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INTRODUCTION 

Let M be a compact m dimensional Riemannian manifold without 
boundary. There is a natural connection induced by the metric on the 
tangent bundle TM. By using this connection, we can construct forms 
in the DeRham cohomology which represent the Pontrjagin classes of 
the manifold. These forms can be computed in any coordinate system 
by functorial expressions in the first and second order derivatives of the 
metric tensor gij . The Pontrjagin classes give rise to local formulas in the 
derivatives of the Riemannian metric which are invariantly defined, i.e., 
which are independent of the coordinate system in which they are 
evaluated. 

We obtain a similar representation of the Chern classes of a vector 
bundle in terms of the curvature tensor associated with a connection. 
We will say that a map from metrics and connections to p forms is given 
by a local formula if given any coordinate system and any frame for the 
bundle, we can compute it in terms of the derivatives of the metric and 
of the connection, For such a map, there is a natural notion of order. 
We will discuss such local formulas in the derivatives of a metric and of 
a connection greater detail in Section I. 

We can construct maps from metrics and connections to p forms by 
taking combinations of Chern and Pontrjagin classes. These maps will 
be given by local formulas of order p. In this paper, we will show the 
following theorem. 

THEOREM. Let R be a map from connections and metrics top forms which 
is given by local formula of order n. If n < p, R = 0 while if n = p, R can 
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be expressed as a combination of Pontrjagin classes of the metric and Chern 
classes of the connection. 

Such maps R arise naturally from the study of the asymptotic behavior 
of the eigenvalues for an elliptic complex. We summarize as follows: 
let E, and E, be smooth vector bundles over ICI with a smooth inner 
product ( , ). Let d: r(E,) -+ r(E,) be a first order elliptic differential 
operator. We define the positive self-adjoint second order elliptic 
operators: 

D, = d*d and D, = dd”. 

Let pji denote the eigenvalues of Di and Oji the corresponding eigen- 
sections to EL for j = 1, 2,... . We define: 

f(t, ?I’, Di) = f  exp(--tpji)(@ji, @j’)(x). 
j-1 

By using the techniques of pseudo-differential operators which depend 
upon a complex parameter developed by Seeley [6, 71, we can show that 
f is well defined for Re(t) > 0 and has an asymptotic expansion as 
t + o+ of the form: 

,f(t, ?I’, D<) - f  B,(x, Di) t’n-‘r’)lz (B, =: 0 for n odd). 
n=O 

The functions B,(x, DJ are smooth and can be computed functorially 
in terms of the derivatives of the total symbol of the operator in any 
local system. We define 

BR(x, d) = B&t, Do) - E&(x, Dl). 

It is well known that it is possible to compute the index of the operator 
d by the formula 

i ‘M 
B,(x, d) dvol = ;;ndea(d) ; 2 ;’ 

This gives a formula for computing the index of any elliptic complex by 
integrating a local formula in the derivatives of the total symbol of the 
operator. 

For an arbitrary elliptic operator, there is no reason to expect that this 
formula will agree with the formula given by the index theorem of 
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Atiyah-Singer [2]. However, there are many elliptic complexes for which 
the symbol of the operator depends on the orientation of M, the 
Riemannian metric, and on a connection for some vector bundle E. 
For such a complex, we obtain a local formula in the derivatives of the 
metric and of the connection for computing the index. 

If M is an orientable manifold, we can define the signature complex on 
M. Let E be a complex vector bundle and let D be a Riemannian 
connection on E. By using the connection D, we can define the signature 
complex with coefficients in E. Let RE,? denote the local formula which 
describes the asymptotic behavior of the eigenvalues for this complex; 
m is the dimension of the manifold and Y  is the dimension of the vector 
bundle. Since the roles of the positive and negative spaces of the signature 
complex are interchanged if we reverse the orientation of the manifold M, 
the local formulas Rz,r depend upon the orientation of the coordinate 
system in which they are computed. Consequently, we can view the 
invariants Rg,r as giving a map from connections and metrics to m-forms. 

We will define the notion of order in Section I; it will be clear by 
dimensional analysis that the local formulas Rz,r are of order n. This 
implies that Ii&, = 0 for n < m, while RF,? can be computed in terms 
of the Pontrjagin classes of &I and the Chern classes of E. 

Patodi has kindly pointed out that it is possible to use this result 
to prove the Atiyah-Singer index theorem: From K-theory, it suffices to 
prove the index theorem for the special case of the signature complex 
with coefficients in a vector bundle E. Since R’,,, can be expressed in 
terms of the Chern and Pontrjagin classes, there must be a certain 
combination of Chern classes and Pontrjagin classes which integrate to 
give the index for any such complex. Since this formula must be unique, 
this proves the Atiyah-Singer index theorem for this special case and, 
hence, in general. 

In addition to applying this result to obtain a global theorem like the 
index theorem, we can also obtain results concerning the local asymptotic 
behavior of the eigenvalues for certain complexes. For the classical 
elliptic complexes we will use the following notation for the invariants 
I?&, dj: 

P,” for the DeRham complex; 

PznL for the signature complex; 

P~p~m for the spin complex; and 

P2” for the Dolbeault complex. 
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By dimensional analysis, we can show that all of these local formulas 
are of order n in the derivatives of the metric. Since any germ of a metric 
can be imbedded in a spin manifold, in order to identify these invariants 
of the metric, it suffices to restrict our attention to spin manifolds. By 
using suitably chosen vector bundles, we can express the DeRham and 
signature complexes in terms of the spin complex with coefficients in 
the vector bundle. As was done with the signature complex, this implies 
that these local formulas vanish identically for n < m, while for n = m, 
they are computable in terms of the Pontrjagin classes of the metric and 
the Chern classes of the bundle. Since these formulas integrate to give 
the index of the complex, they are necessarily unique, and we have 
obtained an identification of these invariants with the classical formulas 
for computing the index. 

Let M be a complex manifold. It is possible to represent the Dolbeault 
complex in terms of the spin complex if the metric is Kaehler. For a 
Kaehler metric, therefore, P>” (x, metric) vanishes for n < 2n2, and 
Py(x, metric) is the Riemann-Roth invariant. Conversely, we have 
shown that there exist complex metrics (which are not Kaehler) such that 
Z’2nz(x, metric) does not vanish for n > m/2 and such that P$nL(x, metric) 
is not the Riemann-Roth invariant for m > 2. This result is proved by 
combinatorial methods which are not of essential interest. In the last 
section of this paper we present some other combinatorial results which 
we have obtained. 

Patodi [4, 51 h as obtained many of these results for the classical 
elliptic complex by studying the fundamental solution of the appropriate 
heat equation. Atiyah, Bott, and Patodi have also proved an equivalent 
classification theorem for local formulas of order 4 from metrics and 
connections to p forms. Their techniques of proof rely more heavily on 
the results of classical invariance theory but are essentially equivalent 
to the technique used in this paper. Their proof is to be published 
shortly. 

1. 

In this section we will describe the ring of local formulas in the 
derivatives of a Riemannian metric and of a connection. First we define 
these notions for germs of metrics and connections on Rm; later these 
notions will be extended to manifolds. 

Let G be the germ of a Riemannian metric defined in a neighborhood 
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of 0 in Rm. Let x be the canonical system of coordinates on Rm. We 
define gij(G)(%) to be the germ of a function on Rm by the formula 

gij(C)(?) = G(+3Xd , a/aX,)(x). 

If w is a multiindex, we define g,,,,(G)(X) by 

We use the notation gij,,(G) to denote the evaluation g,,,(G)(O). We 
regard the giiiw as variables which we evaluate on germs of metrics 
on R”. 

We will consider only germs of metrics G which are orthonormal at 0. 
Therefore, we assume that gij(G) = 6ij and we ignore the gij’s as 
variables. Let 8, be the polynomial ring generated by the variables 
giilw for 1 ,< i, j < m and / w 1 > 0. Since the gijiw variables are sym- 
metric in i, j, we introduce the equivalence relation giiiU = giilw . 8,,, is 
a pure polynomial algebra over R. An element P of gm is a local 
formula which is defined on germs of Riemannian metrics on Rm. 

The invariants R2,y for the signature complex with coefficients in a 
vector bundle E are local formulas in the derivatives of the metric and 
in the derivatives of a connection. Let E be an r dimensional vector 
bundle with a smooth Hermitian inner product. We describe the ring 
J?nb,r of local formulas in the derivatives of a connection on E as follows: 
Let E be the complex Y dimensional vector bundle Rm x C’, let F’Y be 
the canonical frame (or ,..., or), and let B be the germ of a connection on 
,!?. We define the Hermitian inner product on i? so that (ei, ej) = i?,, . 
We define w,~~,JD)(x) as the germ of a function on R” by the formula: 

Let -fLr be the complex polynomial algebra generated by the variables 

Wstilw for I < s, t < r; 1 <<<mm, 

and w a multiindex. If Q is an element of Q,,, , we can evaluate Q(B) = 
Q(B)(x) in the obvious fashion. 

Let gm,~ = 2m,7 0 %,r be the ring of local formulas in the formal 
derivatives of a Riemannian metric and of a connection. We evaluate 
R(G, D) = R(G, D)(O) in the obvious fashion if R is an element of 
3 m,r . We define the functions, order, degree, type, and length on the 
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monomials A of this ring, as follows: Let A be a manic monomial of 

~n1.1. . We decompose A = BC where B E 8,,, and C E 9m,r. Let 

B = Bi,jllWl *.. gi,j,/o,,, and C = w,ltlll.l/~l *.. wsotI,~,!$ . We define 

or44 = i I wi I + i (14 I + I), 
j=l i=l 

-qA) = P + 4, 

t(A) = (1 co1 I,..., ( WD 1, 0 ,... ), 

where the wi are ordered so that 1 w1 1 > j w2 1 > ..* 

deg, A = 2 wi(k) + i &j(k) + the number of times 
i-l J&l 

the index k appears in the collection 

(4 , jl I...> i, , j, , 4 ,..., k,). 

