |v′〉 and t (u) |v′〉 = �(u) |v′〉 . (4.2)

We note that a generalized eigenvector, as |v〉 in (4.2), is defined only up to the transformation

|v〉 → α|v〉 + β|v′〉, for α,β ∈ C. (4.3)

Generalized eigenvectors appear only in (direct sums of) the tilting Uqsl(2)-modules Tj with 
s(j) non-zero, i.e. in the cases where Tj are indecomposable but reducible, and thus are described 
by the diagram in (2.36). This fact is borne out by the explicit examples in our previous paper [7], 
see also [4,5] and the proof for p = 2 in [16]. As we will see further from an explicit construction 
in this section, it is only the states in the head of Tj – the top sub-quotient 〈j − s(j)〉 in (2.36) – 
on which the Hamiltonian (1.1) is non-diagonalizable. For the case p = 2, it was already shown 
in [16] using certain free fermion operators.

4.1. Introduction and overview

An important clue to a Bethe ansatz construction of the generalized eigenvectors can already 
be learned by considering the simplest case, namely a chain with two sites (N = 2). Indeed, for 
this case and for generic values of q , the eigenvectors of the Hamiltonian (1.1) are given by

|v1〉 = |�〉 = | ↑↑〉 = (1,0,0,0)T ,

|v2〉 = F |�〉 = q−1| ↑↓〉 + | ↓↑〉 = (0, q−1,1,0)T ,

|v3〉 = 1

[2]q F 2|�〉 = | ↓↓〉 = (0,0,0,1)T ,

|v4〉 = −q| ↑↓〉 + | ↓↑〉 = (0,−q,1,0)T . (4.4)

The first three vectors, which form a spin-1 representation of Uqsl(2), have the same energy 
eigenvalue E1 = 1

2 [2]q , while the fourth vector (a spin-0 representation) has the energy eigen-
value E0 = − 3

2 [2]q . For p = 2 (i.e., q = eiπ/2 = i), the vectors |v2〉 and |v4〉 evidently coincide 
(and E1 = E0 = 0), signaling that the Hamiltonian is no longer diagonalizable. A generalized 
eigenvector of the Hamiltonian with generalized eigenvalue 0 can be constructed from the q → i

limit of an appropriate linear combination of these two vectors, e.g.,

|w〉 = lim
q→i

1

[2]q
(|v4〉 − |v2〉

) = −(0,1,0,0)T . (4.5)

Let us now consider the corresponding Bethe ansatz description. For generic q , the vector |v4〉
is given by

|v4〉 = a(η)B(ν)|�〉 , ν = 1
2 log

[
− sh(

η
2 + iπ

4 )

sh(
η
2 − iπ

4 )

]
, (4.6)

where a depends on η such that a(iπ/2) = 0. As q approaches i (i.e., η approaches iπ
2 ), the 

Bethe root ν in (4.6) goes to infinity. Indeed, setting η = iπ
2 − iω2, we find that

ν = − logω + 1 log 2 + O(ω4) (4.7)
2
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for ω near 0. Expanding the Bethe vector in a series about ω = 0, we observe that

B(ν)|�〉 = i
2 ω−4 (F |�〉) ∣∣

ω=0 + O(ω−2) . (4.8)

We therefore can subtract i
2ω−2F |�〉 from ω2B(ν)|�〉 to get the final result

|v〉 ≡ lim
ω→0+

[
ω2B(ν)|�〉 − i

2 ω−2F |�〉
]

= (0,0,−1,0)T = i|w〉 − |v2〉
∣∣∣
q=i

, (4.9)

which is a generalized eigenvector of the Hamiltonian. Note the similarity of the constructions in 
(4.5) and (4.9): both involve subtracting from a (generically) highest-weight state a contribution 
proportional to |v2〉 = F |�〉 and taking the q → i limit. The generalized eigenvector |v〉 is evi-
dently a linear combination of the generalized eigenvector |w〉 in (4.5) and the eigenvector |v2〉
in (4.4), recall that the generalized eigenvector is defined up to the transformation (4.3).

A construction of generalized Bethe states similar to (4.9) is possible for general values of N
and p. We observe from numerical studies given in Appendix B that, as the anisotropy parameter 
η approaches η0 = iπ/p with integer p ≥ 2, the Bethe roots corresponding to a generalized 
eigenvalue contain a string of length p′ ∈ {1, 2, . . . , p − 1}, whose center (real part) approaches 
infinity. In more detail, such a string is a set of p′ roots differing by iπ/p′, e.g.

ν∞
k = ν0 + iπ

2p′ (p
′ − (2k − 1)) , k = 1, . . . , p′ , (4.10)

with ν0 → ∞. As we shall see below, the value of p′ is related to the spin j of the tilting module 
Tj (the one containing the corresponding generalized eigenvector) by the simple formula

p′ = s(j) , (4.11)

where s(j) ∈ {1, 2, . . . , p − 1} is defined in (2.35). For p = 2, the only possibility is p′ = 1, 
i.e. an infinite real root, as already discussed. For p = 3, the only possibilities are p′ = 1 and 
p′ = 2, where the latter consists of the pair of roots ν0 ± iπ/4 with ν0 → ∞. For p = 4, we 
can have p′ = 1, 2, 3; the p′ = 3 case consists of a triplet of roots ν0 , ν0 ± iπ/3 with ν0 → ∞, 
etc. The corresponding Bethe state has Bethe roots {ν∞

k } tending to infinity in the limit, and 
requires a certain subtraction to get a finite vector. In a nutshell, our construction of generalized 
eigenvectors in a tilting module Tj starts with the spin-j highest-weight state that lives in the 
right node denoted by 〈j〉 in the diagram (2.36). This state can be constructed using the ordinary 
ABA approach as in (2.9). Then, a generalized eigenstate living in the top node 〈j − s(j)〉 is 
constructed by applying a certain p′-string of B(νk) operators (with νk as in (4.10) but finite ν0) 
on the usual Bethe state in 〈j〉 at generic value of η, subtracting the image of Fp′

on the spin-j
highest-weight state and taking the limit η → η0. We give below details of the construction with 
our final claim in Proposition 4.3, while our representation-theoretic interpretation is given in 
Sec. 4.5.

4.2. General ABA construction of generalized eigenstates

With these observations in mind, let

|�λ〉 ≡ |λ1 . . . λM 〉 =
M∏

B(λk)|�〉 (4.12)

k=1
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denote an on-shell Bethe vector, i.e., an ordinary eigenvector of the transfer matrix

t (u)|�λ〉 = �(u)|�λ〉 , (4.13)

where the eigenvalue �(u) is given by (2.12). This state is an Uqsl(2) highest-weight state 
with spin j = N/2 − M , see (2.24). Under the already-mentioned assumption that the top node 
〈j − s(j)〉 of Tj contains generalized eigenstates, let us construct a generalized eigenvector 
‖ |�λ〉 〉 〉(p′) ≡ ‖ |λ1 . . . λM〉 〉 〉(p′) whose generalized eigenvalue is also �(u), where p′ = s(j). To this 
end, we now set

η = η0 − iω2p′
, η0 = iπ

p
, (4.14)

and look for a generalized eigenvector as the limit

‖|�λ〉〉〉(p′) = lim
ω→0+‖|�λ〉〉〉(p′)

ω , (4.15)

where

‖|�λ〉〉〉(p′)
ω = α|�ν, �λα〉 + βFp′ |�λβ〉 , (4.16)

with

|�ν, �λα〉 =
p′∏

j=1

B(νj )

M∏
k=1

B(λα,k)|�〉 , |�λβ〉 =
M∏

k=1

B(λβ,k)|�〉 . (4.17)

Note that the subscripts α and β on λα,k and λβ,k are simply labels (i.e., not indices) that serve 
to distinguish λα,k from λβ,k and from λk . Note that λk is the Bethe solution precisely at the root 
of unity, when ω = 0, while λα,k and λβ,k are a priori different functions of ω. And we assume 
that, as ω → 0+,

νj → ν∞
j ,

λα,k → λk ,

λβ,k → λk , (4.18)

where ν∞
j is given in (4.10) with ν0 diverging as ν0 = − logω. However, the {νj } , {λα,k} , {λβ,k}

as well as the coefficients α and β (actually certain powers of ω) are still to be determined. The 
B operators and the transfer matrix t (u) should again (as in Section 3) be understood to be con-
structed with anisotropy η instead of η0. Moreover, F is the Uqsl(2) generator (see section 2.3) 
and as an operator it also depends on q = eη.

We shall see that the state ‖ |�λ〉 〉 〉(p′) or the limit (4.15) is well defined and has the same 
transfer-matrix (generalized) eigenvalue as |�λ〉 in (4.12), and both states belong to the same 
tilting module Tj , see Remark 4.4 below. As in the usual ABA construction, the state ‖ |�λ〉 〉 〉(p′)

in our construction also has the maximum value of Sz in the irreducible subquotient to which 
it belongs, namely, the top node 〈j − s(j)〉. We know from (2.23) and (4.17) that this state has 
Sz = N/2 − M − p′ = j − p′. On the other hand, we know from the general structure of tilting 
modules (2.36) that ‖ |�λ〉 〉 〉(p′) has Sz = j − s(j). It follows that p′ = s(j), as already noted in 
(4.11).

Next, we observe that for ω → 0, the vector |�ν, �λα〉 has the power series expansion:

|�ν, �λα〉 = cω−2p′N
(
Fp′ |�λ〉

) ∣∣∣ + O(ω−2p′(N−1)) , (4.19)

ω=0
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where c is some numerical factor. For p′ = 1, this follows from the fact that B(u)|�〉 ∼
e2NuF |�〉 + O(e2(N−1)u) for u → ∞; hence, for u ∼ − logω, B(u)|�〉 ∼ ω−2NF |�〉 +
O(ω−2(N−1)). For p′ > 1, the result (4.19) is a conjecture, which we have checked in many 
examples, see e.g. Secs. 4.7, 4.8. It follows that

ω2p′(N−1)|�ν, �λα〉 − cω−2p′
Fp′ |�λβ〉 = O(ω0) (4.20)

for ω → 0. We therefore set

α = ω2p′(N−1) , β = −cω−2p′
, (4.21)

which makes ‖ |�λ〉 〉 〉(p′)
ω (4.16) finite for ω → 0.