We will also use the notation gij~kl...,,.,w to denote the variable formally 
given by a/aXkl *** a/aX,.u(g,j,w). Thus, for example, if 

A = .ih/22g12/33~st3'11 ? 

then 

ord(A) = 7, L(A) = 3, t(A) = (2,2,0 ,... ), and deg,(A) = 5. 

If R E 9)m.r is any polynomial, then let cR(A) be the coefficient of A in R. 
If cE((A) # 0, then we say that A is a monomial of R. We can express 
R = z c,(A)A. Th e f unctions cR(A) are linear functions on the poly- 
nomial ring d,,, . We use these functions to prove various classifying 
theorems later in this paper. We say that a collection A, ,... classifies a 
subspace S of .%?,,,., if for every R E S, cR(Ai) = 0 for all these Ai implies 
that R = 0. This implies that dim(S) < the number of such Ai . The 
difficulty is discovering the correct minimal number of such classifying 
monomials for a given subspace. 

This ring of local formulas gives maps from germs of connections and 
metrics to R. The following lemma states that such a formula is completely 
determined by its evaluation on connections and metrics. For technical 
reasons, it is often convenient to restrict attention to Riemannian 
connections. 
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LEMMA 1 .l. Let R be a nonzero polynomial of .!2?m,r . Then there is a 
germ of a Riemannian metric c and a germ of a Riemannian connection D 
so that R(G, D) # 0. 

Proof. We define new variables x,tilw and ysliiw : 

Xstjlw = [wstjh - ~t,hJl2 for s < t, 

Ystjh = lIwstih + wt,jh1/2i for s d t. 

We can express eO,liiw and wlsjiw in terms of these new variables: 

wstjh = x,tih + iYstih for s < t, 

%jllzJ = -X,tjlw + iystihJ for s < t, 

Ws,tjlw = ~Yssjlw 

We can express R in terms of these new variables R(gi,,, , xstilw , ystilw). 
Since R # 0, we can find real constants so that R(g$,w, xflilw , ys”tjlw) # 0. 
By Taylor’s theorem, we can find the germ of a metric G so that 

gijlm = &,w * We can also find the germ of a connection D so that 

%j/“P) = x,o,,w and so that Y,~~,~(D) = y~tj,U . We replace D by the 
Riemannian connection (B + a*)/2; since Xiij/w and Y$,~ are real 
constants, we still have that x,,j,w(B) = x$,~ and Y,~~,JD) = yztilw. 
Clearly R(G, D) # 0. 

We extend these local formulas to manifolds. If G is a Riemannian 
metric on a manifold A4 and if D is a connection on a complex vector 
bundle E, then there is no natural way to define R(G, D)(x). First, we 
introduce a coordinate system for M and a frame for E. 

Let F: N + M be a diffeomorphism. We pull back the metric G to N 
as follows: let Yr , Y2 E TN, . Then 

F*W’, , Y,)(Y) = G(F,Y, >F,YJ(FY), 

Since F* is injective, F*G is a Riemannian metric on N. We similarly 
define F*E as a complex r dimensional vector bundle over N with a 
connection F*D. 

We define our local formulas on manifolds using this notation. Let 
M, G, E, D be as before, and let x,, be a point of M. We let X be a coor- 
dinate system centered at x0 which is normalized with respect to the 
metric at x,, , i.e., G(a/aXi , a/aXj)(x,J = 6,. X is a local diffeomorphism 
from M--t Rm. There is a unique germ of a metric G(G, X) on R” such 
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that X*[G(G, X)] = G near x,, . If P is an element of Ym, we define 

P(G X)(x,) = P(W, X)). P g enerally depends upon both G and X. 
We say that P is invariant if P depends only on G and is independent 
of the coordinate system X. For such a P, we define P(G)(x,) as this 
invariant value. The scalar curvature K is one such example. We can 
express K = glzilz - kll/ZZ + &2/11)/2 + 1 ower order terms for a 
2 dimensional manifold. For a general coordinate system, the formula is 
more complicated. Since we have normalized our coordinate system, we 
simplify the formula by assuming gij = Sij at x,, . 

E has a Hermitian inner product. So as not to involve the inner product 
in our local formulas, we will work solely with orthonormal frames. Let 
Fr be an orthonormal frame for E in a neighborhood of x,, . There is a 
unique connection D(X, Fr, 0) so that X*D = D and X*(Fr) = Fr. 
We define 

In a similar fashion, we define R(X, G, D, Fr)(x,,) for R E AT,,, . 
Let F: N --t M be a diffeomorphism. Since our definitions were 

completely functorial, we have the identity, 

R(F*S, F*G, F*D, FY)(Y) = R(X, G, D, Fr)(Fy). 

A polynomial R is said to be skew-invariant if R(X, G, D, Fr) depends 
only on the orientation of the coordinate system X, on the metric G, and 
on the connection D. Such a polynomial can also be regarded as an 
invariantly defined map from metrics and connections to m forms. 

We can construct examples of skew-invariant polynomials as follows: 
let P be a Pontrjagin class mapping metrics to 4k forms and let Q be a 
Chern class mapping connections to m - 4k forms. The product PQ 
belongs to 9,,,, and is an invariant map of order m from metrics and 
connections to m forms. PQ is skew-invariant as a map to C. 

Let JJ, (m) denote the number of partitions of m into integers <r and 
let fl (m) = n, (m). The subspace of B’,,2,, which is generated by such 
products PQ has dimension = xk n, ((m - 4k)/2) n (k). We will prove 
that the subspace of all skew-invariant polynomials of order m has dimen- 
sion at most &. n, ((m - 4k)/2) l-“l (k). This will prove that all skew- 
invariant polynomials of order m can be expressed in terms of the 
Pontrjagin classes of the metric and the Chern classes of the connection. 
We will also show that there are no skew-invariant polynomials of 
order -cm. 

Unfortunately, there are a great many more invariant polynomials 
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than there are skew-invariant polynomials. We will need to impose 
additional conditions on an invariant polynomial in order to obtain 
similar vanishing theorems and to obtain a corresponding characterization 
of the Euler class. 

For technical reasons, it is much easier to work with Riemannian 
connections when considering the formula R2.T. Consequently, we will 
assume that a polynomial R is skew-invariant when it is evaluated on 
Riemannian connections. We will prove that this implies that R is 
skew-invariant when evaluated on an arbitrary connection. We will give 
an alternate formulation of the notion of invariance in terms of an action 
by a group on the ring .9Z’m,T. 

Let F be the germ of a diffeomorphism of Rm and a the germ of a 
map from Rm to the unitary group U(7). We define an action F* and 
u* on the ring 2?m,r : let G be the germ of a Riemannian metric and B 
the germ of a connection. We pull-back G and B to obtain F*G and 
F*D. Let R E%',,, and let F-i be a new coordinate system on R". Since 
F*(F-i) = X, we have the identity: 

----- 
R(F*c, p*D) = R(X, F*G, F*D) = R(p*[p-l], F*G, F*D) 

= R(F--l, F’“G, F”D). 

The pull-back expresses c and D with respect to the new coordinate 
system P-l. 

Since F*(a/aXJ = C, Z’,/8Xi 8/8X, , we compute that 

gi,(F*c7) =F*@ajaxi, aja2Q = c(F*ajaxi,F,ajaXi) 

= C a~,jaxiaP,jaXjg,, . 
s,t 

With this in mind, we define 

E*(gii) = C aF,/a&"i(o) aFtpXj3(0)gst. 
3-t 

In a similar way we define F*(g,j,,) and F*(wsu/J by using the maps 
&F(O) so that if R E grn,r, then 

-- - 
F”R(t?, D) = R(F*G, F*D) for all G, D. 

By Lemma 1.1, this identity uniquely defines the action F*R. Since we 
are only considering germs of metrics with g,,(e) = i& , we restrict our 
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attention to diffeomorphisms F such that dp(O) is an orthogonal 
rotation. 

Let g be the germ of a mapping from R”” + U(Y). Let Fr = (8r ,..., e,) 
be the canonical frame for R” x C’. We define a new frame IFFY = 

iG=l ~sl%=l,...,J~ w e ex P ress the connection matrix relative to this 
new frame as follows: 

From this identity, we define an action U* on $,,l,r so that 

o*Q(D, FY) = Q(D, O*pr). 

We set U* = 1 on q,, and define a corresponding action on the tensor 
algebra 9?,,,,, . 

LEMMA 1.2. Let R ~g ,,,, r. Then the following conditions which define 
the notion of skewinvariance are equivalent. ( 1) R( X, G, D, FY)(x,J depends 
only on D, G, and the orientation of X for all connections D. 

(2) 4X, G, D, Fy)(x,) d P d e en s only on D, G, and the orientation of 
X when D is Riemannian. 

(3) U*R=Rf or all such U. If F is the germ of a difJeomorphism 
such that dF(0) lies in O(m), thenF*R = det(dF(o)) R = &R. 

Proof. We restrict our attention to the case M = R” and x,, = 0 
since R(X, G, D, FY) was defined in terms of these cases. Pull-back by 
%* and U* is equivalent to changing the canonical coordinate system for -- 
A”’ and to changing the canonical frame for Rm x Cr. SinceF*R(G, D) = 
R(X,F*G,F*@ = R(F-‘, G, D) an since u*R(G, D) = R(G, D, U*Fr), d 
it suffices to prove that the following three conditions are equivalent: 

(1’) F*R(G, D) = det(dF(o)) R(G, B) and U*R(G, D) = R(C, D) 
for all F, 8, G, D; 

(2’) Condition (1’) f or only Riemannian connections B; and 

(3’) F*R = det(dF(O))R and iY*R = R for all E, U. It is clear that 
(3’) implies (1’) implies (2’). W e use Lemma 1.1 to prove (2’) implies (3’). 

The third condition expresses the notion of skew-invariance as skew- 
invariance under the action of a group on the ring d,,,, . In the next 
section, we will use this lemma to show that skew-invariance implies 
that the form of our local formulas are skew-invariant. 
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2. 

In this section, we study polynomials which are invariant under the 
action of SO(m). The results of this section are closely related to the 
famous theorem of Weyl [8] on the invariants of SO(m). These results 
are formally equivalent to the contraction of indices used by Atiyah, 
Bott, and Patodi. We can also give another proof of Weyl’s theorem by 
using these methods. 

We use these results to separate variables. We will reduce the classi- 
fication of all skew-invariant polynomials of order 711 in the tensor algebra 
9)m,r to the corresponding classification problems for the rings gnnL and 
22 m,r * This decomposition is the decomposition of a polynomial into 
sums of products of Pontrjagin and Chern classes. 

We adopt the following notation for the generators of SO(m): let Fabii 
for a2 + b2 = 1 denote the linear rotation of R” so that F$ij(a/aXi) = 
aa/aXi + ba/aX, , F&(a/aXJ = -bajaX, + &/ax, and F*(a/aX,) = 
a/ax, for k # i, j. We compute, for example, 

+a[a2giiij + 2abmj + b2gjjljl. 

In the following lemmas, we assume that R is a polynomial which is 
invariant under the action of a subgroup of SO(m). We use the fact that 
the form of R is invariant-F&R = R-t 0 gain information concerning 
some of the monomials which must occur in R. The triangular form 
theorem, Theorem 2.2, forms the basis for our separation of variables 
in the next section. 

We describe in some detail the action of O(m) on W,,, . We study the 
symmetric tensor algebra on variables Xi ,.,., X, to obtain a simplified 
model for this action. Similar, but more complicated notation will be 
used for the ring R,,, . 

Let T be the complete tensor algebra on Rm and let S be the symmetric 
tensor algebra. Let Faaii act on T and S by sending Xi -+ aXi + bXi , 
Xi -+ -bX, + aXi , and X, --+ X, for k # i, j. A basis for the algebra 
S is given by the monomials Xi, e.0 Xi, ; a corresponding basis for T is 
given by strings of indices s = (ii ,..., il). There is a natural map from 
T --+ S given by sending s -+ A, = Xi, *+* Xi, . This map is not l-1, 
but it is subjective. 

We use the action of SO(m) on T to describe the action on S. We 
compute F&(s) by formally replacing every i index of s by an ai + bj 
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index and every j index by an -bi + aj index, and by expanding the 
resulting expression. Let sii denote the set of all strings which can be 
obtained from the string s by changing i -+ j or j + i indices. If n denotes 
the number of i and j indices in s, then there are exactly 2” elements 
of sij . We express 

The exponent of a denotes the number of indices which were unchanged 
in constructing s’ from s. The exponent of b denotes the number of 
indices which were changed, and the exponent of (- 1) denotes the 
number of indices which were changed from j + i. With this notation, 
if A = A,s , then 

We can have A,s1 = As2 in this decomposition for strings s1 # s2 . The 
coefficient of the monomials reflects the multiplicity with which they can 
be obtained from A in the symmetric algebra. 

We use a similar notation to describe the action of SO(m) on .9nl,r . Let 

s = (il ,jl ; k, ,...) k,) and g.? = giljl/kl-k, 7 

t = (sl ; t, ;j, ; k, )...) k,) and w? = Wvltljllkl...7c, . 

TO compute F~~ij , we formally replace every i index by an ai + bj index 
and every j index by a -bi + aj index. We compute: 

Let R be a polynomial. We decompose F&,(R) = C apbqR,+, , where 
R P,4 is composed of monomials of degree p + q in the indices i and j. 
This decomposition is unique for the following reason: Let _F~~ijR = 
C a”bQR9,, be another decomposition. Then C apbq(R,., - R,,,) = 0 
for all a, 6. By decomposing this sum into monomials of degree n in i, j, 
we conclude &=n--9 aPbn--)‘(R,,,p - RP,,) = 0 for all n. Let c = a/b; since 



356 GILKEY 

we can choose c arbitrarily, the identity &=n-a c~(R~,~ - RI,.,) = 0 
implies that RI),* = Rp,q . We will use this decomposition in the proof 
of the following lemma. 

LEMMA 2.1. Let R E W,,, be a polynomial. (1) Suppose that g12!w 
divides some monomial of R and that F$&R) = R for all admissible a and b. 
Then there is a multiindex w’ so that gII{,, divides some monomial of R. 

(2) Suppose that deg,(g,j,J = deg,(g,,,) = 0. Let 

- 
ET,, = ww~ (wus&,, . 

Suppose that F&aR = R and that g,,,s divides some monomial of R. Then 
gr+s,O divides some monomial of R. 

(3) Suppose that F~~iiR = R for i and j > k, . Suppose R $ J?m,r . 
Then there is a variable giji, which divides some monomial of R such that 
deg,(giiiU) = 0 for k > k, + 2. 

The use of the indices I and 2 in statements (1) and (2) is for notational 
convenience. We are contracting various indices in this lemma. This 
contraction is the formal analog of the contraction of indices in Weyl’s 
theorem. 

Proof. We proceeed nonconstructively and assume that (1) is false. 
We decompose R into powers of glziw : 

We also decompose: 

R = F,*,iiR = C aVbqD,,,g,,,W + other terms not divisible by g,,,, . 

By assumption g,,iw divides no monomial of R, and, hence, D,,q = 0. 
Let A be a monomial of R such that deg, A + deg, A = p + 1. Since 
g,,/w does not divide A, we express F&,,A = aPbA’g,,,, + other terms. 
Suppose that A’ # 0, since the exponent of b is one, we obtain the 
monomial A’g,,i, by making all possible changes of one index 1 + 2 or 
2 + 1 in the collection of strings which defines A. Since glllw does not 
divide A, some variable of A must change to glllw by changing one index. 
Since this variable cannot be gll/w, by hypothesis, it must be gizlU . If 

A = kn/oY A, 9 then FzblzA = -kaPb(g,,,,)k-lg,,,,A, + other terms 
divisible by a higher power of b or not divisible by gill,. This implies that: 

C Dp.1 = - CjBi(g,,,,)j-l = 0. 
P 
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This identity implies that jBj = 0, and, hence, Bj = 0 for j > 0. This 
contradicts the initial hypothesis and proves (I). The proof of this part 
has been detailed in order to illustrate some of the ideas which are used 
later. We use the exponent of b to determine the number of indices which 
were changed in forming that monomial. In general, we will only be 
interested in those terms with exponent one on b. 

We prove (2) as follows: suppose that g,,.,,., divides some monomial 
of R. Let 71 = ri + si and choose Y maximal so that ~r,~~-r also divides 
some monomial of R. Let s = n - r and assume that s > 0. As before 
we decompose R into powers of g,., 

R = c Bj(gl.,,)j. 

We also decompose: 

R = F&,R = c aPbQD,,,g,+,,,-, + other terms. 

Since by assumption ~r+r,~-~ divides no monomial of R, D,, Q = 0. We 
proceed as before. Let A be a monomial of R such that? F$,,,A = 
aPbg,+l,,y-lA’ + other terms. If A’ # 0, some variable of A changes to 
~r+l,,s-i by altering one index. Since gr+2,s-2 does not divide A, and 
since deg,(gij,,J = deg,(gij,,J = 0, this variable must be g,,, . Since 

FL&w) = -sba”-lg,+,,.-, + other terms, we have the identity 

0 = c Dpsl = - 1 SjBj(~T,,)i-'. 

11 , 

We have assumed s # 0, and, hence, Bj = 0 for j > 0. This contradicts 
the assumption that g,,, divides some monomial of R and completes the 
proof of (2). 

We combine these results in the proof of (3). Since we have assumed 

that R E -Lp , we can find a variable gijiw which divides some monomial 
of R. First we show that we can assume that degk(gij) = 0 for K > K, + 1. 
If both indices i and j < k, + 1, then there is no need of further 
argument. Suppose that i > K, ; let F be the coordinate permutation 
taking a/8X, 4 a/aX,,.+i and a/axko+l -+ -a/8X, . Since R is invariant 
under F* by assumption, F*(gijiw) must also divide some monomial of R. 
We can, therefore, assume i = k, + 1. If j < k, + 1, we are done; if 
j > k, + 1, we apply 2.1- 1 to show that gk,+l.k,+llw, must divide some 
monomial of R. 
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We assume that gii/o is chosen so that deg,(g,i,J = 0 for k > k, + 1. 
We decompose 

We apply Lemma 2.1 (2) several times to show that if r = C rli , then 
(a/aX,O+Z)r gijiw, divides some monomial of R. This proves Lemma 2.1. 

The following theorem is a generalization of upper-triangular form for 
matrices. We use this theorem to separate variables to prove vanishing 
theorems in the next section. 

THEOREM 2.2. Let R be invariant under the action of SO(m). Then 
there is a monomial A of R such that A = BC for B in 9m , C in Z?m,r 
and deg,(B) = 0 for k > 2L(B). 

Proof. Let A be any monomial of R. We can factor A = BC for B 
in 9m , deg,B = 0 for k > 2L(B), and L(B) maximal. Let A be chosen 
from the monomials of R so that L(B,) is maximal. If C E -??n,,T, then 
the theorem is proved so we can assume C 4 Jrn,r. We decompose 
R = BR, + monomials not divisible by B. Since deg, B = 0 for 
k > 2L(B), F$i,B = B for i, j > 2L(B). This implies that F&iR, = R, 
for i, j > 2L(B). We have assumed that R, $ A& so we can apply 
Lemma 2.1 (3) to find a variable gijiw which divides some monomial of 
RI satisfying deg,(gii,J = 0 for k > 2L(B) + 2 = L(g,,,,B). This 
contradicts the maximality of L(B) and proves Theorem 2.2. 

3. 

In Section 3 we will use Theorem 2.2 to separate variables and to 
reduce the classification of skew-invariant polynomials of order <m in 
the tensor algebra to the corresponding classification problem for the 
algebras Z?m,r and 9m . We proceed as follows. 