According to the off-shell relation (2.11), the transfer matrix t (u) has the following action on 
the off-shell Bethe vector |�ν, �λα〉:

t (u)|�ν, �λα〉 = �α(u)|�ν, �λα〉 +
∑

i

�νi (u)B(u)|ν̂i , �λα〉 +
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉 ,

(4.22)

where a hat over a symbol means that it should be omitted, i.e.

|ν̂i , �λα〉 =
p′∏

j �=i
j=1

B(νj )

M∏
k=1

B(λα,k)|�〉 , |�ν, λ̂α,i〉 =
p′∏

j=1

B(νj )

M∏
k �=i
k=1

B(λα,k)|�〉 , (4.23)

and

�α(u) = sh(2u + 2η)

sh(2u + η)
sh2N(u + η)

Qα(u − η)Qν(u − η)

Qα(u)Qν(u)

+ sh(2u)

sh(2u + η)
sh2N(u)

Qα(u + η)Qν(u + η)

Qα(u)Qν(u)
, (4.24)

and Qν(u) and Qα(u) are defined as

Qν(u) =
p′∏

j=1

sh
(
u − νj + η

2

)
sh

(
u + νj + η

2

)
,

Qα(u) =
M∏

k=1

sh
(
u − λα,k + η

2

)
sh

(
u + λα,k + η

2

)
. (4.25)

Moreover, according to (2.14), we have

�νi (u) = f(u, νi − η
2 )

[
sh2N(νi + η

2 )
Qα(νi − 3η

2 )

Qα(νi − η
2 )

p′∏
j �=i
j=1

sh(νi − νj − η) sh(νi + νj − η)

sh(νi − νj ) sh(νi + νj )

− sh2N(νi − η
2 )

Qα(νi + η
2 )

Qα(νi − η
2 )

p′∏
j �=i
j=1

sh(νi − νj + η) sh(νi + νj + η)

sh(νi − νj ) sh(νi + νj )

]
, (4.26)

and
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�λα,i (u) = f(u,λα,i − η
2 )

[
sh2N(λα,i + η

2 )
Qν(λα,i − 3η

2 )

Qν(λα,i − η
2 )

×
M∏

j �=i
j=1

sh(λα,i − λα,j − η) sh(λα,i + λα,j − η)

sh(λα,i − λα,j ) sh(λα,i + λα,j )

− sh2N(λα,i − η
2 )

Qν(λα,i + η
2 )

Qν(λα,i − η
2 )

M∏
j �=i
j=1

sh(λα,i − λα,j + η) sh(λα,i + λα,j + η)

sh(λα,i − λα,j ) sh(λα,i + λα,j )

]
.

(4.27)

Similarly, the action of the transfer matrix on the off-shell Bethe vector |�λβ〉 is given by

t (u)|�λβ〉 = �β(u)|�λβ〉 +
∑

i

�λβ,i (u)B(u)|λ̂β,i〉 , (4.28)

where

�β(u) = sh(2u + 2η)

sh(2u + η)
sh2N(u + η)

Qβ(u − η)

Qβ(u)
+ sh(2u)

sh(2u + η)
sh2N(u)

Qβ(u + η)

Qβ(u)
, (4.29)

with

Qβ(u) =
M∏

k=1

sh
(
u − λβ,k + η

2

)
sh

(
u + λβ,k + η

2

)
, (4.30)

and

�λβ,i (u) = f(u,λβ,i − η
2 )

[
sh2N(λβ,i + η

2 )

M∏
j �=i
j=1

sh(λβ,i − λβ,j − η) sh(λβ,i + λβ,j − η)

sh(λβ,i − λβ,j ) sh(λβ,i + λβ,j )

− sh2N(λβ,i − η
2 )

M∏
j �=i
j=1

sh(λβ,i − λβ,j + η) sh(λβ,i + λβ,j + η)

sh(λβ,i − λβ,j ) sh(λβ,i + λβ,j )

]
. (4.31)

We argue in Appendix D that, in order for ‖ |�λ〉 〉 〉(p′) (4.15) to be a generalized eigenvector of 
the transfer matrix, i.e., it obeys (4.1), it suffices to satisfy the following conditions:

lim
ω→0+β

(
�β(u) − �α(u)

) �= 0 , (4.32)

lim
ω→0+β

(
�β(u) − �α(u)

)2 = 0 , (4.33)

lim
ω→0+ω2Nβ�νi (u) = 0 , i = 1, . . . , p′ , (4.34)

lim
ω→0+β�λα,i (u) = 0 , i = 1, . . . ,M , (4.35)

lim
ω→0+β�λβ,i (u) = 0 , i = 1, . . . ,M , (4.36)

where α and β are given by (4.21).
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Recalling the expressions (4.26) and (4.27) for �νi (u) and �λα,i (u), we see that the conditions 
(4.34)–(4.35) require that {�ν, �λα} be approximate solutions (as ω → 0) of the Bethe equations10

sh2N(νi + η
2 )Qα(νi − 3η

2 )

p′∏
j �=i
j=1

sh(νi − νj − η) sh(νi + νj − η)

= sh2N(νi − η
2 )Qα(νi + η

2 )

p′∏
j �=i
j=1

sh(νi − νj + η) sh(νi + νj + η) (4.37)

and

sh2N(λα,i + η
2 )Qν(λα,i − 3η

2 )

M∏
j �=i
j=1

sh(λα,i − λα,j − η) sh(λα,i + λα,j − η)

= sh2N(λα,i − η
2 )Qν(λα,i + η

2 )

M∏
j �=i
j=1

sh(λα,i − λα,j + η) sh(λα,i + λα,j + η) . (4.38)

By ‘approximate solutions’ we mean that the equations are satisfied up to a certain order in ω, not 
necessarily in all orders, i.e., we solve equations (4.37) and (4.38) in the sense of perturbation the-
ory in the small parameter ω, until (4.34)–(4.35) are satisfied. Similarly for the condition (4.36), 
it requires that �λβ be an approximate solution of the Bethe equations corresponding to �λβ,i (u)

in (4.31),

sh2N(λβ,i + η
2 )

M∏
j �=i
j=1

sh(λβ,i − λβ,j − η) sh(λβ,i + λβ,j − η)

= sh2N(λβ,i − η
2 )

M∏
j �=i
j=1

sh(λβ,i − λβ,j + η) sh(λβ,i + λβ,j + η) . (4.39)

Let us therefore look for a solution {�ν, �λα} of the Bethe equations (4.37)–(4.38) with M + p′
Bethe roots that approaches {�ν ∞, �λ} as ω → 0, recall our assumption on the limit (4.18). We 
assume that for small ω this solution is given by

νj = − logω +
∑
k≥1

ajkω
2(k−1) + iπ

2p′ (p
′ − (2j − 1)) , j = 1, . . . , p′ ,

λα,j = λj +
∑
k≥1

bjkω
2p′k , j = 1, . . . ,M , (4.40)

where the coefficients {ajk , bjk} are independent of ω. To determine these coefficients, we 
rewrite the Bethe equations (4.37)–(4.38) in the form

10 These are the usual Bethe equations (1.2) but with more Bethe roots, since we now have both λα ’s and ν’s. The ν’s 
appear in the Bethe equations for the λα ’s through Qν functions and vice-versa.
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BAEk = 0 , k = 1, . . . ,M + p′ , (4.41)

where BAEk is defined as the difference of the left-hand and right-hand sides. We insert (4.14)
and (4.40) into (4.41), perform series expansions about ω = 0, and solve the resulting equations 
for {ajk , bjk}, starting from the most singular terms in the series expansions (the most singular 
term has obviously a finite order in ω). In practice, the conditions (4.34)–(4.35) are satisfied by 
keeping sufficiently many terms in the expansion (4.40).

Similarly, we can find a solution �λβ of the Bethe equations (4.39) with M Bethe roots that 
approaches �λ as ω → 0. We assume that for small ω this solution is given by

λβ,j = λj +
∑
k≥1

cjkω
2p′k , j = 1, . . . ,M , (4.42)

and we solve for the coefficients {cjk} in a similar way. We find in practice that, by keeping 
sufficiently many terms in the expansion (4.42), the condition (4.36) is also satisfied. In general, 
�λβ �= �λα .

We then find by doing explicit expansion using (4.40) and (4.42), with the same number of 
terms in the sums as in the previous step, that �β(u) − �α(u) (recall the definitions (4.24), 
(4.29)) is of order ω2p′

�β(u) − �α(u) = O(ω2p′
) . (4.43)

For the choice of β in (4.21), it follows that both conditions (4.32) and (4.33) are also satisfied.
We have therefore demonstrated the following proposition, assuming that our conjec-

ture (4.19) is true.

Proposition 4.3. For anisotropy η = iπ/p with integer p ≥ 2, given a Bethe eigenvector |�λ〉
in (4.12) of the transfer matrix t (u) with eigenvalue �(u) (4.13), a generalized eigenvector of 
rank 2 with the same generalized eigenvalue is given by

‖|�λ〉〉〉(p′) = lim
ω→0+

[
ω2p′(N−1)|�ν, �λα〉 − cω−2p′

Fp′ |�λβ〉
]

, (4.44)

where p′ equals N − 2M + 1 modulo p, the vectors |�ν, �λα〉 and |�λβ〉 are given by (4.17), c is 
given by (4.19), and �ν, �λα , and �λβ are given by the series expansions (4.40) and (4.42), whose 
coefficients are determined by the Bethe equations (4.37), (4.38), and (4.39) up to a certain order 
in ω such that (4.34)–(4.36) are satisfied.

Remark 4.4. In this remark, we address the problem of constructing the whole Jordan cell for the 
transfer matrix – the states |v′〉 and |v〉 in (4.2) – or what is the corresponding eigenvector |v′〉 for 
the generalized eigenvector |v〉 = ‖ |�λ〉 〉 〉(p′) constructed in (4.44)? We give two arguments, one is 
computational and uses the results of Appendix D where we stated Corollary D.1 in the end. It 
states that under the assumptions made in Proposition 4.3 |v′〉 is non-zero and equals κFp′ |�λ〉
where κ is the limit in (4.32). The other argument is less technical and counts only degeneracies. 
First, the state |v′〉 should have the same Sz = N/2 − M − p′ as |v〉 = ‖ |�λ〉 〉 〉(p′) has. Note further 
that |v〉 is in the same tilting module Tj=N/2−M as the initial Bethe state |�λ〉 because the two 
states have the same eigenvalue �(u) of the transfer matrix t (u), and the ordinary Bethe states 
of the same M value are non-degenerate (with respect to t (u)) at roots of unity [7]. Indeed, if 
the generalized eigenstate |v〉 would belong to another copy of Tj=N/2−M not containing |�λ〉, we 
could obtain by acting on |v〉 with (p′ power of) the raising Uqsl(2) generator E a highest-weight 
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state, see the action in Appendix A, which is another Bethe state,11 say |�λ′〉, with the same M and 
by construction the same eigenvalue �(u) as |v〉, which contradicts the non-degeneracy result 
in [7], and thus |�λ′〉 ∼ |�λ〉. Further, the weight Sz = N/2 − M − p′ is only doubly degenerate in 
Tj=N/2−M : |v〉 = ‖ |�λ〉 〉 〉(p′) and the vector Fp′ |�λ〉 in the bottom of Tj have this weight. We thus 
have (4.2) with

|v′〉 ∼ Fp′ |�λ〉. (4.45)

We have also checked this result explicitly for the examples in Secs. 4.6–4.8.

We note that Proposition 4.3 gives only sufficient conditions on existence of the generalized 
eigenvectors, and the construction if the conditions are satisfied. Their actual existence is clear 
in the examples we consider below. We give in Secs. 4.6–4.8 explicit examples of constructing 
the Jordan cells and generalized eigenvectors for p = 2, 3, 4 using the construction in Proposi-
tion 4.3. Readers who are interested more in these examples can skip the next subsection where 
we go back to representation theory and tilting modules.

4.5. Representation-theoretic description

We give here a representation-theoretic interpretation of our construction in Proposition 4.3
by analyzing the contribution of Vj ’s to different tilting modules in the root-of-unity limit. Then, 
we also discuss the problem of counting the (generalized) eigenvectors using this analysis.