LEMMA 3.1. Let R be a skew invariant polynomial of order <m. If 
R # 0, then there is a monomial A of R so that: (1) A = BC for B E 9m 
and C E 5&. 

(2) deg,(B) = 0 for k > 2L(B), degk(C) = 0 for k < 2L(B), and 
deg,(C) = 1 for k > 2L(B). 
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(3) B and C consist only of second order variables. 

(4) There are no nonzero skew-invariant polynomials of order <m. 
If m is odd, there are no skew-invariant polynomials of order m. 

Proof. Let R # 0. We can find a local system (X, G, D, Fr), D 
Riemannian, such that R(X, G, D, Fr)(x,) # 0. We choose a new 
coordinate system X’ in which all the first order derivatives of the metric 
vanish at x,, . We also choose a new orthonormal frame Fr’ so that 
w,7,j(Fr’, D)(x,J = 0. S ince R is skew-invariant, R(X’, G, F’, D) = 
fR(X, G, Fr, D) # 0. This implies that there must be a monomial of 
R which contains no first order variables. 

Let R,, # 0 be the polynomial which consists of those monomials of 
R which contain no first order variables. Clearly R, is invariant under the 
action of SO(m). We apply Theorem 2.2 to find a monomial A of R, 
such that A = BC for B E g,,, , C E 5”nL,r , and deg, B = 0 for k > 2L(B). 
We will show A will satisfy the conditions of the lemma. 

Let ~j denote the diffeomorphism such that 

Fj(a/axj) = -apxj and Fj(i3/aXi) =I 3/8Xi for i f j. 

If A, is any monomial of R, Fj*(Al) = (- l)d~~~Rl A, . Since Fj reverses 
the orientation, Fi*R = -R. This implies that the index j must occur 
with odd degree in every monomial of R. 

Since deg,(B) = 0 for k > 2L(B), there must be m - 2L(B) indices 
which occur in the monomial C. Since C E Z?,,$,, , 

ord(C) = 2 degdc) 3 C degj(C) > m - Z(B). 
J-1 i>lLlB) 

Since B contains no first order variables, 

L(B) 

ord(B) = c j wi J >, 21,(B). 
j-z1 

These two inequalities imply that 

ord(R) = ord(A) = ord(B) + ord(C) > m - 2,5(B) + 244 = m. 

Since we assumed that ord(R) < m, all of these inequalities must in fact 
be equalities. We may conclude, therefore, that ord(R) = m, ord(C) = 
m - 2L(B), and ord(B) = 2L(B). 

607/43-3 



360 GILKEY 

Since B contains no first order variables and ord(B) = 2L(B), each 
variable of B must be order 2. Similarly, since deg,(C) > 0 for k > 2L(B) 
and C deg, C = ord(C) = m - 2L(B), only the indices 2L(B) + I,..., m 
can occur in C and they occur with degree 1. 

We complete the proof of Lemma 3.1 by showing that C consists only 
of second order variables. Suppose that C is divisible by some wstiiw for 
) w ] > 1. We can express + = aXil a** ajaXjs for s > 1. Since 
degil A = degiz A = 1, these indices occur only in this variable of A. Let 
F denote the diffeomorphism such that 

qajax,,) = ajaxjz , F(ajaxj,) = ajaxi 

and 

F(ajax,) = a/ax, for k #j,,&. 

F is orientation reversing, but F*A = A. This contradiction implies that 
C consists of variables of degree \(2. By construction, C contains no 
first order variables, and, hence, C consists of only second order variables. 
This implies that m is even and completes the proof of Lemma 3.1. 

We use this lemma to separate variables. Let K be even with 0 < K < m. 

Let =%J~,~ denote the ring generated by the variables wstjiw such that 
degi(wsliiw) = 0 for i < k. This is the ring of local formulas in the 
connection which depend only on the last m - k coordinates. There is 
a natural isomorphism from Z?m,L,r -+ 9nl-k,T which is obtained by 
renumbering the indices which refer to the coordinate system. 

We regard 9k as a subalgebra of @n . We will define 

These maps will enable us to separate a skew-invariant polynomial R 
into sums of polynomials of the form PQ where P is skew-invariant in 
9k , and Q is skew-invariant in 9nl--k,r = %m,li,r . This will express R 
in terms of products of Pontrjagin and Chern classes. 

We define FI, as follows: 

0 Fki,i+o) = 1,. if degi(giIjz,,) > 0 for some i > k, 
3132,o E 9k otherwise, 

FdwstsJ = I 0 if deg,(wstj,,) > 0 for some i < k, 

j wstjl, E 9m,lc,V = Z?,,+-K,r otherwise. 
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Let R be a skew-invariant polynomial. Let Qr ,.,. be a basis for the 

algebra %Tc,k,r . We decompose 

F/c(R) = 1 pi 0 Qi for Pi E YJC. 

Let F be the germ of a diffeomorphism on Rk. We extend P = 1 on 
Rmek . Since none of the variables of $r,z,k,r involve the first k coordinates, 
F* = I on 9!nrqlC,r . Since F only depends on the first k coordinates, F 
commutes with F,. and 

F,R = &F,F*R = &F*F,R = +c”*P, (SJ@. 

Since the Qi were a basis for 9,n.li,r, this implies that F*Pi = &Pi for 
all such diffeomorphisms P. This implies by Lemma 1.2 that the Pi 
are skew-invariant polynomials of 9’,<. . 

Let Plk,... be a basis for the skew-invariant polynomials of g,< . We 
obtain a new decomposition, 

F,(R) = 1 Pi’: @ ,oik for Qi” E %,L.k,r = %-k,r . 

We argue as before to show that Qik are skew-invariant polynomials of 

qrr,-k,r : let F be the germ of a diffeomorphism of Rn’dk and let 0 be 
the germ of a map from Rmek + U(r). We extend these maps to Rnl to 
be independent of the first k coordinates. As before, F* and 8* commute 
with F,,. since they depend trivially on the first k coordinates. Further- 
more, pi* and u* = 1 on 9k . We write 

This implies that P*o*Qik = fQik and that the Qi” are skew-invariant 
polynomials of $,+t,r . 

Let R be a skew-invariant polynomial of order m. Suppose that 
PikQik # 0 for some i. Since Pi” is a skew-invariant polynomial of Y,,. 
and QZik is a skew-invariant polynomial of 2mt--r;,r , we apply Lemma 3.1 
to show ord(Qik) > m - k and ord(Pik) >, k. This implies that 
ord(Qi”) = m - k and ord(Pik) = k. 

Let f denote the direct sum of the maps F2,,. 

Let R # 0 be a skew-invariant polynomial of order m. We apply 
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Lemma 3.1 to find a monomial A = BC fo R such that B E 9aLcB) and 

c E =%nAm,r. This implies that F,,(,)(R) # 0. Therefore, f is injective 
when restricted to the subset of skew-invariant polynomials of order m 

of ~7n.r . 
We apply these results to estimate the dimension of the subspace of 

skew-invariant polynomials of order m of JJ#~~,~ . We define: 

c(m, r) = the dimension of the subspace of skew-invariant poly- 
nomials of order m of 9?)m,r. 

c,.(m) = the dimension of the subspace of skew-invariant poly- 
nomials of order m of Z?9n,r . 

c(m) = the dimension of the subspace of skew-invariant poly- 
nomials of order m of 9m . 

Since f is injective, we can estimate c(m, r) by the dimension of the 
image of f. Since f maps skew-invariant polynomials to products of 
skew-invariant polynomials of 9aL and ??+-k.,T we can estimate 

c(m, r) ,< c c,(m - 24 c(24. 
k 

In Section 4, we will aplly a slightly modified classical argument to 
show that q.(m) < n, (m/2). In Section 5, we will show that c(m) = 0 
unless m E O(4) and that c(4Fz) = n (k). This will prove that 

c(m, r) < 1 I) (m 2 4k) n (k). k 7 

We have previously shown that there are &. JJ, ((m - 4k)/2) n (k) 
linearly independent skew-invariant polynomials of order m which can 
be expressed in terms of the Pontrjagin classes of the metric and Chern 
classes of the connection. This proves the following classification theorem 
by a simple counting argument. 

THEOREM 3.2. Let R be a skew-invariant polynomial of order n of 
B? m,r * Then R = 0 for n < m. If n = m, then R can be computed in terms 
of the Pontrjagin classes of the metric and the Chern classes of the connection. 

We can generalize this result to local formulas which take values in 
p-forms. Let M be an m-dimensional manifold. Let I = (i1 ,..., ip) for 
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l<i,< **a < i,, < m. Let R,, be a collection of polynomials R, of 
gLn,., for / I 1 = p. We define the p form 

R,(X, G, D, Fr) = c R,(X, G, D, Fr) dX’. 
lII=i’ 

We let .#’ , denote the linear space of all such local formulas R, . Rp is 
said to benlak invariant map from connections and metrics to p forms if 
R(X, G, D, Fr) is independent of X and Fr. There is a similar classi- 
fication theorem for invariant elements of 9k,r . 

THEOREM 3.3. Let R, be an invariant map top-forms of order n. Then 
R, = 0 for n < p. If n = p, then R, can be computed in terms of the 
Pontrjagk classes of the metric and Chern classes of the connection, 

We prove Theorem 3.3 by reducing the proof to the case p = n and 
applying a counting argument similar to that used in the proof of 
Theorem 3.2. 

There is a natural map / R, j2 = C, (RI)” mapping 9E.r -+ W,,,,, . We 
will use this map in the proof of the following lemma. There is a natural 
notion of an action by SO(m) on .%‘k,, . 

LEMMA 3.4. Let R,, be invariant under the action of SO(m). Then there 
is a monomial A of some R, such that A = BCfor B E .p2,(,) and C s 9,,,,, . 