We begin with the decomposition of the spin chain at generic q

(
V 1

2

)⊗N =
N/2⊕

j=0(1/2)

djVj , (4.46)

where the multiplicity dj of the spin-j representation Vj is defined in (2.32). It is instructive 
to compare this decomposition with the one (2.30) at roots of unity in terms of tilting modules 
Tj with multiplicities d0

j ≤ dj , see the expression in (2.31). We will consider further only those 
values of j for which 2j + 1 modulo p is nonzero (that is, s(j) defined in (2.35) is nonzero), i.e., 
when Tj are indecomposable but reducible and thus contain generalized eigenvectors, recall the 
discussion after (4.3). The multiplicity d0

j is then strictly less than dj . Each such Tj contains Vj

as a proper submodule. The corresponding spin-j highest-weight state lives in the node denoted 

by 
◦〈j〉 in the left half of Fig. 1. This state can be constructed using the ordinary ABA approach 

as in (2.9). The rest dj − d0
j = d0

j+p−s(j) of the initial number of Vj ’s are not submodules but 
sub-quotients in another tilting module – in Tj+p−s(j) (recall the discussion in Sec. 2.4.) Being 
‘sub-quotient’ here means that the spin-j states lose the property “highest-weight” in the root-

of-unity limit. These states are generalized eigenstates of t (u). They live in the node 
•〈j〉 in the 

right half of Fig. 1.
We therefore expect that d0

j of the spin-j Bethe states have a well-defined limit as q ap-

proaches a root of unity and give ordinary t (u)-eigenstates living in 
◦〈j〉; and on the other side, 

we expect irregular behavior of the dj −d0
j Bethe states – the corresponding Bethe roots νk go to 

infinity as (4.10) – such that an appropriate limit gives the generalized eigenstates living in 
•〈j〉. 

11 Or complete p-string operators on a Bethe state with M ′ lower than M by a multiple of p.
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Fig. 1. The subquotient structure of the tilting module d0
j
Tj ⊕ d0

j+p−s
Tj+p−s with the solid arrows corresponding to 

the action of Uqsl(2); here, s ≡ s(j) for brevity and s(j) is defined in (2.35). The spin-j highest-weight states (ordinary 
eigenstates) live in the node 

◦〈j〉, on the left, while the spin-j generalized eigenstates are in 
•〈j〉, on the right part of the 

diagram, and are constructed from spin-(j + p − s) highest-weight states – the curvy arrow for the p′-string of B(νk)

operators and [. . .]2 denotes the subtraction of the action of Fp′
(the construction of Proposition 4.3), with p′ = p − s. 

The horizontal dashed arrow corresponds to the action of a product of B(λi ) operators (the ordinary ABA construction).

By Proposition 4.3, we construct the latter states by applying the p′-string of B(νk) operators 

on the usual Bethe states living in the node 
◦〈j + p − s〉 in Tj+p−s and subtracting the image 

of Fp′
(as in (4.20)) on the spin-(j + p − s) highest-weight state that guarantees absence of 

diverging terms in the limit. We sketched this in the right half of Fig. 1 where the subtraction is 

schematically denoted by [. . .]2. Note that the difference in the highest Sz-eigenvalues in 
•〈j〉 and 

in 
◦〈j + p − s〉 is p − s(j). (Recall that the number j in 〈j〉 corresponds to the spin Sz = j value 

of the highest-weight vector.) Hence, the number p′ in the p′-string equals p − s(j). Similarly, 

we should use a string of length p′ = s(j) to construct generalized eigenstates in 
•〈j − s〉 out 

of Bethe eigenstates from 
◦〈j〉, in the left part of Fig. 1, as anticipated in (4.11) and in Proposi-

tion 4.3.
We give finally a comment about counting the (generalized) eigenstates. The limit of ordinary 

Bethe states gives as many linearly independent states as the number of admissible solutions of 
the Bethe equations at the root of unity, and we know [7] that there can be deviations of this num-
ber from d0

j (it is less than d0
j in general). Taking into account the deviations nj studied in [7]

we should thus have d0
j − nj linearly independent eigenstates and the number d0

j+p−s − nj+p−s

of linearly independent generalized eigenstates of spin-j . To construct the missing eigenstates of 

spin-j or highest-weight states in 
◦〈j〉, we should use the exact complete p-strings from Sec. 3. 

We believe that the same complete p-strings construction can be applied to generalized eigen-
vectors and it recovers the total number d0

j+p−s of generalized eigenvectors of spin-j .

Examples

We now illustrate the general construction (4.44) with several explicit examples.

4.6. p = 2

As already noted, for p = 2, the only possibility is p′ = 1, i.e. an infinite real root. For even N

and irrespectively of the value of M , the small-ω behavior of this root is given by

ν = − logω + O(ω0) , (4.47)
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as in (4.7) and (4.40). We find that the construction (4.44) produces a generalized eigenvector 
irrespectively of the values of the O(ω0) and higher-order terms. Hence, for p = 2 and even N , 
the generalized eigenvector ‖ |�λ〉 〉 〉(1) corresponding to the on-shell Bethe vector |�λ〉 with any value 
of M is given by

‖|�λ〉〉〉(1) = lim
ω→0+

[
ω2(N−1)B(ν) − cω−2F

]
|�λ〉 , (4.48)

for some “non-universal” constant c and ν is given by (4.47). We denote by ‖ |−〉 〉 〉(1) the result 
for the reference state (no Bethe roots) |�λ〉 = |�〉. For odd N , there is no solution of the form 
(4.47), which is in correspondence with the fact that the Hamiltonian is diagonalizable at odd N .

For example, we have explicitly computed (4.48) with |�λ〉 = |�〉 for N = 4, 6, 8 using Math-
ematica, and we have verified that the result ‖ |−〉 〉 〉(1) is a generalized eigenvector of the 
Hamiltonian (1.1), with generalized eigenvalue 0:

H 2‖|−〉〉〉(1) = 0 , H‖|−〉〉〉(1) ∼ F |�〉 , (4.49)

where we use ∼ to denote equality up to some nonzero numerical factor.

4.7. p = 3

For p = 3, both p′ = 1 and p′ = 2 are possible.

4.7.1. p′ = 1
Let us first consider the case p′ = 1, N = 6 and M = 0. Following the procedure explained in 

(4.40) and immediately below, we find that the corresponding ν is given by

ν = − logω + 1
4 log 3 −

√
3

12 ω2 + O(ω4) , (4.50)

and the corresponding vector ‖ |−〉 〉 〉(1) is a generalized eigenvector of the Hamiltonian (1.1) with 
generalized eigenvalue 5/2:

(H − 5
2 )2‖|−〉〉〉(1) = 0 , (H − 5

2 )‖|−〉〉〉(1) ∼ F |�〉 . (4.51)

4.7.2. p′ = 2
Let us now consider p′ = 2. An example is the case N = 4 and M = 0, for which �ν (4.40) is 

given by

ν1 , ν2 = ± iπ
4 − logω + 1

8 log( 243
4 ) ∓ 2i

√
2

35/4 ω2 − 13
√

3
36 ω4 + O(ω6) . (4.52)

We have explicitly verified that ‖ |−〉 〉 〉(2) is a generalized eigenvector of the Hamiltonian, with 
generalized eigenvalue 3/2:

(H − 3
2 )2‖|−〉〉〉(2) = 0 , (H − 3

2 )‖|−〉〉〉(2) ∼ F 2|�〉 . (4.53)

Another example is the case N = 6 and M = 1. This is our first example with M > 0 (and 
p >2), which makes this case particularly interesting. There are 4 solutions of the Bethe equa-
tions (1.2) with p = 3, N = 6, M = 1, and let us focus here on the simplest λ = 1

2 log 2 ≈
0.346574. By following the procedure described around (4.40)–(4.42), we obtain
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ν1 , ν2 = ± iπ
4 − logω + 1

8 log(108) ∓ 19i
√

2
16∗33/4 ω2 − 34493

21888
√

3
ω4 + O(ω6) ,

λα = 1
2 log 2 − 3

16

√
3ω4 + O(ω8) ,

λβ = 1
2 log 2 − 1

4

√
3ω4 + O(ω8) . (4.54)

Note that λα �= λβ . We have explicitly verified that the corresponding vector ‖ |λ〉 〉 〉(2) (4.44) is a 
generalized eigenvector of the Hamiltonian with generalized eigenvalue −3/2,

(H + 3
2 )2‖|λ〉〉〉(2) = 0 , (H + 3

2 )‖|λ〉〉〉(2) ∼ F 2|λ〉 . (4.55)

4.8. p = 4

For p = 4, we can have p′ = 1, 2, 3, but we illustrate here only two of these three possibilities.

4.8.1. p′ = 1
Let us first consider p′ = 1. An example is the case p = 4, N = 4, M = 0, p′ = 1, for which ν

from (4.40) is given by

ν = − logω + 1
4 log 2 − 1

4ω2 + O(ω4) , (4.56)

and the corresponding vector ‖ |−〉 〉 〉(1) is a generalized eigenvector of the Hamiltonian with gen-
eralized eigenvalue 3

√
2/2,

(H − 3
2

√
2)2‖|−〉〉〉(1) = 0 , (H − 3

2

√
2)‖|−〉〉〉(1) ∼ F |�〉 . (4.57)

Another example is the case p = 4, N = 6, M = 1, p′ = 1, which (as the example in 
Eq. (4.54)) has M > 0. There are 5 solutions of the Bethe equations (1.2) with p = 4, N = 6, 
M = 1, and let us focus here on the simplest λ = 1

2 arcsinh(1) ≈ 0.440687. We find

ν = − logω + 1
4 log 2 − 1

6ω2 + O(ω4) ,

λα = 1
2 arcsinh(1) − 5

12

√
2ω2 + O(ω4) ,

λβ = 1
2 arcsinh(1) − 1

2

√
2ω2 + O(ω4) . (4.58)

We have explicitly verified that the corresponding vector ‖ |λ〉 〉 〉(1) (4.44) is a generalized eigen-
vector of the Hamiltonian with generalized eigenvalue 

√
2/2,

(H − 1
2

√
2)2‖|λ〉〉〉(1) = 0 , (H − 1

2

√
2)‖|λ〉〉〉(1) ∼ F |λ〉 . (4.59)

4.8.2. p′ = 3
Let us now consider p′ = 3. An example is the case p = 4, N = 6, M = 0, p′ = 3, for which 

�ν (4.40) is given by

ν1 = iπ
3 − logω + 1

12 log(1352) − (− 1
13 )1/3ω2 − 53

12 (− 1
13 )2/3ω4 − 3847

3744ω6 + O(ω8) ,

ν2 = − logω + 1
12 log(1352) + ( 1

13 )1/3ω2 − 53
12 ( 1

13 )2/3ω4 − 3847
3744ω6 + O(ω8) , ν3 = ν∗

1 .