Proof. We follow the proof of Theorem 2.2. Let A be a monomial 
of some R, such that A = BC for B E P2L(B, for L(B) maximal. We 
decompose R, = BR,’ + other terms and let R,’ denote the collection 
R,‘. We will show that if R,’ 4 9nr,r , then there is a variable giilw which 
divides some monomial of some R,’ such that deg,(g,j,J = 0 for 
k > 2L(B) + 2. This will contradict the maximality ofLB and prove the 
lemma. 

Let G* denote the extension of a Riemannian metric G to the complete 
exterior algebra. Then: 

1 R,’ i2 (X, G, D, Fr) = G*(R,‘[X, G, D, Fr], R,‘[X, G, D, Fr]). 

Since deg,.(B) = 0 for R > 2L(B), F, ’ is invariant under the action of 
F~~ij for i, j > 2L(B). Th is implies that j R,’ I2 is invariant under 
the action of F& for i, j > 2L(B). Since j Rp’ I2 $ 9,,r by assumption, 
we apply Lemma 2.1 (3) to find a variable gijiw which divides some 
monomial of / R,’ I2 such that degk(gij,,,,) = 0 for k > 2L(B) + 2. This 
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implies that the variable gijiw must divide some monomial of R,' and 
proves the lemma. 

Let Rp EZ%?~,,,. We say that Rp is of order n if each R, is of order n. 
Rp # 0 implies that we can find a local system (X, G, D,Fr) such that 
R,(X, G, D, Fr)(xo) f 0. W e c h oose a new coordinate system X’ so that 
all the first order derivatives of the metric vanish. If RI, is invariant, then 
RJX’, G, D, Fr) # 0. Th is implies that R,, must contain some monomial 
which contains no first order derivatives of the metric. Let RI,” consist 
of those monomials of Rp which have no first order derivatives of the 
metric. The map Rp + Rpo is injective for such R, . 

Rpo is invariant under the action of O(m). We apply Lemma 3.4 to 
find a monomial A = BC of some R, . Let Rp be of order n. Since R, 
is invariant under the coordinate map ajaXi + -a/ax, , every index 
of I must appear with odd degree in the monomial A. There are at most 
2L(B) + ord(C) ’ d m ices which appear in the monomial A, and, hence, 
p < 2L(B) + ord(C). S ince A contains no first order derivatives of the 
metric, ord(B) > 2,5(B), and, hence, n = ord(B) + ord(C) > p. This 
implies Rp = 0 for n < p. 

If n = p, then all the inequalities must be equalities. Therefore, there 
are exactly p indices which occur in A and deg, A = 0 for k not in I. We 
can assume that I = (l,..., p) by a permutation of the coordinate axes. 
We have constructed a monomial A of RI such that deg, A = 0 for 
k >p. 

There is a natural injection of 9ZD,, --j 9,,5,r ; we define the inverse 
map F,’ by 

We use this map to define the map fp from 947&r --+ 9?!P,, . Let Rn be 
invariant of order p. We define 

For such an R, we have shown that there is a monomial A of RI which 
belongs to 5YP,r . This implies that f,(R,) # 0, and, hence, that f, is 
injective. 

Let P be the germ of a diffeomorphism of Rp and let D be the germ of a 
map from RP -+ U(r). We extend F and a to Rm in the usual fashion. 
Since F depends only on the first p coordinates, fF*(dXi) = dXi , and 
consequently, F*O*(Ri) = &RI. S ince both F* and 8* commute with 
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F,‘, this implies that f,(R,) . is a skew-invariant polynomial of order p 
in S,,,r . Because f,, is injective, we can estimate that the dimension of 
the subspace of invariant polynomials of order p of Wg,, is bounded by 

x II, cc P - 4912) n (k). s ince there are exactly this number of 
linearly independent invariant maps to p forms which come from 
combinations of Pontrjagin and Chern classes, this completes the proof 
of Theorem 3.3. 

4. 

To complete the proofs of Theorems 3.2 and 3.3, it suffices to show 
that cl.(m) < II, (42) and that c(m) < n (m/4). In this section we 
modify a classical argument to show that q.(m) ,< n, (m/2). We have 
restricted our attention to orthonormal frames in order to avoid con- 
sidering terms involving the metric on the vector bundle E; we must 
modify the classical proof to take this into consideration. 

Let zuql for I < S, t < r be formal variables representing the curvature 
tensor. For (D, Fr), we define 

W,qt(D, Fr)(x,) = (DDe, , e,) is a 2 form on M. 

The w,*! variables depend only on the connection D and the value of the 
frame Fr at the point x0 . We will also write 

Let Sil,,, denote the linear subspace of all complex polynomials in the 
wXt variables which are homogeneous of order m/2. If p E Z?&,?, then 
~(FY(x,), D) is an m form on M. If FY(x,,) is a given orthonormal basis 
for the fiber Exe , we can always extend Fr(xJ to a frame F(x) which is 
flat to first order with respect to the connection D at x0 ; 

W.s,tj(X,Fr, D)(xo) = 0 for all s, t, j. 

In such a frame, we can formally set 

Let I = (; i ,..., i,,,) be a collection of distinct indices 1 < ij < m. We 
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define sign(l) so that dX’ = sign(l) dX, a*. dX, . If AC = wsl,l *.a wSnG 
for n = 42, we define $(A) by: 

4 is an injective map from 9&,? --f 9m,T . Let U be a unitary matrix. 
We define 

u*(w,,) = c U,,,w,,,*( U-l),,, . 

Since U is independent of coordinates, from our definition of the 
action of U* on 9m,r, we have the identity 

4(u*Q") = u*#(Q")- 
Let Q be a skew-invariant polynomial of order m. Let Q. denote the 

polynomial which consists of those monomials of Q which contain only 
second order variables. The map Q --t QO is injective by Lemma 3.1. 

Let A = wsllli,/i, *** ~~,t,,q,,-~~~,,, be a monomial of QO . Let I = (ii ,..., &J. 
If J = (j, ,...,jm), we form the monomial B = w,~~,.,/~~ *** W~,~,j,_l/jm. 
Since Q is skew-invariant, the coefficients of the monomials A and B 
are related by the formula 

c,(A) sign(I) = cc(B) sign(J). 

This relation implies that Q,, lies in the image of 4. Since 9 is injective, 
we can find a unique polynomial Q of Sk,, such that d(Q) = QO . 

If U is a unitary matrix, then d( U*Q”) = U*$(Q”) = U*Q2, = Q,, = 
+(Q). This implies that U*Q” = p. T o every skew-invariant polynomial 
Q of order m, we have associated such a polynomial Q. We will show that 
cr(m) < I-II, (m/2) by obtaining an estimate for the number of such 
polynomials Q satisfying U*Q” = p . 

We reinterpret the space Z?&,7 : let Aij be a matrix. We define 
w,,(A) = A,, and extend this to A&. If U*Q’ = Q, then U*p(A) = 
p( UA U-l) = &“(A) so Q is invariant on the conjugacy classes of the 
unitary group. We use this property to obtain an estimate for the 
dimension of all such polynomials Q. We first prove the following 
lemma which is the analog of Lemma 1.1. 

LEMMA 4.1. Let p # 0 be a polynomial of 9; r . Then there is a 
matrix A = Aij such that 

(1) P(A) f 0 and 
(2) A, = -&. . 
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Proof. We follow the proof of Lemma 1 .l . We introduce 

x st = [wst - %I/2 and yst = [wst + zu,,]j2i for s < t. 

We express wsl and wls in terms of the new variables: 

%t = xst + iYst and wts = -X’,qt + i31.d . 

We express Q in terms of the new variables and write Q(xsl , yst) # 0. 
Let zcft and ylt be real constants such that QC(xil , yil) # 0. We set 
A = A,, = x!jt + iyil and A,,$ = -x:~ + iyit for s < t. 

Suppose that Q # 0 satisfies U*Q = Q for all unitary U. Let A be 
chosen so Q(A) # 0 and so that Aij = -Jji. A is skew-Hermitian, 
so we can find a unitary matrix U such that UAW1 is diagonal. This 
implies that Q does not vanish on at least one diagonal matrix. If we 
restrict the set of all such to Q diagonal matrices, we obtain a symmetric 
function of order m/2 in the diagonal entries. Since there are exactly 
n, (m/2) such symmetric functions, this proves that there are at 
most n, (m/2) such Q and proves that c,(m) < n,. (m/2). 

5. 

In this section, we will complete the proofs of Theorems 3.2 and 3.3 
by showing that c(m) < n (m/4). In Section 4, we proved a similar 
result for the algebra 9& by using the associated polynomial Q of the 
curvature tensor. Since Q does not vanish on all diagonal matrices, Q 
must have at least one monomial AjlC of the form 

Ape = n (w,,)“(S) for Cp(s) = n = m/2. 

We can assume that p(l) > *a* 3 P(Y) by permuting the indices. For 
such a p, we choose A, as any monomial of $(A,“). 

There are exactly n, (m/2) such monomials and they classify the 
skew-invariant polynomials of order m. If c,(Q) E co(A,), then Q # 0 
implies that c,(Q) # 0 f or some p. The functions co form a dual basis 
for the space of skew-invariant polynomials of order m of 9m,r . 

We cannot apply a similar diagonalization argument to Pm because 
we cannot separate the frame for TM from the coordinate system. We 
can, however, prove an analogous result. 
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RESULT. Let P be skew-invariant of order m. There is a monomial A 
of P of the form A = gll/Wl . *. g,,~,~ such that deg, A = 3 for i < n and 
deg, A = 1 for i 3 n. ) wi ( = 2 and there are two indices p(i) < n and 
x(i) > n $0 thatgii/wi = gif/p(i)r(i) . 

Such a monomial A is said to be almost diagonal. It is characterized by 
the functions p, x. We view p as a permutation of the indices 1 - n 
and x as a function from the indices 1 - n to the indices n + 1 through 
2n=m; we let 

Let q1 be any permutation of the first n indices, and let q2 be any 
permutation of the last n indices. Let q = q1q2 , and let 

It is clear that FP*(Ap,z) = AP1PQ;~,P2z . We can, therefore, replace the 
permutation p by any conjugate permutation and the function x by any 
other function. 