(4.60)

We have explicitly verified that the corresponding vector ‖ |−〉 〉 〉(3) (4.44) is a generalized eigen-
vector of the Hamiltonian with generalized eigenvalue 5

√
2/2,

(H − 5
2

√
2)2‖|−〉〉〉(3) = 0 , (H − 5

2

√
2)‖|−〉〉〉(3) ∼ F 3|�〉 . (4.61)
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5. Complete sets of eigenstates for p = 2

For the case p = 2, the decomposition of the space of states into tilting modules depends 
fundamentally on the parity of N :

Even N

For p = 2 and even N , the decomposition (2.30) consists of tilting modules Tj of dimension 
4j , where j is an integer. Recall the diagram in (2.36): each such module has a right node (or 
simple subquotient) Rj of dimension j + 1, a bottom node Bj of dimension j , a top node Tj of 
dimension j , and a left node Lj of dimension j − 1 (provided that j > 1). We use the basis and 
Uqsl(2)-action in Tj in Appendix A to make the following statements. The right node consists 
of the vectors12

Rj : |v〉 , f |v〉 , f 2|v〉 , . . . , f j |v〉 , (5.1)

where |v〉 can be either a usual Bethe state or a state constructed from an exact complete 2-string; 
and f is the s(2) lowering generator from Uqsl(2). The bottom node consists of the vectors 
obtained by acting on the right node with the Uqsl(2) lowering generator F

Bj : F |v〉 ,Ff |v〉 ,Ff 2|v〉 , . . . ,Ff j−1|v〉 . (5.2)

The top node consists of the generalized eigenvectors

Tj : ‖|v〉〉〉(1) , f ‖|v〉〉〉(1) , f 2‖|v〉〉〉(1) , . . . , f j−1‖|v〉〉〉(1) , (5.3)

where ‖ |v〉 〉 〉(1) is given by (4.48) with |�λ〉 = |v〉. Finally, the left node Lj consists of (ordinary) 
eigenvectors. We first introduce states obtained by acting on the top node with F

L̃j : F‖|v〉〉〉(1) ,Ff ‖|v〉〉〉(1) ,Ff 2‖|v〉〉〉(1) , . . . ,Ff j−2‖|v〉〉〉(1) . (5.4)

Together with (5.1), they form a basis in the direct sum Lj ⊕ Rj , the states in Lj are linear 
combinations of those in L̃j and Rj . For later convenience, we will refer to L̃j instead of Lj , 
see more details in Sec. 6 for the general case.

We note that the generalized eigenvectors appear only in the top node.

Odd N

For p = 2 and odd N , the decomposition (2.30) consists of irreducible tilting modules Tj =
Vj of dimension 2j + 1, where j is half-odd integer – indeed, the number s(j) is zero for all 
these j , and all Tj are then irreducible following the discussion in Sec. 2.4. Starting from a 
highest-weight vector |v〉, the remaining vectors of the multiplet are obtained by applying F and 
powers of f . For odd N there are only ordinary eigenvectors (i.e., no generalized eigenvectors), 
which is in agreement with [16].

Examples

We now illustrate the above general framework by exhibiting ABA constructions of complete 
sets of 2N (generalized) eigenvectors for the cases N = 4, 5, 6. For each of these cases, we have 
explicitly verified that the vectors are indeed (generalized) eigenvectors of the Hamiltonian (1.1)

12 The basis’ construction (5.1)–(5.4) is just an example of the general one (6.2)–(6.5) for any p in the beginning of the 
next section. We found it is more convenient to describe the basis here as well.
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and are linearly independent. The needed admissible solutions of the Bethe equations for p = 2
are given in Appendix C of [7].

We also consider selected eigenvectors for the cases N = 7, 9 in order to further illustrate 
the construction in Sec. 3. We emphasize that when one or more modules in the decomposition 
(2.30) are spectrum-degenerate (which can occur for either odd or even N ), it is necessary to use 
this construction (3.7), (3.26) based on exact complete 2-strings.

5.1. N = 4

For p = 2, N = 4, the decomposition (2.30) is given by

2T1 ⊕ T2 .

The T2 consists of the following 8 vectors:

R2 : |v〉 , f |v〉 , f 2|v〉 ,

T2 : B2 : F |v〉 ,Ff |v〉 ,

T2 : ‖|v〉〉〉(1) , f ‖|v〉〉〉(1) ,

L̃2 : F‖|v〉〉〉(1) , (5.5)

where |v〉 = |�〉 is the reference state (2.10), and ‖ |v〉 〉 〉(1) = ‖ |−〉 〉 〉(1). Each of the two copies of 
T1 consists of the following 4 vectors:

R1 : |v〉 , f |v〉 ,

T1 : B1 : F |v〉 ,

T1 : ‖|v〉〉〉(1) , (5.6)

where |v〉 = B(λ)|�〉, ‖ |v〉 〉 〉(1) = ‖ |λ〉 〉 〉(1), and λ is an admissible solution of the Bethe equations 
with N = 4 and M = 1, of which there are two: λ = 0.440687 and λ = 0.440687 + iπ

2 . All 
together we thus find 24 = 16 vectors.

5.2. N = 5

For p = 2, N = 5, the space of states decomposes into a direct sum of irreducible representa-
tions

5V 1
2
⊕ 4V 3

2
⊕ V 5

2
.

The V 5
2
, with dimension 6, has the reference state |�〉 as its highest weight state. As noted 

in Appendix D of [7], this module is spectrum-degenerate with one copy of V 1
2
; the latter has 

dimension 2 and highest weight ‖v1; −〉 〉 i.e. an eigenvector constructed from an exact perfect 
2-string and no other Bethe roots (3.7), where v1 is an arbitrary number (for arbitrary v1 and v′

1
we get two vectors different only by a scalar). The other four copies of V 1

2
also have dimension 2, 

with highest-weight vectors B(λ1) B(λ2)|�〉, where {λ1, λ2} is an admissible solution of the 
Bethe equations with N = 5 and M = 2, of which there are four:

{0.337138,0.921365} , {0.337138 + iπ
2 ,0.921365} ,

{0.337138,0.921365 + iπ } , {0.337138 + iπ ,0.921365 + iπ } .
2 2 2
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Finally, each of the four copies of V 3
2

has dimension 4 and the highest-weight vector B(λ)|�〉, 
where λ is an admissible solution of the Bethe equations with N = 5 and M = 1, of which there 
are four: λ = 0.337138, λ = 0.337138 + iπ

2 , λ = 0.921365, λ = 0.921365 + iπ
2 . All together we 

find 25 = 32 vectors.

5.3. N = 6

For p = 2, N = 6, the decomposition (2.30) is given by

5T1 ⊕ 4T2 ⊕ T3 .

The T3 consists of the following 12 vectors:

R3 : |v〉 , f |v〉 , f 2|v〉 , f 3|v〉 ,

T3 : B3 : F |v〉 ,Ff |v〉 ,Ff 2|v〉 ,

T3 : ‖|v〉〉〉(1) , f ‖|v〉〉〉(1) , f 2‖|v〉〉〉(1) ,

L̃3 : F‖|v〉〉〉(1) ,Ff ‖|v〉〉〉(1) , (5.7)

where |v〉 = |�〉 is the reference state. As noted in Appendix D of [7], this module is spectrum-
degenerate with one copy of T1; the latter has the basis (5.6) where |v〉 = ‖v1; −〉 〉 is a gen-
eralized eigenvector constructed from an exact perfect 2-string and no other Bethe roots, and 
v1 is an arbitrary number. The remaining four copies of T1 also have the basis (5.6), where 
|v〉 = B(λ1) B(λ2)|�〉, and {λ1, λ2} is an admissible solution of the Bethe equations with N = 6
and M = 2, of which there are four:

{0.274653,0.658479} , {0.274653 + iπ
2 ,0.658479} ,

{0.274653,0.658479 + iπ
2 } , {0.274653 + iπ

2 ,0.658479 + iπ
2 } .

Finally, each of the four copies of T2 has the basis (5.5) where |v〉 = B(λ)|�〉, and λ is an 
admissible solution of the Bethe equations with N = 6 and M = 1, of which there are four: 
λ = 0.274653, λ = 0.274653 + iπ

2 , λ = 0.658479, λ = 0.658479 + iπ
2 . All together we find 

26 = 64 vectors.

5.4. N = 7

For p = 2, N = 7, the decomposition (2.30) is given by

14V 1
2
⊕ 14V 3

2
⊕ 6V 5

2
⊕ V 7

2
.

For this case we do not enumerate all the eigenvectors, focusing instead on those constructed 
with exact complete 2-strings.

As noted in Appendix D of [7], V 7
2

is spectrum-degenerate with two copies of V 3
2
. The for-

mer, with dimension 8, has the reference state |�〉 as its highest weight state. The latter have 
dimension 4 and have highest weights ‖vi; −〉 〉 where i = 1, 2, i.e. two eigenvectors constructed 
from exact perfect 2-strings and no other Bethe roots. We have explicitly verified that, provided 
v1 �= v2 (but otherwise arbitrary), the eigenvectors ‖v1; −〉 〉 and ‖v2; −〉 〉 are indeed linearly in-
dependent.
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Moreover, the 6 V 5
2

are spectrum-degenerate with 6 V 1
2
. The former, with dimension 6, have 

highest-weight vectors B(λ)|�〉, where λ is an admissible solution of the Bethe equations with 
N = 7 and M = 1, of which there are six:

0.232336 , 0.525032 , 1.09163 ,

0.232336 + iπ
2 , 0.525032 + iπ

2 , 1.09163 + iπ
2 .

Each of the corresponding V 1
2
, with dimension 2, has the highest-weight vector ‖v1; λ〉 〉 i.e. an 

eigenvector constructed from an exact perfect 2-string (v1 is arbitrary) and the Bethe root λ. 
These are the first examples of the construction (3.7) that we meet involving a Bethe state other 
than the reference state. However, since here p = 2, then (as noted in Remark 3.2) the {xr} used 
in this construction do not depend on λ.

5.5. N = 9

For p = 2, N = 9, the decomposition (2.30) is given by

42V 1
2
⊕ 48V 3

2
⊕ 27V 5

2
⊕ 8V 7

2
⊕ V 9

2
.

Again for this case we do not enumerate all the eigenvectors, focusing instead on those con-
structed with exact complete 2-strings.

As noted in Appendix D of [7], V 9
2

is spectrum-degenerate with three copies of V 5
2

as well 
as with two copies of V 1

2
. The module V 9

2
, with dimension 10, has the reference state |�〉 as its 

highest weight state. The V 5
2

have dimension 6 and have highest-weight vectors ‖vi; −〉 〉 where 
i = 1, 2, 3, i.e. three eigenvectors constructed from exact perfect 2-strings and no other Bethe 
roots. We have explicitly verified that, provided v1 �= v2 �= v3 (but otherwise arbitrary), the three 
eigenvectors ‖vi; −〉 〉 are indeed linearly independent. The two V 1

2
, each with dimension 2, are 

particularly interesting, since they have highest-weight vectors ‖vi, vj ; −〉 〉, i.e. with two exact 
perfect 2-strings (3.26). (This is the first, and in fact only, such example that we meet in this 
work.) We have explicitly verified that there are precisely two such linearly independent vectors. 
The modules V 9

2
⊕ 3V 5

2
⊕ 2V 1

2
account altogether for the 32 eigenvectors with eigenvalue 0, as 

we observed in [7].
Moreover, each of the 8 V 7

2
is spectrum-degenerate with 2 copies of V 3

2
. The former, with 

dimension 8, have highest-weight vectors B(λ)|�〉, where λ is an admissible solution of the 
Bethe equations with N = 9 and M = 1, of which there are eight:

0.178189 , 0.381455 , 0.658479 , 1.21812 ,

0.178189 + iπ
2 , 0.381455 + iπ

2 , 0.658479 + iπ
2 , 1.21812 + iπ

2 .