Let p be a permutation. We decompose p into cycles of length 
(tl ,...) = t(p) for t, > . . . . Two permutations p and p are conjugate if 
and only if their cycles are the same length, i.e., t(p) = t(p). Let 
t = (tl ,...) for 2 ti = n. We choose A, such that the permutation 
associated to A, is of this type. The monomials A, classify the skew- 
invariant polynomials in the sense that P # 0 implies that there is a 
monomial A, so cp(At) # 0. There are n (m/2) such conjugacy classes 
of permutations, and, hence, c(m) < Jj (m/2). 

If E is a real vector bundle and if D is a Riemannian connection, then 
the relation w,~ = -wls implies that the Chern classes vanish in 
dimension = O(2). I n a similar way, we will show that the permutations 
for such almost diagonal monomials contain only even cycles. This 
implies that there are no skew-invariant polynomials of order m unless 
m/2 is even, i.e., m = O(4). It also enables us to reduce the set of 
classifying monomials A, to those with only even cycles. This proves 
that c(m) < JJ (m/4). 

We establish the existence of such almost diagonal monomials 
indirectly. We will show that P # 0 and P contains no almost diagonal 
monomials contradicts the skew-invariance of P. 

Let P be a skew-invariant polynomial of order m. We first prove an 
analog of the Bianchi identities. Let B be a monomial of P. Let t = t(B) 
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be the type of B. We form P, as the polynomial consisting of the mono- 
mials of P of type t. P, is invariant under the action of SO(m) so we 
apply 2.2 to construct a monomial A of P, such that deg, A = 0 for 
k > 2L(A). Since P is skew-invariant, every index must appear with odd 
degree in every monomial, and, hence, 2L(A) 3 m. Since L(A) = L(B), 
this proves that 2L(B) > m. 

If P f 0, we can find (X, G) such that P(X, G)(x,) # 0. Let X’ be 
geodetic polar coordinates centred at x,, . Since P is invariant, 
P(X’, G)(x,) # 0. Th’ is implies that there is a monomial A of P which 
does not vanish in geodetic polar coordinates. Let t(A) = (tl ,..., t, , O,...). 
Since 2r >, m, this implies that m = xi ti >/ xri 2 = 2r. This implies 
that all these inequalities must be equalities and that Y = m/2 and each 
ti = 2. 

In geodetic poIar coordinates, we have the identities, 

We interpret these identities quantitatively. 

LEMMA 5.1. Let A be a monomial of P consisting of only second order 
variables. Then (1) gll/il , glzill , and gll/la do not divide A; 

(2) If A = gll&l’, B = g12/&l for g11/23 and g12112 not dividing 
A’, then cp(A) = -c,(B)/2. 

Proof. We could prove Lemma 5.1 by expressing P in geodetic polar 
coordinates as a function of the curvature tensor Riik,,. We then reexpress 
the resulting expression in terms of the gijik., variables and use the 
Bianchi identities to prove (1) and (2). Instead, however, we will prove 
these results directly by using the invariance of P under a suitable group 
of nonlinear coordinate transformations. 

Let X be the canonical coordinate system of R” and let F(X) be the 
germ of a diffeomorphism 

Fl = X, + aXI Fj=Xj forj> 1. 

Then we compute 

F,(a/i?x,) = (1 + 3aXc) a/3X1 , F*(a/aXj) = a/aXj for j > 1. 
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Since g*j = O(l X I), and gr, = I -+ O(l X I), we compute 

F*(gl,) = gn + 64’ + O(l X 13), F*(g,,) = gij + O(l X 1”) otherwise. 

For / w I < 3, F.+.(a/axw> = a/aXw, and, therefore, 

and 
F*kll/ll) = .&l/l1 + 122 

F*(gii,,) = gijiw for j w j < 3 otherwise. 

Suppose that some monomial of P is divisible byg,,/,, . Let A = gjlllllA’ 
be a monomial of P of type (2,...). Then F*A = 12ajgjl;-jl,A’ + other 
terms. Let B = gi;f,lA’. We decompose 

F*P = C aiPi . 

Since a is arbitrary, Pi = 0 for i > 0. Since F*A makes a nonzero 
contribution to PI, there must be some other monomial A’ of P such that 
F*(A,) = c(A,)aB with c(A,) # 0. Suppose that A, contains a first order 
variable. Then F*(gijlk) = gijik implies that every monomial of F*A, 
contains a first order variable. Therefore, A, consists of only second 
order variables. Since F*(gii,J = giiiw for / w j = 2 unlessgiilw = gll/rl , 
we decompose A, = g&,llA1’. Then F*A, = 12ak&~,A,’ + other 
terms. Since F*A, makes a nonzero contribution to agj,rll,,A’, we conclude 
that A, = A. This contradiction shows that gIlIll divides no such mono- 
mial of P. 

In a similar fashion we prove that grs/rr divides no such monomial of 
P. Let F be the diffeomorphism 

Fz = X2 + uXl3 and Fi=xi forj#2. 

As before 

F*(a/aX,) = ajaXI + 3aX12a/aX2 , F*(ajaQ = a/ax, forj > 1. 

We compute 

F*(g12d = g12/ll + 6a, 

F*kiiIw> = gijlw otherwise 1 w 1 < 3. 

We argue as before to show that F*P = P implies gls/rl divides no such 
monomial of P. 
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We complete the proof of (I) as follows: Let F be the diffeomorphism 
with 

Fl = Tl + aXlzX, Fj = xj forj > 1. 

Then 
- -. 

F&+3rr,) = i3,‘aXl + 2aX,X,+LY, , 

F,(a/ax,) = a/ax, + a&23/3X1 , F*(a/i3Xj) = a/aXj forj > 2. 

We compute 

F&,d = g11/12 + 4a, F*k,wn) = g,,/ll + 2~9 

F*kijiJ = gijiw otherwise for 1 w 1 < 3. 

In this case, there are two variables of order 2 which we must consider. 
However, we have already shown that g12/rl divides no monomial of 
type (2,...). We can argue as before to show that gll/ra divides no such 
monomial. 

We complete the proof of Lemma 5.1 by using invariance under the 
action of SO(m). Let 

A = Rll,22~4’, B = &,,,,A’7 c = g,, QJ’. 

We set n = deg,(A) + deg,(A). Let Fab12 be the linear coordinate 
rotation. We decompose F*P = d-%(P) grI,,,A’ + other terms. Since 
F*P = P; we conclude that since g11/r2 divides no monomial of P, 
c(P) = 0. Let A, be a monomial which makes a nonzero contribution 
to c(P). Since gllj12 does not divide A, , there is a variable gijiw of A, 
which changes to g,ri,, by altering one index. Therefore, A, = A, B, 
or C. We have already proved that C is not a monomial of P. Since 
g11/22 and glz~r2 do not divide A’ by hypothesis, 

F*(A) --m= -2un-1bg11,12A’ + I.. and F*(B) = -u~~-%gll,12A’ + “’ . 

This implies 0 = -c(P) = 2c,(A) + cp(B) and completes the proof of 
Lemma 5.1. 

For the remainder of this section, we will restrict our attention to 
monomials which consist solely of second order terms. The following 
lemma shows that there is a monomial of P in which m/2 indices have 
been contracted. We will use this lemma to prove that there exist 
almost diagonal monomials of P. 
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We define the notion of touching for use in the following lemma. 
We say that the index i touches the index j in the monomial A if A is 
divisible by either the variable gijikk’ or by the variable gkk)lij for some 
indices k and k’. We say that the index i is contracted in A if i touches 
itself in A. 

LEMMA 5.2. Let P be as previously. Then there is a monomial A such 
that (1) deg,A < 3 for all k; 

(2) every index of degree 3 touches itself and exactly one index of 
degree 1; 

(3) there are exactly m/2 indices of degree 1 and m/2 indices of 
degree 3. 

Such a monomial is said to be fully contracted. 

Proof. Consider the set of all monomials A of Psuch that C(degkA)2 
is minimal. Among all these monomials, let A be chosen such that the 
number of indices which touch themselves in A is maximal. We show 
A satisfies (l)-(3). 

Let i be an index such that deg, A = 1. The index i touches an index j 
in A. Suppose that degj A = I. Let Fij be the rotation such that 

Fii(a/aXi) = a/aXj , F(a/aX,) = a/ax, and 

Fii(a/aX,.) = a/ax, otherwise. 

Since degiA = degjA = I, and i touches j in A, F$(A) = A. F$ maps 
monomials to monomials and F$P = -P. This implies A is not a 
monomial of P. This contradiction shows degj A > 1. 

Let degj(A) + 1 = n be even, and let k, denote the number of 
indices distinct from i and j which touch themselves in A. Let P,, be the 
polynomial consisting of those monomials B of P such that 

(1) deg, B = deg, A for k # i, j; 

(2) the number of indices k # i, j which touch themselves in B 
is k, . 

P,, is invariant under the action of the linear rotations F& since our 
defining conditions did not depend on the indices i and j. For such a 
monomial B, deg, B + degj B = n, and, hence, degi2 B + degi2 B < 
1 + (n - 1)2. This implies x degk2 B < C degk2 A. Since 2 degk2 A is 
minimal, these inequalities must be equalities. Therefore, C degk2 B is 
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minimal. Since degi2 B + degj2 B = 1 + (rz - I)“, we conclude that 
either deg, B = 1 or degj B = 1. 

Since the index i touches j in A, A is divisible by either gijiw or by 
gkLtlij . We assume the former for notational convenience and write 

We decompose FzbiiP,, = P, = ~~-~bc(P,) gii,,A’ + other terms. Since 
P is skew-invariant and deg,&,J is even, c(P,J = 0. Since F$,j(A) 
makes a nonzero contribution to c(Po), there must be at least one other 
monomial B of P, which also makes a nonzero contribution. Let B # A 
be that monomial such that F~~,j(B) = art-lbc(B) gsiiwA’ + other terms. 