The corresponding V 3
2
, with dimension 4, have highest-weight vectors ‖vi; λ〉 〉 where i = 1, 2, 

i.e. two eigenvectors constructed from exact perfect 2-strings and the Bethe root λ. Similarly to 
the case N = 7 (section 5.4), we have explicitly verified that, provided v1 �= v2 (but otherwise 
arbitrary), the eigenvectors ‖v1; λ〉 〉 and ‖v2; λ〉 〉 are indeed linearly independent; and the {xr} do 
not depend on λ.

The remaining 24 V 5
2

(i.e., those that are not spectrum-degenerate with V 9
2
, as discussed 

above) are spectrum-degenerate with 24 V 1
2
. The former, with dimension 6, have highest-weight 

vectors B(λ1)B(λ2)|�〉, where {λ1, λ2} is an admissible solution of the Bethe equations with 
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N = 9 and M = 2, of which there are 24. The corresponding V 1
2
, with dimension 2, have highest 

weights ‖v1; λ1, λ2〉 〉.
6. Complete sets of eigenstates for p > 2

We now exhibit ABA constructions of complete sets of 2N (generalized) eigenvectors for 
various values of p > 2 and N . The decomposition (2.30) consists of tilting modules Tj of 
dimension 2j + 1 if s(j) = 0, see (2.35), and of dimension 4j + 2 − 2s(j) = 2pr , where j is an 
integer or half-odd integer, and we set

2j + 1 ≡ rp + s and s ≡ s(j) (6.1)

for brevity. Recall the diagram in (2.36): each Tj with non-zero s(j) has a right node (or simple 
subquotient) Rj of dimension s(r + 1), a bottom node Bj of dimension (p − s)r , a top node Tj

of dimension (p − s)r , and a left node Lj of dimension s(r − 1) (provided that r > 1). We use 
the basis (A.4) and Uqsl(2)-action in Tj in Appendix A to make the following statements. The 
right node consists of the vectors

Rj : rk,l = Fkf l |v〉 , 0 ≤ k ≤ s − 1, 0 ≤ l ≤ r , (6.2)

where |v〉 can be either a usual Bethe state or a state constructed from an exact complete 
p-string – it is a highest-weight vector; and f is the s(2) lowering “divided power” genera-
tor from Uqsl(2). The bottom node consists of the vectors obtained by acting on the right node 
with the Uqsl(2) lowering generator F

Bj : bn,m = F s+nf m|v〉 , 0 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1 . (6.3)

The top node consists of the generalized eigenvectors

Tj : tn,m = Fnf m‖|v〉〉〉(s) , 0 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1 , (6.4)

where ‖ |v〉 〉 〉(s) is given by (4.44). Finally, the left node Lj consists of the (ordinary) eigenvectors 
ln,m. To construct the basis {ln,m} in the left node Lj , we first introduce states obtained by acting 
on the top node with Fp−s :

L̃j : l̃n,m = Fp−s+nf m‖|v〉〉〉(s) , 0 ≤ n ≤ s − 1, 0 ≤ m ≤ r − 2 . (6.5)

Together with (6.2), they form a basis in the direct sum Lj ⊕ Rj . The vectors ̃ln,m do not belong 
to Lj , they are a linear combination of ln,m and rn,m+1: l̃n,m = 1

r
(rn,m+1 − ln,m), compare with 

the F action in Appendix A. We will use below the basis elements ̃ln,m instead of ln,m.
In all the examples below, we have explicitly checked that the vectors in (6.2)–(6.5) are indeed 

(generalized) eigenvectors of the Hamiltonian (1.1) and are linearly independent, and thus give a 
basis in Tj as they should. We have also verified by the explicit construction of the states that the 
dimensions of the nodes in Tj coincide with the values given by (2.36) and (2.37) and reviewed 
just above. We remind the reader that all the needed admissible solutions of the Bethe equations 
(1.2) are given in Appendix E in [7].

6.1. p = 3, N = 4

For p = 3, N = 4, the decomposition (2.30) is given by

T0 ⊕ 3T1 ⊕ T2 .
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The T2 (dimension 6) has the following basis, see (6.2)–(6.5) for r = 1 (i.e. L2 is absent) and 
s = 2:

• right node R2 consisting of 4 ordinary eigenvectors (namely, |�〉 , f |�〉 , F |�〉 , Ff |�〉);
• bottom node B2 consisting of 1 ordinary vector (F 2|�〉); and
• top node T2 consisting of 1 generalized eigenvector ‖ |−〉 〉 〉(2), which is described in sec-

tion 4.7.2.

Each of the three T1 are irreducible representations of dimension 3 consisting of a highest-
weight vector B(λ)|�〉 plus two more states obtained by lowering with F . The three admissi-
ble solutions of (1.2) with p = 3, N = 4, and M = 1 are λ = 0.243868 , λ = 0.658479 , λ =
0.902347 + iπ

2 .
The T0 (dimension 1) consists of the vector B(λ1) B(λ2)|�〉, where {λ1 , λ2} = {0.256013,

0.857073} is the admissible solution of (1.2) with p = 3, N = 4, M = 2.
All together we find 24 = 16 vectors.

6.2. p = 3, N = 5

For p = 3, N = 5, the decomposition (2.30) is given by

T 1
2
⊕ 4T 3

2
⊕ T 5

2
.

Each of the four T 3
2

(dimension 6) has the following basis, see (6.2)–(6.5) for r = 1 (i.e. L 3
2

is absent) and s = 1:

• right node R 3
2

consisting of the two ordinary eigenvectors |v〉 and f |v〉, where |v〉 =
B(λ) |�〉;

• bottom node B 3
2

consisting of the two ordinary vectors F |v〉 and F 2|v〉; and

• top node T 3
2

consisting of the two generalized eigenvectors ‖ |λ〉 〉 〉(1) and F‖ |λ〉 〉 〉(1).

The four admissible solutions of (1.2) with p = 3, N = 5, and M = 1 are λ = 0.189841 , λ =
0.447048 , λ = 1.08394 , λ = 0.636889 + iπ

2 .
The T 5

2
is an irreducible representation of dimension 6 consisting of a highest-weight vector 

|�〉 plus five more vectors obtained by lowering with F and/or f .
The T 1

2
is an irreducible representation of dimension 2 consisting of the highest-weight 

vector B(λ1) B(λ2)|�〉, plus the vector obtained by lowering with F , where {λ1 , λ2} =
{0.201117 , 0.504773} is the admissible solution of (1.2) with p = 3, N = 5, M = 2.

All together we find 25 = 32 vectors.

6.3. p = 3, N = 6

For p = 3, N = 6, the decomposition (2.30) is given by

T0 ⊕ 9T1 ⊕ 4T2 ⊕ T3 .

The T3 (dimension 12) has the following basis, see (6.2)–(6.5) for r = 2 and s = 1:

• right node R3 consisting of 3 ordinary eigenvectors (namely, |�〉 , f |�〉 , f 2|�〉);
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• bottom node B3 consisting of 4 ordinary eigenvectors (namely, F |�〉 , Ff |�〉 , F 2|�〉 ,
F 2f |�〉);

• top node T3 consisting of 4 generalized eigenvectors (‖ |−〉 〉 〉(1), which is described in sec-
tion 4.7.1, plus 3 more obtained by lowering with f and/or F , namely f ‖ |−〉 〉 〉(1), F‖ |−〉 〉 〉(1), 
Ff ‖ |−〉 〉 〉(1)); and

• left node, or rather L̃3, consisting of 1 ordinary eigenvector obtained by lowering the gener-
alized eigenvector (F 2‖ |−〉 〉 〉(1)).

Each of the four T2 (dimension 6) has the following basis:

• right node R2 consisting of 4 ordinary eigenvectors (|λ〉 = B(λ)|�〉 plus 3 more obtained by 
lowering, namely, f |λ〉 , F |λ〉 , Ff |λ〉);

• bottom node B2 consisting of 1 ordinary eigenvector (F 2|λ〉); and
• top node T2 consisting of the corresponding generalized eigenvector ‖ |λ〉 〉 〉(2), an example of 

which is described in section 4.7.2.

The four admissible solutions of (1.2) with p = 3, N = 6, M = 1 are λ = 0.155953, λ =
0.346574, λ = 0.658479, λ = 0.502526 + iπ

2 .
Each of the nine T1 are irreducible representations of dimension 3 consisting of a highest-

weight vector B(λ1) B(λ2)|�〉 plus 2 more obtained by lowering with F . The nine admissible 
solutions {λ1 , λ2} of (1.2) with p = 3, N = 6, M = 2 are

{0.36275,0.765051} , {0.16097,0.774681} , {0.706816 ± 0.526679i} ,

{0.151629,1.00054 + iπ
2 } , {0.331821,0.969804 + iπ

2 } , {0.47492 + iπ
2 ,1.23081 + iπ

2 } ,

{0.164318,0.376118} , {0.583386,0.853782 + iπ
2 } , {0.977905,0.595372 + iπ

2 } .

The T0 (which has dimension 1) consists of the vector B(λ1) B(λ2) B(λ3)|�〉, where 
{λ1 , λ2 , λ3} = {0.168223, 0.39058, 0.980264} is the admissible solutions of (1.2) with p = 3, 
N = 6, M = 3.

All together we thus find 26 = 64 vectors.

6.4. p = 4, N = 4

For p = 4, N = 4, the decomposition (2.30) is given by

2T0 ⊕ 2T1 ⊕ T2 .

The T2 (dimension 8) has the following basis, see (6.2)–(6.5) for r = 1 (i.e. L2 is absent) and 
s = 1:

• right node R2 consisting of 2 ordinary eigenvectors (the reference state |�〉 and f |�〉);
• bottom node B2 consisting of 3 ordinary eigenvectors (namely, F |�〉 , F 2|�〉 , F 3|�〉); and
• top node T2 consisting of 3 generalized eigenvectors (‖ |−〉 〉 〉(1), which is described in sec-

tion 4.8.1, plus 2 more obtained by lowering with F ).

Each of the two T1 are irreducible representations of dimension 3 consisting of a highest-
weight vector B(λ)|�〉 plus 2 more obtained by lowering with F . The two admissible solutions 
of (1.2) with p = 4, N = 4, M = 1 are λ = 0.173287, λ = 0.440687.
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Each of the two T0 (dimension 1) consists of the vector B(λ1) B(λ2)|�〉, where {λ1 , λ2} =
{0.186864, 0.582103} , {0.703959 ± 0.429694i} are the two admissible solutions of (1.2) with 
p = 4, N = 4, M = 2.

All together we find 24 = 16 vectors.

6.5. p = 4, N = 6

For p = 4, N = 6, the decomposition (2.30) is given by

4T0 ⊕ 4T1 ⊕ 5T2 ⊕ T3 .

The T3 (dimension 8) has the following basis, see (6.2)–(6.5) for r = 1 (i.e. L3 is absent) and 
s = 3:

• right node R3 consisting of 6 ordinary eigenvectors (namely, |�〉 , f |�〉, F |�〉 , F 2|�〉 ,
Ff |�〉 , F 2f |�〉);

• bottom node B3 consisting of 1 ordinary eigenvector (F 3|�〉 ); and
• top node T3 consisting of 1 generalized eigenvector ‖ |−〉 〉 〉(3), which is described in sec-

tion 4.8.2.

Each of the five T2 (dimension 8) has the following basis:

• right node R2 consisting of 2 ordinary eigenvectors (|λ〉 =B(λ)|�〉 and f |λ〉);
• bottom node B2 consisting of 3 ordinary eigenvectors (F |λ〉 , F 2|λ〉 , F 3|λ〉); and
• top node T2 consisting of 3 generalized eigenvectors (‖ |λ〉 〉 〉(1), an example of which is de-

scribed in section 4.8.1, plus 2 more obtained by lowering with F ).

The corresponding five admissible solutions of (1.2) with p = 4, N = 6, M = 1 are λ =
0.111447, λ = 0.243868, λ = 0.440687, λ = 0.902347, and λ = 0.769926 + iπ

2 .
Each of the four T1 are irreducible representations of dimension 3 consisting of the highest-

weight vector B(λ1) B(λ2)|�〉 plus 2 more obtained by lowering with F . The four admissible 
solutions {λ1 , λ2} of (1.2) with p = 4, N = 6, M = 2 are

{0.260368,0.516935} , {0.11923,0.269157} ,

{0.116959,0.523048} , {0.393822 ± 0.39281i} . (6.6)

Each of the four T0 (dimension 1) consists of the vector B(λ1) B(λ2) B(λ3)|�〉. The four 
admissible solutions {λ1 , λ2 , λ3} of (1.2) with p = 4, N = 6, M = 3 are

{0.124053,0.285872,0.670931} , {0.116697,0.77288 ± 0.427941i} ,

{0.261262,0.749721 ± 0.425077i} , {0.583433,0.593097 ± 0.402559i} . (6.7)

All together we thus find 26 = 64 vectors.

7. Discussion

We have seen that, when q is a root of unity (q = eiπ/p with integer p ≥ 2), the 
Uqsl(2)-invariant open spin-1/2 XXZ chain has two new types of eigenvectors: eigenvectors 
corresponding to continuous solutions of the Bethe equations (exact complete p-strings), and 
generalized eigenvectors. We have proposed here general ABA constructions for these two new 
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types of eigenvectors. The construction for exact complete p-strings (3.7), (3.26) is a gener-
alization of the one proposed by Tarasov [12] for the closed chain, while the construction of 
generalized eigenvectors (4.44) is new. We have demonstrated in examples with various val-
ues of p and N that these constructions are indeed sufficient for obtaining the complete set of 
(generalized) eigenvectors of the model.

The model (1.1) at primitive roots of unity is related to the unitary (p − 1, p) conformal 
Minimal Models, by restricting to the first p − 1 irreducible tilting modules (see e.g. [1]), as well 
as to logarithmic conformal field theories if one keeps all the tilting modules [22,20]. We expect 
that our results can be easily generalized to the case of rational (non-integer) values of p, which 
is related to non-unitary Minimal Models. Indeed, for rational p = a/b, with a, b coprime and 
a > b, there are two different cases qa = ±1, i.e., b even or odd. For odd b (or qa = −1 and 
a can be odd or even), we have obviously the same structure of the tilting Uqsl(2) modules, as 
the structure depends only on the conditions on q and it is the same as for b = 1. The repeated 
tensor products of the fundamental Uqsl(2) representations (or the spin-chains) are decomposed 
in the same way as well (replacing p by a, of course) and thus with the same multiplicities d0

j , 
and therefore our construction of the generalized eigenstates should be the same but using a
instead of p, i.e., the p′ in the p′-string takes values from 1 to a − 1, etc. For even b (or qa = 1
and odd a), a more careful analysis is required. According to [18], for the case of qa = 1, the 
tilting modules have the same structure as in Sec. 2.4, where one should again replace p by a, 
and the multiplicities in the tensor products are also identical to what we had here. The only real 
difference will be in the values of the Bethe roots, as the spectrum of the Hamiltonian is different 
for different choices of a and b, and thus the continuum limit too. We also expect that similar 
constructions can be used for quantum-group invariant spin chains at roots of unity with higher 
spin and/or rank of the quantum-group symmetry. It would be interesting to consider similar 
constructions for supersymmetric (Z2-graded) spin chains, such as the Uqsl(2|1)-invariant chain 
[28]. Of course, the algebraic Bethe ansatz would require nesting for rank greater than one, which 
would render the corresponding constructions more complicated.

We are currently investigating the symmetry operators – generators of a non-abelian symmetry 
of the transfer-matrix t (u) – responsible for the higher degeneracies of the model, which are 
signaled by the appearance of continuous solutions of the Bethe equations, whose corresponding 
eigenvectors are obtained by the construction of section 3. It would also be interesting to find 
a group-theoretic understanding of the construction in section 4 of generalized eigenvectors, 
e.g. within the context of the quantum affine algebra Uqŝl(2) or rather its coideal q-Onsager 
subalgebra at roots of unity [29].
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Appendix A. Tilting Uqsl(2)-modules at roots of unity

We explicitly describe here the Uqsl(2) action in the tilting modules Tj for q = eiπ/p and 
integer p ≥ 2. For 2j + 1 ≤ p, these modules are irreducible of dimension 2j + 1 = s(j) ≡ s, 
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recall our convention (2.35), and have the basis {an, 0 ≤ n ≤ s−1} where a0 is the highest-weight 
vector and the action is

Kan = qs−1−2nan, han = 0, (A.1)

Ean = [n]q [s − n]q an−1, e an = 0, (A.2)

Fan = an+1, f an = 0, (A.3)

where we set a−1 = as = 0.
For 2j + 1 > p, the Tj ’s are identified13 with projective Uqsl(2)-modules from [19] denoted 

there by Pα
p−s(j),r with s ≡ s(j) and r defined from the equation 2j + 1 = rp + s(j), i.e., s

an integer 1 ≤ s ≤ p − 1 and r ≥ 1, and α ≡ α(r) = (−1)r−1. Using the identification and the 
known basis and action [19] in Pα

p−s(j),r , we give below the Uqsl(2)-action in Tj ’s.
For r > 1 and 2j + 1 is not zero modulo p, Tj has the basis

{tn,m,bn,m}0≤n≤p−s−1
0≤m≤r−1

∪ {lk,l}0≤k≤s−1
0≤l≤r−2

∪ {rk,l}0≤k≤s−1
0≤l≤r

, (A.4)

where {tn,m} 0≤n≤p−s−1
0≤m≤r−1

is the basis corresponding to the top module Tj in (2.36), {bn,m} 0≤n≤
p−s−1

0≤m≤r−1
is the basis in the bottom Bj , {lk,l} 0≤k≤s−1

0≤l≤r−2
is the basis in the left Lj , and {rk} 0≤k≤s−1

0≤l≤r

is the 

basis in the right module Rj . In thus introduced basis, the s(2)-generators e, f and h of Uqsl(2)

act in Tj as in the r-dimensional s(2)-module:

h tn,m = 1
2 (r − 1 − 2m)tn,m, e tn,m = m(r − m)tn,m−1, f tn,m = tn,m+1 (A.5)

where we set tn,−1 = tn,r = 0, and identically in Bj , while for Rj the action is

h rk,l = 1
2 (r − 2l)rk,l , e rk,l = l(r + 1 − l)rk,l−1, f rk,l = rk,l+1 (A.6)

where we set rn,−1 = rn,r+1 = 0, and identically in Lj but with the replacement of r by r − 2
in (A.6). The Uqsl(2)-action of the three other generators E, F , and K in the basis (A.4) is given 
by

K tn,m = αqp−s−1−2n tn,m, 0 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1,

K lk,m = −αqs−1−2k lk,m, 0 ≤ k ≤ s − 1, 0 ≤ m ≤ r − 2,

Krk,m = −αqs−1−2k rk,m, 0 ≤ k ≤ s − 1, 0 ≤ m ≤ r,

Kbn,m = αqp−s−1−2n bn,m, 0 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1,

F tn,m =
{

tn+1,m, 0 ≤ n ≤ p − s − 2,
1
r
r0,m+1 − 1

r
l0,m, n = p − s − 1 (l0,r−1 ≡ 0),

0 ≤ m ≤ r − 1,

F lk,m =
{

lk+1,m, 0 ≤ k ≤ s − 2,

b0,m+1, k = s − 1,
0 ≤ m ≤ r − 2,

F rk,m =
{

rk+1,m, 0 ≤ k ≤ s − 2,

b0,m, k = s − 1 (b0,r ≡ 0),
0 ≤ m ≤ r,

13 The identification is easy to see using the diagram (2.36) with the formula for dimensions (2.37) and the general 
decomposition of the spin-chain over Uqsl(2) in terms of projective covers in [20, Sec. 3.2].
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Fbn,m = bn+1,m, 1 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1 (bp−s,m ≡ 0),

Etn,m =
{

α[n]q [p − s − n]q tn−1,m + αg bn−1,m, 1 ≤ n ≤ p − s − 1,

αg
(

r−m
r

rs−1,m + m
r

ls−1,m−1
)
, n = 0,

0 ≤ m ≤ r − 1,

Elk,m =
{

−α[k]q [s − k]q lk−1,m, 1 ≤ k ≤ s − 1,

αg(m − r + 1)bp−s−1,m, k = 0,
0 ≤ m ≤ r − 2,

Erk,m =
{

−α[k]q [s − k]q rk−1,m, 1 ≤ k ≤ s − 1,

αgmbp−s−1,m−1, k = 0,
0 ≤ m ≤ r,

Ebn,m = α[n]q [p − s − n]q bn−1,m, 1 ≤ n ≤ p − s − 1, 0 ≤ m ≤ r − 1 (b−1,m ≡ 0),

where g = (−1)p[s]q
[p−1]q ! . For r = 1, the basis (A.4) does not contain {lk,l} 0≤k≤p−s−1

0≤l≤r−2
terms and we 

imply lk,l ≡ 0 in the action. Then, the formulas for the action are the same as above.

Appendix B. Large p′-strings

We provide here some numerical evidence that the Bethe equations (1.2) have solutions of the 
form (4.10) i.e.

ν∞
k = ν0 + iπ

2p′ (p
′ − (2k − 1)) , k = 1, . . . , p′ , p′ = s(j) , (B.1)

with ν0 → ∞ as η → η0 = iπ/p with integer p ≥ 2; and that the corresponding transfer-matrix 
eigenvalues become degenerate in this limit. Such “large p′-string” solutions play a key role 
in the construction described in section 4 of generalized eigenvectors. For convenience, in this 
section we set η = iπ/p with p real, and we study the limit that p approaches an integer.

B.1. p = 3, p′ = 1

Let us consider the case N = 6. For p = 3, we know [7, Table 4(b)] that the transfer-matrix 
eigenvalue corresponding to the reference state (M = 0, j = 3 ) has degeneracy 12; while away 
from p = 3, we find that this degeneracy splits into 7 + 5. In view of (2.25) describing the 
transfer-matrix degeneracy, the corresponding two solutions of the Bethe equations must have 
M = 0 and M = 1, respectively. The latter solution is our p′-string with p′ = s(3) = 1. As p ap-
proaches 3, this real Bethe root becomes “large” i.e. tends to infinity. This solution corresponds to 
the generalized eigenvector ‖ |−〉 〉 〉(1) in the tilting module T3 discussed in sections 4.7.1 and 6.3.