Since the exponent of b is one, one variable of B changes to give 
g,,,,A by altering one index i - j or j + i. In the later case, B = A. 
Therefore, B changes to gii,,A’ by changing an i + j. This implies that 
degi B = 3 and that B is divisible by giiiw, . Since either deg, B = 1 or 
degj B = 1, this implies degj B = 1 and n = 4. The index i touches 
itself in B, and, consequently, there are K, + 1 indices which touch 
themselves in B. This implies that K, + 1 indices touch themselves in 
A and that j must touch itself in A. 

We summarize these results as follows: Let deg, A = 1. The index i 
touches an index j such that degj A = 3. The index j touches itself in A 
and touches no other index in A. Let S denote the set of indices i such 
that deg, A = 1 and let T denote the complementary set. The relation 
of touching gives an injective map of S -+ T. This shows that 
i S 1 < I T 1 = m - / S j and that ( S / < m/2. We estimate 2m = 
CsdegkA+CTdegl,A>iS1+31T;=3m-22SS;.Thisimplies 
that m/2 < i S ! and that / S / = ) T 1 = m/2. The map given by 
touching must be bijective. This proves every index is of degree I or 3 
in A and that the indices of degree 3 touch themselves and exactly one 
other index of degree I. This proves the lemma. 

We consider only fully contracted monomials for the remainder of this 
section. We define the function k(A) to measure the extent to which such 
monomials are almost diagonal: 

K(A) = -1 if A is not fully contracted or if cp(A) = 0, 

= P if A = <cl:<ol ... g~~,~,,,~‘> 

= 0 otherwise. 

We will prove that there are monomials for which k(A) = n = m/2. 
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We will complete the proof that c(m) < n (m/4) by showing that the 
permutation defined by such an A contains only even cycles. 

LEMMA 5.3. Let A be a monomial with k(A) > - 1. Then (I) Let i and 
j be indices such that degi A = 3, degi A = 1, and i and j touch in A. 
There is a unique monomial A which is formed by interchanging an i and j 
index. k(A) > - 1 and cp(A) + c,(A) = 0. 

(2) Let i, j, r, s be indices which are not necessarily distinct. Suppose 
A = gi,irsA’, set A, = g,,i,A’. Then k(A,) > --I and cp(A) = cp(Al). 

(3) Suppose that k(A) is maximal among all the monomials of P. Let 
i > k(A). Then giiiw and grsiii do not divide A for r # s. If degj A = 1, 
then gij/Lu and gTs/ij also do not divide A for Y # s. 

Proof. Let A, be the monomial which is formed by changing the 
single j to an i index. For example, if A = giiiwlgij,wzA’, then A,, = 
gii,w,gii/u,A’. Since A,, is not a monomial of P, we express F$&.P = 
a3bc(P) A,, + other terms and conclude c(P) = 0. The only monomials 
which make a contribution to c(P) are A and A, and, hence, 0 = c(P) = 
cp(A) + cP(A). It is clear that since A is maximally contracted, so is 2, 
and, hence, k(A) > -1. 

We prove (2) by considering different cases. It is clear that A, is 
maximally contracted and we need only prove the coefficient relation. 
We assume first i = j and r = s; from Lemma 5.1 (1) r # i. Since 
k(A) > - 1, degi A’ = 1 and giiirr , girlir , and grrlii cannot divide A’. 
We apply Lemma 5.1 (2) to show cp(giiITIA’) = -c,(g,,,.,,A’)/2 = 

CP(grrliiA'). 

Next we assume that i = j, but that r # s, since A is maximally 
contracted we assume for notational convenience that deg, A = 3 and 
deg, A = 1. Again by Lemma 5. I (1), i # r and i # s. We apply the 
procedure of (1) to construct w = giilrrA’ and Ji = gr,liip such that 
cp(A) + ~~(2) = cp(A,) + c,,,(AJ = 0. We apply the previous paragraph 
to show that cP(A) = cP(gl), and, hence, cp(A) = cp(A,). The case in 
which i # j and Y = s follows from this case. 

We finally assume that i # j, r # s; since A is fully contracted all these 
indices are distinct. For notational convenience we assume deg, A = 3 
and deg, A = 1. We construct A = gij,,,A’ and Ji = grriijA’; by 
Lemma 5.2 (1) we conclude cp(A1) + cP(A1) = cp(A1) + cP(A1). From 
the previous paragraph, we have ~~(2) = cP(X1), and, hence, cp(A) = 
CA%). 

We prove (3) as follows: Decompose A = BC for B = gll/W1 *me gpp/w, 
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and p = k(A). Suppose first that giilw divides A. Since i > f~, giiiw 
divides C. By a permutation of the coordinate axes, we may assume 
i = p + 1 which contradicts the maximality of k(A). We assume that 
grsiii divides A for r # s. Since r # s, gr,~iii divides C. We write 
C = g,,s,,,C’. We apply (2) to conclude that giiI1.,C’B is also a fully 
contracted monomial of P. This contradicts what we have just proved. 

In a similar fashion, we use (1) to prove that if either gijiw or grsiij 
divides such a monomial A, then giiiw or gTSlii divides a monomial A 
which also satisfies k(A) = p. Th is contradicts the preceding paragraph 
and the lemma is proved. 

We can now show that there exist almost diagonal monomials of P. 
Let A be a monomial with k(A) maximal. We assume that k(A) < n = 
m/2. There must be some index i > k(A) such that i touches itself in A. 
As a consequence of Lemma 5.3 (3), this variable must be of the form 
g,,/ii . Also as a consequence of Lemma 5.3 (3), Y < k(A). We can assume 
for notational simplicity that r = 1 by a permutation of coordinates. 

The monomial A is maximally contracted, and, therefore, deg, A = 3. 
This implies that the index 1 appears in one other variable. Suppose 

that A = gll/iigls(l)/co~A’~ We apply Lemma 5.3 (1) to construct 
A = g,,(,),,ig,,,,,,,A’ with k(A) = k(A). This contradicts Lemma 5.3 (3), 

an4 therefore, gllliigrs/ls(l) A’ = A. If r + s, we apply Lemma 5.3 (2) to 
construct A, = gll/iigl,(l),r,A’ such that k(A,) = k(A). This contradicts 
what we have just proved, and, therefore, A is of the form 

A= Rll/iiJZ2!lr(l) A' 

(by a permutation of the coordinate axes we can assume r = 2). 
We take q maximal so that k(A) is maximal and A is of the form 

Since deg, A’ = I, q must appear in some variable of A’. We suppose 
first that A’ = g,,(,),,A, . We apply Lemma 5.3 (1) a total of q times to 
the pair (j, x(j)) t o construct the fully contracted monomial of P 

- 
A = &r(1)lii.k?2d2) ill ... gush) w% . 

We also apply Lemma 5.3 (2) to construct the fully contracted monomial 
of P: 

4 = giillz(l~gll/zdz) "'&,~",f&l~ 

‘507/10/3-+ 
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Since K(JJ = K(A), this contradicts Lemma 5.3 (3) and shows that A 
must be divisible by grs/nz(n) . By Lemma 5.3 (3), this implies Y = 
s < k(A). We can assume T = q + 1 by a permutation of the coordinate 
axes. This contradicts the maximality of q and completes the proof that 
there exist almost diagonal monomials 

A = gll/wl ..‘gnn/w, n = 42. 

At the beginning of this section, we described a permutation of the 
indices I-n which was associated to such a monomial A. Suppose that 
this permutation has a cycle of odd length. We can assume that 

A = gll/m(2) ... gs-l,n-lls3c(s~gssllz(l) A’. 

We assume s is odd: s > 1 by Lemma 5.1 (1). We will show that this 
implies that cp(A) = 0 and contradicts the fact k(A) = m/2. We apply 
Lemma 5.3 (I) a total of s-times to construct 

4 = cm(z)/,, ... ~sz~s~/s-l,s-l~lz~l~/ss A', 

such that cp(A,) = cp(A). We apply Lemma 5.3 (2) a total of s times to 
construct 

4 = gz2ildl) . ..gssls-l.a(R-l)gllls3(~)A'. 

Since s is odd, cp(A) = (-1)” cP(Ai) = -cp(A,). Let q be the per- 
mutation defined by q(j) = s + I - j and q(x(j)) = x(s + 1 - $ for 
j ,< s; q(K) = K otherwise. Fp is orientation preserving and F,*(A,) = 
gs-1, s-l/SX&) ..a g11~2z~2~gss~lz~l~A’ = A. This implies cp(A) = -cp(dl) = 
-cp(&*AJ = -44, and, hence, c,,(A) = 0. This completes the 
proof that c(m) = 0 unless m = O(4) and c(4k) = n (K). 

6. 

If M is a spin manifold, we can represent the DeRham complex by 
using the spin complex with coefficients in the contragredient represen- 
tation. We show that P,” = 0 for n < m and that P,” = cE, since we 
can imbed any germ of a metric on Rm in a spin manifold. We compute 
d = 1 by integrating over the classifying manifold M = S2 x *** x S2. 
This proves the classical result that JM E,d vol = X(M) for any 
manifold M. 
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The DeRham complex is functorially defined independent of an 
orientation. The polynomials P,,” are invariant in $&; they are skew- 
invariant as maps from metrics to m forms. We cannot conclude that 
ord(P) < m implies P = 0 based only on the assumption that P is 
invariant. We will need an additional axiom which we motivate as 
follows: Let M be a spin manifold and let P be the principal SO frame 
bundle for TM. Let Q be the double covering SPIN bundle giving the 
spin structure. Let p: SPIN + SO be the usual representation of 
SPIN on RnL given by Clifford multiplication, p(x) y = xyxpl. For 
further details on Clifford modules, the reader is referred to [l]. 
Then Q, x R” = TM. We extend p to a representation of SPIN on 
the module Cliff(Rm). There is a functorial identification of Cliff(R”) 
with the exterior algebra on R” which shows 

Q @j Cliff(R”) = A(TM). 