B.2. p = 3, p′ = 2

Let us first consider the case N = 4. For p = 3, we know [7, Table 4(b)] that the transfer-
matrix eigenvalue corresponding to the reference state (M = 0, j = 2) has degeneracy 6; while 
away from p = 3, we find that this degeneracy splits into 5 + 1. In view of (2.25), the corre-
sponding solutions of the Bethe equations must have M = 0 and M = 2, respectively. The latter 
solution is our p′-string with p′ = s(2) = 2. Fig. 2(a) shows a plot in the complex plane of the 
latter solution for values of p near 3. We observe that, as p approaches 3, the real part increases, 
and the imaginary parts approach ±π/4. This solution corresponds to the generalized eigenvector 
‖ |−〉 〉 〉(2) in the tilting module T2 discussed in sections 4.7.2 and 6.1.
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Fig. 2. (a) 2-Strings for N = 4 and p = 3.1(•), 3.05(�), 3.01(�), 3.001(�), 3.00001(�), (b) 3-strings for N = 6 and 
p = 4.1(•), 4.05(�), 4.01(�), 4.005(�).

Let us next consider the case N = 6. For p = 3, we know [7, Table 3(b)] that there are 4 
transfer-matrix eigenvalues corresponding to solutions of the Bethe equations with M = 1, j = 2, 
each of which has degeneracy 6. Away from p = 3, we find that this degeneracy splits into 5 + 1. 
In view of (2.25), the corresponding solutions of the Bethe equations must have M = 1 and 
M = 3, respectively. We indeed find 4 solutions with M = 3 that consist of a real root and a 
2-string, such that, as p approaches 3, the real root remains small, the center of the 2-string be-
comes large, and the imaginary parts of the 2-string approach ±π/4. These solutions correspond 
to the generalized eigenvector ‖ |λ〉 〉 〉(2) with p′ = s(2) = 2 in the tilting module T2 discussed in 
sections 4.7.2 and 6.3.

B.3. p = 4, p′ = 1

Let us consider the case N = 4. For p = 4, we know [7, Table 4(c)] that the transfer-matrix 
eigenvalue corresponding to the reference state (M = 0, j = 2) has degeneracy 8; while away 
from p = 4, we find that this degeneracy splits into 5 + 3. In view of (2.25), the corresponding 
solutions of the Bethe equations must have M = 0 and M = 1, respectively. The latter solution 
is our p′-string with p′ = s(2) = 1. As p approaches 4, this real Bethe root becomes large. This 



A.M. Gainutdinov, R.I. Nepomechie / Nuclear Physics B 909 (2016) 796–839 831
solution corresponds to the generalized eigenvector ‖ |−〉 〉 〉(1) in the tilting module T2 discussed 
in sections 4.8.1 and 6.4.

B.4. p = 4, p′ = 3

Let us consider the case N = 6. For p = 4, we know [7, Table 4(c)] that the transfer-matrix 
eigenvalue corresponding to the reference state (M = 0, j = 3) has degeneracy 8; while away 
from p = 4, we find that this degeneracy splits into 7 + 1. In view of (2.25), the corresponding 
solutions of the Bethe equations must have M = 0 and M = 3, respectively. The latter solution 
is our p′-string with p′ = s(3) = 3. Fig. 2(b) shows a plot in the complex plane of the latter 
solution for values of p near 4. We observe that, as p approaches 4, the real part becomes large, 
and the nonzero imaginary parts approach ±π/3. This solution corresponds to the generalized 
eigenvector ‖ |−〉 〉 〉(3) in the tilting module T3 discussed in sections 4.8.2 and 6.5.

Appendix C. Special off-shell relation

We derive here an off-shell relation for Bethe vectors of the special form B(u) 
∏

j B(vj )|�〉
(i.e., with an “extra” factor B(u), whose argument is the same as that of the transfer matrix t (u)), 
which we need in Appendix D to derive an off-shell relation for generalized eigenvectors. The 
proof is a generalization of the one developed by Izergin and Korepin [15] for repeated Bethe 
roots.

We begin by recalling the basic exchange relations [2] that are needed to derive the usual 
off-shell relation (2.11)

A(u)B(v) = f (u, v)B(v)A(u) + g(u, v)B(u)A(v) + w(u,v)B(u)D(v) , (C.1)

D(u)B(v) = h(u, v)B(v)D(u) + k(u, v)B(u)D(v) + n(u, v)B(u)A(v) , (C.2)

where

f (u, v) = sh(u − v − η) sh(u + v)

sh(u − v) sh(u + v + η)
≡ f̃ (u, v)

sh(u − v)
,

g(u, v) = shη sh(2v)

sh(u − v) sh(2v + η)
≡ g̃(u, v)

sh(u − v)
,

w(u, v) = − shη

sh(u + v + η)
, (C.3)

and

h(u, v) = sh(u − v + η) sh(u + v + 2η)

sh(u − v) sh(u + v + η)
≡ h̃(u, v)

sh(u − v)
,

k(u, v) = − shη sh(2u + 2η)

sh(u − v) sh(2u + η)
≡ k̃(u, v)

sh(u − v)
,

n(u, v) = shη sh(2u + 2η) sh(2v)

sh(2u + η) sh(2v + η) sh(u + v + η)
. (C.4)

The entire difficulty stems from the fact that the exchange relations (C.1), (C.2) become sin-
gular when the two spectral parameters coincide. (See (C.3) and (C.4).) We can nevertheless 
derive regular exchange relations at u = v by multiplying both sides of the exchange relations by 
sh(u − v), differentiating with respect to v, and then letting u → v. In this way, we arrive at
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A(v)B(v) = ϕ(v)B(v)A(v) + shη sh(2v)

sh(2v + η)

(
B ′(v)A(v) − B(v)A′(v)

)
− shη

sh(2v + η)
B(v)D(v) , (C.5)

where

ϕ(v) = − ∂

∂v

[
f̃ (u, v) + g̃(u, v)

] ∣∣∣
u=v

, (C.6)

and

D(v)B(v) = ψ(v)B(v)D(v) + shη sh(2v + 2η)

sh(2v + η)

(
B(v)D′(v) − B ′(v)D(v)

)
+ shη sh(2v) sh(2v + 2η)

sh3(2v + η)
B(v)A(v) , (C.7)

where

ψ(v) = − ∂

∂v

[
h̃(u, v) + k̃(u, v)

] ∣∣∣
u=v

. (C.8)

The transfer matrix (2.4) can be reexpressed as

t (u) = a(u)A(u) + d(u)D(u) , (C.9)

where

a(u) = e−u sh(2u + 2η)

sh(2u + η)
, d(u) = eu+η . (C.10)

The reference state (2.10) is an eigenstate of A(u) and D(u),

A(u)|�〉 = α(u)|�〉 , D(u)|�〉 = δ(u)|�〉 , (C.11)

where the corresponding eigenvalues are given by

α(u) = eu sh2N(u + η) , δ(u) = e−u−η sh(2u)

sh(2u + η)
sh2N u . (C.12)

The action of a(u)A(u) on the vector B(u) 
∏

j B(vj )|�〉 produces three types of terms (in-
stead of the usual two)

a(u)A(u)
[
B(u)

∏
j

B(vj )|�〉
]

= �(0)(u)B(u)
∏
j

B(vj )|�〉

+ B2(u)
∑

l

�
(1)
l (u)

∏
j �=l

B(vj )|�〉

+ �(2)(u)B ′(u)
∏
j

B(vj )|�〉 . (C.13)

The coefficient �(0)(u) is obtained using the first, third and fourth terms in (C.5) and then the 
first term in (C.1) or (C.2), yielding
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�(0)(u) = a(u)

{
ϕ(u)α(u)

∏
j

f (u, vj ) − shη

sh(2u + η)
δ(u)

∏
j

h(u, vj )

− shη sh(2u)

sh(2u + η)

∂

∂u

[
α(u)

∏
j

f (u, vj )
]}

. (C.14)

For �(1)
l (u), we rewrite the vector as B(vl) 

[∏
j �=l B(vj )

]
B(u)|�〉; using the second and third 

terms in (C.1) for A(u)B(vl), and then using exclusively the first terms in the exchange relations, 
we obtain

�
(1)
l (u) = a(u)

{
g(u, vl)

[∏
j �=l

f (vl, vj )
]
f (vl, u)α(vl)

+ w(u,vl)
[∏

j �=l

h(vl, vj )
]
h(vl, u)δ(vl)

}
. (C.15)

Finally, with the help of (C.5), we readily obtain

�(2)(u) = a(u)
shη sh(2u)

sh(2u + η)
α(u)

∏
j

f (u, vj ) . (C.16)

Similarly, acting with d(u)D(u) also generates three terms

d(u)D(u)
[
B(u)

∏
j

B(vj )|�〉
]

= ϒ(0)(u)B(u)
∏
j

B(vj )|�〉

+ B2(u)
∑

l

ϒ
(1)
l (u)

∏
j �=l

B(vj )|�〉

+ ϒ(2)(u)B ′(u)
∏
j

B(vj )|�〉 , (C.17)

with

ϒ(0)(u) = d(u)

{
ψ(u)δ(u)

∏
j

h(u, vj ) + shη sh(2u) sh(2u + 2η)

sh3(2u + η)
α(u)

∏
j

f (u, vj )

+ shη sh(2u + 2η)

sh(2u + η)

∂

∂u

[
δ(u)

∏
j

h(u, vj )
]}

,

ϒ
(1)
l (u) = d(u)

{
k(u, vl)

[∏
j �=l

h(vl, vj )
]
h(vl, u)δ(vl)

+ n(u, vl)
[∏

j �=l

f (vl, vj )
]
f (vl, u)α(vl)

}
,

ϒ(2)(u) = −d(u)
shη sh(2u + 2η)

sh(2u + η)
δ(u)

∏
h(u, vj ) . (C.18)
j
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Combining the results (C.9), (C.13), (C.17), we arrive at the desired off-shell relation for the 
transfer matrix

t (u)
[
B(u)

∏
j

B(vj )|�〉
]

= �(0)(u)B(u)
∏
j

B(vj )|�〉 + B2(u)
∑

l

�
(1)
l (u)

∏
j �=l

B(vj )|�〉

+ �(2)(u)B ′(u)
∏
j

B(vj )|�〉 , (C.19)

where

�(0)(u) = �(0)(u) + ϒ(0)(u) ,

�
(1)
l (u) = �

(1)
l (u) + ϒ

(1)
l (u) ,

�(2)(u) = �(2)(u) + ϒ(2)(u) . (C.20)

After some algebra, we find

�(0)(u) = sh2N(u + η)
{
c1(u)

∏
j

f (u, vj ) − c2(u)
∂

∂u

[∏
j

f (u, vj )
]}

+ sh2N(u)
{
c3(u)

∏
j

h(u, vj ) + c2(u)
∂

∂u

[∏
j

h(u, vj )
]}

, (C.21)

where

c1(u) = 1

sh3(2u + η)

[
sh(2u + 2η) sh2(2u + η) − 2 sh2 η sh(2u + 2η)

− 4N ch2(u + η) shη sh(2u) sh(2u + η)
]
,

c2(u) = 1

sh2(2u + η)
shη sh(2u) sh(2u + 2η) ,

c3(u) = 1

sh3(2u + η)

[
sh(2u) sh2(2u + η) + 2 sh2 η sh(2u + 2η)

+ 4N ch2 u shη sh(2u + η) sh(2u + 2η)] . (C.22)

Moreover,

�
(1)
l (u) = f(u, vl)

[
sh2N(vl + η)f (vl, u)

∏
j �=l

f (vl, vj )

− sh2N(vl)h(vl, u)
∏
j �=l

h(vl, vj )
]
, (C.23)

where f(u, v) is defined in (2.15); and finally,

�(2)(u) = shη sh(2u) sh(2u + 2η)

sh2(2u + η)

[
sh2N(u + η)

∏
j

f (u, vj )

− sh2N(u)
∏
j

h(u, vj )
]
. (C.24)
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Appendix D. Off-shell relation for a generalized eigenvector

We derive here an off-shell relation for the vector ‖ |�λ〉 〉 〉(p′) (4.15), which leads to the set 
(4.32)–(4.36) of sufficient conditions for this vector to be a generalized eigenvector of the transfer 
matrix.

Since ‖ |�λ〉 〉 〉(p′) should be a generalized eigenvector of the transfer matrix t (u) of rank 2, we 
proceed to compute the action of (t (u) − �α(u))2 on the off-shell vector ‖ |�λ〉 〉 〉(p′)

ω :

(t (u) − �α(u))2 ‖|�λ〉〉〉(p′)
ω = t (u)2‖|�λ〉〉〉(p′)

ω − 2�α(u)t (u)‖|�λ〉〉〉(p′)
ω + �α(u)2‖|�λ〉〉〉(p′)

ω .

(D.1)

We now evaluate in turn the three terms on the RHS of (D.1). We begin with the first term, which 
is the most difficult, since it requires a nontrivial step. Using (4.16) and the off-shell relations 
(4.22), (4.28), we obtain

t (u)2‖|�λ〉〉〉(p′)
ω = t (u)

[
αt(u)|�ν, �λα〉 + βt(u)Fp′ |�λβ〉

]
= t (u)

[
α�α(u)|�ν, �λα〉 + α

∑
i

�νi (u)B(u)|ν̂i , �λα〉

+ α
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉

+ βFp′
�β(u)|�λβ〉 + βFp′ ∑

i

�λβ,i (u)B(u)|λ̂β,i〉
]

= . . . (D.2)

In passing to the second line, we have made use of the important fact (2.21) that the transfer 
matrix commutes with F . Continuing the calculation, we obtain

. . . = α�α(u)

[
�α(u)|�ν, �λα〉 +

∑
i

�νi (u)B(u)|ν̂i , �λα〉 +
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉
]

+ α
∑

i

�νi (u) t (u)B(u)|ν̂i , �λα〉 + α
∑

i

�λα,i (u) t (u)B(u)|�ν, λ̂α,i〉

+ βFp′
�β(u)

[
�β(u)|�λβ〉 +

∑
i

�λβ,i (u)B(u)|λ̂β,i〉
]

+ βFp′ ∑
i

�λβ,i (u) t (u)B(u)|λ̂β,i〉 = . . . (D.3)

Now comes the nontrivial step, when we evaluate the action of t (u) on B(u)| · · · 〉 in three terms in 
(D.3). Indeed, the off-shell relation (2.11) cannot be applied, since its derivation assumes that the 
argument of the transfer matrix (namely, u) does not coincide with any of the arguments of the B
operators used to construct the vector, which evidently is not the case for the vectors B(u)| · · · 〉. 
We use instead the special off-shell relation (C.19), which we rewrite in a more condensed form 
here as

t (u)B(u)| �μ〉 = �̃μ(u)B(u)| �μ〉 +
∑ ˜̃

�μ,μi (u)B2(u)|μ̂i〉 + ˜̃̃
�μ(u)B ′(u)| �μ〉 , (D.4)
i



836 A.M. Gainutdinov, R.I. Nepomechie / Nuclear Physics B 909 (2016) 796–839
where �μ can be �ν, �λα, �λβ , etc. Fortunately, we shall not need the explicit expressions for the 

coefficients �̃μ(u), ˜̃�μ,μi (u) and 
˜̃̃
�μ(u), which can be deduced from the results in Appendix C.

Continuing the calculation from the point (D.3), we conclude that

t (u)2‖|�λ〉〉〉(p′)
ω = α�α(u)2|�ν, �λα〉

+ α�α(u)
∑

i

�νi (u)B(u)|ν̂i , �λα〉 + α�α(u)
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉

+ α
∑

i

�νi (u)

[
�̃νi (u)B(u)|ν̂i , �λα〉 +

∑
j

˜̃
�νi,νj (u)B2(u)|ν̂i , ν̂j , �λα〉

+
∑
j

˜̃
�νi,λα,j (u)B2(u)|ν̂i , λ̂α,j 〉 + ˜̃̃

�νi (u)B ′(u)|ν̂i , �λα〉
]

+ α
∑

i

�λα,i (u)

[
�̃λα,i (u)B(u)|�ν, λ̂α,i〉 +

∑
j

˜̃
�λα,i ,νj (u)B2(u)|ν̂j , λ̂α,i〉

+
∑
j

˜̃
�λα,i ,λα,j (u)B2(u)|�ν, λ̂α,i , λ̂α,j 〉 + ˜̃̃

�λα,i (u)B ′(u)|�ν, λ̂α,i〉
]

+ β�β(u)2Fp′ |�λβ〉 + β�β(u)
∑

i

�λβ,i (u)Fp′
B(u)|λ̂β,i〉

+ βFp′ ∑
i

�λβ,i (u)

[
�̃λβ,i (u)B(u)|λ̂β,i〉 +

∑
j

˜̃
�λβ,i ,λβ,j (u)B2(u)|λ̂β,i , λ̂β,j 〉

+ ˜̃̃
�λβ,i (u)B ′(u)|λ̂β,i〉

]
. (D.5)

The second term in (D.1) is much simpler to evaluate:

−2�α(u)t (u)‖|�λ〉〉〉(p′)
ω = −2�α(u)

[
αt(u)|�ν, �λα〉 + βFp′

t (u)|�λβ〉
]

= −2�α(u)

[
α�α(u)|�ν, �λα〉 + α

∑
i

�νi (u)B(u)|ν̂i , �λα〉 (D.6)

+ α
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉 + βFp′
�β(u)|�λβ〉 + βFp′ ∑

i

�λβ,i (u)B(u)|λ̂β,i〉
]

.

Finally, the third term in (D.1) immediately gives

�α(u)2‖|�λ〉〉〉(p′)
ω = �α(u)2

(
α|�ν, �λα〉 + βFp′ |�λβ〉

)
. (D.7)

Collecting all the terms from (D.5), (D.6), (D.7), we finally obtain the desired off-shell relation

(t (u) − �α(u))2 ‖|�λ〉〉〉(p′)
ω = β

(
�β(u) − �α(u)

)2
Fp′ |�λβ〉

+ α
∑

�νi (u)
(
�̃νi (u) − �α(u)

)
B(u)|ν̂i , �λα〉
i
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+ α
∑

i

�λα,i (u)
(
�̃λα,i (u) − �α(u)

)
B(u)|�ν, λ̂α,i〉

+ β
∑

i

�λβ,i (u)
[
�̃λβ,i (u) + �β(u) − 2�α(u)

]
Fp′

B(u)|λ̂β,i〉

+ α
∑

i

�νi (u)

[∑
j

˜̃
�νi,νj (u)B2(u)|ν̂i , ν̂j , �λα〉 +

∑
j

˜̃
�νi,λα,j (u)B2(u)|ν̂i , λ̂α,j 〉

+ ˜̃̃
�νi (u)B ′(u)|ν̂i , �λα〉

]

+ α
∑

i

�λα,i (u)

[∑
j

˜̃
�λα,i ,νj (u)B2(u)|ν̂j , λ̂α,i〉

+
∑
j

˜̃
�λα,i ,λα,j (u)B2(u)|�ν, λ̂α,i , λ̂α,j 〉

+ ˜̃̃
�λα,i (u)B ′(u)|�ν, λ̂α,i〉

]

+ βFp′ ∑
i

�λβ,i (u)

[∑
j

˜̃
�λβ,i ,λβ,j (u)B2(u)|λ̂β,i , λ̂β,j 〉 + ˜̃̃

�λβ,i (u)B ′(u)|λ̂β,i〉
]

ω→0−−−−→ 0 , (D.8)

whose RHS we demand to vanish in the limit ω → 0+.
Since ‖ |�λ〉 〉 〉(p′) should not be an ordinary eigenvector of the transfer matrix, we also require 

that (t (u) − �α(u))‖ |�λ〉 〉 〉(p′)
ω should not vanish in the limit ω → 0+. This means that we also 

require

(t (u) − �α(u))‖|�λ〉〉〉(p′)
ω = (t (u) − �α(u))

(
α|�ν, �λα〉 + βFp′ |�λβ〉

)
= α

[
�α(u)|�ν, �λα〉 +

∑
i

�νi (u)B(u)|ν̂i , �λα〉 +
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉
]

+ βFp′
[
�β(u)|�λβ〉 +

∑
i

�λβ,i (u)B(u)|λ̂β,i〉
]

− �α(u)
(
α|�ν, �λα〉 + βFp′ |�λβ〉

)
= β

(
�β(u) − �α(u)

)
Fp′ |�λβ〉 + β

∑
i

�λβ,i (u)Fp′
B(u)|λ̂β,i〉

+ α
∑

i

�νi (u)B(u)|ν̂i , �λα〉 + α
∑

i

�λα,i (u)B(u)|�ν, λ̂α,i〉

ω→0−−−−→ |v′〉 �= 0 , (D.9)

where |v′〉 was introduced in (4.2).
In order to satisfy both conditions (D.8) and (D.9), we conjecture that it suffices to have:

lim β
(
�β(u) − �α(u)

) �= 0 , (D.10)

ω→0+
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lim
ω→0+β

(
�β(u) − �α(u)

)2 = 0 , (D.11)

lim
ω→0+ω2Nβ�νi (u) = 0 , i = 1, . . . , p′ , (D.12)

lim
ω→0+β�λα,i (u) = 0 , i = 1, . . . ,M , (D.13)

lim
ω→0+β�λβ,i (u) = 0 , i = 1, . . . ,M , (D.14)

where the limit in the first line (D.10) is supposed to be finite. Indeed, the conditions (D.10), 
(D.11) and (D.14) are fairly obvious. The condition (D.13) is less evident, since it is instead 
α�λα,i (u) that appears in (D.8) and (D.9). However, some of the terms with this factor also 
contain the vector B(u)|�ν, ̂λα,i〉 which is of order ω−2p′N according to (4.19). Hence, we need 
ω−2p′Nα�λα,i (u) to vanish as ω → 0, which is equivalent to (D.13), since α and β are given 
by (4.21).14 The condition (D.12) has a similar explanation: although α�νi (u) appears in (D.8)
and (D.9), some of the terms with this factor also contain the vector |ν̂i, . . .〉, which is missing 
the factor B(νi), and therefore is of order ω−2(p′−1)N . Hence, we require ω−2(p′−1)Nα�νi (u) to 
vanish in the limit.

Corollary D.1. As a corollary of the expression in (D.9) and if the sufficient conditions above 
are satisfied, the limit of (t (u) − �α(u))‖ |�λ〉 〉 〉(p′)

ω equal (t (u) − �(u))‖ |�λ〉 〉 〉(p′) is non-zero and 
proportional to Fp′ |�λ〉. Indeed, the proportionality coefficient is (D.10) and finite non-zero by 
the assumption, while the limit of Fp′ |�λβ〉 is Fp′ |�λ〉 and it is non-zero due to our special choice 
of p′ = s(j) – it is a state in the bottom node of the tilting module Tj , recall the discussion just 
above (4.19) and Sec. 4.5.
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