Since M has a Riemannian structure, we identify TM and T*M. 
There are four other natural representations of SPIN on the Clifford 
algebra. Let SPIN act on Cliff(R”) @ C by multiplication from the left. 
This representation decomposes into 2”j2 equivalent representations A*. 
We can also let SPIN act by multiplication by the inverse on the right. 
Similarly, this representation decomposes into 2”/2 equivalent represen- 
tations A’*. We construct corresponding vector bundles A* and A’+ 
from the principal bundle Q. We can use these four bundles to reconstruct 
the signature and DeRham complexes. 

It is clear from the definition that: 

and, hence, 
p = pi+ @ A-) @ (A” @ A’-), 

/l(T*M) = (A+ @ A-) (j$ (A’- @ A’+). 

Let e, ,..., e, be an orthonormal basis for R”. Let e = e, =.* e,,( in 
Cliff(Rm). Since e commutes with SPIN, we define a corresponding 
element e of Cliff(TM). The choice of e or -e amounts to an orientation 
on M. By definition, multiplication by e on A& from the left is just ~1, 
while multiplication by e-l on A from the right is also + I. Since e2 = 1, 
we can decompgse A( TM) into eigenspaces A*. We can also decompose 
A into spaces A0 which commute and anticommute with e. We compute 

and 
A+ - A- = (A+ - A-) @ (A’+ @A’-) 

Ae - A0 = (Ai- - A-) @ (A’+ - A’-). 
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The leading symbol of the differential operator for each complex is 
Clifford multiplication. By functoriality, we can express the lower order 
symbol of the operator in terms of the first derivatives of the metric. 
This term will vanish for geodetic polar coordinates; hence, the differ- 
ential operators will agree. We compute Pam by considering the spin 
complex (A+ - A-) with coefficients in the virtual bundle (A’+ - A’-). 
We apply the results from the Introduction to show that P,“(G)(x) 
vanishes identically for n < m and G a spin metric. This implies 
P,” = 0. We conclude that P,,” can be computed in terms of the 
Pontrjagin classes of M and Chern classes of (A’+ - A’-). 

If we can show the the Chern classes of this virtual bundle can be 
computed as Pontrjagin and Euler classes of TM, then we could 
express P,,” = cE,, + p7,,” where p,” is skew-invariant. Since both 
Pm” and E, do not depend on the orientation of M, FrYbrn = 0 and 
P m = cE,, . This completes the proof of the result given in the 
In?roduction for the DeRham complex. 

We must describe those elements of 9m which can be defined by the 
Chern classes for some functorially defined vector bundle. Let Pp be a 
collection of polynomials P, which takes values in p forms. We assume 
that P is invariant under orientation preserving diffeomorphisms. (This 
is certainly true for the Chern classes of A’+ - A’-.) 

Let F: 8/8X, -+ -a/ax, . We decompose PI = PI1 + P,2 for 

PI1 = (PI + F*P,),I2 and PI2 = (PI - F*P,)/2. 

Let PI denote the collection P,’ and Pz the collection PI”. PI is an 
invariant map from metrics to 2K forms; we can apply our previous 
classification theorem to PI . However, PI2 is a skew-invariant map from 
metrics to 2k forms and we will need an additional property to express 
the fact that P, comes from a Chern class. 

Let C be a characteristic class; our model will be Pp = C(A’-). Let 
G, be the germ of a Riemannian metric Rm-l. We give the flat metric 
to the last coordinate and let G x 1 be the product metric on R”. Since 
the connection defined by the metric is flat in the last coordinate, we can 
define a vector bundle on R”-l which pulls back to A’-. By functoriality, 
C(d’-) is the pull-back of a p form on Rmml. This implies that if 
deg, (I) > 0, then P,(cil x 1) = 0. Suppose that A is a monomial of 
such a PI. If deg,(A) = 0, th en we can find a flat metric such that 
P,(e, x 1) # 0. This implies that deg, (A) > 0 for all such A. We define 

P, is complete if deg,(l) > 0, cp,(A) # 0 implies deg&4) > 0. 
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Of course, if P,, is invariant under the action of SO(m), we can replace 
the index m by any index. If p = m, then P is complete if and only if 
F;-,(P) = 0; F;+, : et,1 - q,,-1 . 

THEOREM 6.1. Let P,, be complete of order n and invariant under 
orientation preserving diffeomorphisms. If n < p, then P = 0. If n = p 

and p < m, then P is invariant under all dt$eomorphisms and can be 
computed in terms of the Pontrjagin classes. If n = p = m, then we 
decompose P = cE,, + P where E,,, is the Euler class and P is a characteristic 
clffss. 

We combine this result with the results of Section 3 to show that the 
characteristic classes of d’+ can be computed in terms of the Pontrjagin 
classes and the Euler class of TM. 

We can prove that the polynomials Pnrn are complete without using 
the spin representation by using the multiplicative property of the 
DeRham complex. Let E be an elliptic complex over the manifold M 
and F a complex over N. There is a natural elliptic complex E @F over 
M x N. Let f(t, x, dE) denote the asymptotic expansion for E and 
f(t, x’, dE,) the corresponding expansion for F. Thenf (t, x, dJf(t, x’, de) 
is the corresponding expansion for E OF. This implies that 

f&(x, ST’, dE ;,F) = c BY@, 4) &&, (ii-). 

Since we have given S a homogeneous metric, J B,(x, d) = 0 implies 
that B?&(x, d) vanishs for the DeRham complex on S1. We apply the 
product rule to show that P,,,“(G x 1) = 0 for all such G and hence the 
polynomials P,,,” are complete. 

Proof of Theorem 6.1. First we decompose P,, = P,,l + P,,2 such 
that P,)l is invariant and P,,2 is skew-invariant. P,, is complete implies 
that both P,,’ and P,,” are complete. We, therefore, assume P,, = P,3. 
If P # 0, then there must be a monomial A of some P, which consists 
of only second and higher order variables. By Lemma 3.4, A consists of 
only second order variables and n = p. If deg,Jl) > 0, then deg,,(A) > 0 
by hypothesis. By permuting the coordinate axes, this implies that 
deg,(l) > 0 implies degi(A) > 0 for any index i. On the other hand, if 
deg,(Z) = 0, then deg, A must be odd since P,, is a skew-invariant map 
to forms. This implies degi(A) > 0 for all i. Since deg,.(A)= 0 for 
k > 2L(A) = n, this implies m < n, and, hence, m = p = n. 



380 GILKEY 

Let A be a monomial of P containing no first order terms. Since every 
index must appear in A, 2m = C deg, A 3 2m and every index appears 
with degree 2. Furthermore, A consists only of second order variables. 
By Lemma 2.1 (I), we may assume that A is divisible by glllikA’. Since 
deg, A = 2, deg,(j, k) = 0, and we can apply Lemma 2.1 (2) to conclude 
that A can be chosen divisible by g11,22A’. Since deg, A + deg, A = 4, 
deg, A’ + deg, A’ = 0. We proceed inductively to show that A = 

g11/22 "'gm-l,n-ilmm must be a monomial of P. 
This monomial classifies the subspace of all complete invariant poly- 

nomials of order m. Since Em is complete and invariant, we set 

c = khl22 ... g,-l,,-1,,,)lc~~m(g,,/22 ..’ gm-Lrn-ll?xm)* 

Since P - cE, is complete and invariant and since the monomial 

&l/22 *** &IL-lm-llwm does not appear in this polynomial, P - cE, = 0. 

7. 

In this section, we present some combinatorial results concerning the 
asymptotic behavior of the eigenvalues for the Laplace operator. These 
results were obtained by combinatorial methods which are not of special 
interest. For part of the computations, a computer program was used. 
Further details are available from the author. 

Let M be a smooth compact m dimensional Riemannian manifold 
without boundary. Let D, m be the Laplace operator dd* + d*d acting on 
p forms. The operator Dpm is positive, elliptic, and self-adjoint. If pi 
are the eigenvalues and ei the eigenforms of Dl,“, we let 

f(t, x, D,“) = C exp(--tk)(& , Q(x). 

It is well known [3, 61 thatf(t, X, 0,“) is well defined for Re(t) > 0 and 
has an asymptotic expansion as t ---f 0+ of the form, 

f(t, x, II,") = 2 B,(x, Llem> t("-")12 
?I=0 

(B, = 0 for n-odd). 

The functions B,(x, D,“) depend only on the Riemannian metric of the 
manifold. We use the notation Pn”,* to denote these invariants of the 
metric. In the notation of the Introduction 

P," = I(-l)"P&. 
2, 
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It is very difficult to compute these invariants explicitly. We have, 
however, been able to obtain some results along this line. Let K denote 
the scalar curvature on M and let KN denote (-d*d)(n-2)/2K. Let d, be 
the constant d,,, = 2”/71 . 3 . *.* . (n + 1)). Then 

PT, = (n (” ; ‘j + n (; 1 ;j - (2n + 4) (; I ;jj K,/(d,(47w 

+ lower order terms. 

This result also permits us to prove that Pnnl f 0 for n > m and m, n 
even, i.e., that there exist Riemannian metric so that the invariants 
P,“(x, metric) # 0. 

For a two dimensional manifold, we have computed the invariants 
Pi,o for n = 0, 2, 4, 6, 8 by using a computer program. Let K denote 
the scalar curvature and let D = -d*d denote the ordinary Laplacian. 
We will let DKDK denote D(K . DK) and (DK)2 denote DK * DK. 
With this notation, our computations were as follows: 

Pt,, = li4ndo , 

Pi,,, = 2K/4rd,, 

P& = (4DK + 4K2)/4nd, , 

ps”,, = (6DDK + 8DKK + 12KDK + 32/3K3)/4rd,, 

pi.0 = (8DDDK + I2DDKK + 24DKDK + 8(DK)2 + 16KDDk’ 

+ 40DKKK + 12KKDK + 48K4)/4nd,. 

We are currently extending our computer program to cover the cases 
n > 8 and m > 2. 
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