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INTRODUCTION 

Bernstein polynomials play an important role in various areas of mathe- 
matics. They provide a useful tool in the analysis of numerous problems 
while also furnishing a source of ideas for further research. The book of 
G. G. Lorentz [7] provides an excellent source for many of their attractive 
properties. In this paper we are concerned with two basic properties of the 
Bernstein polynomials 

The first is the fact that B,(f, x) converges uniformly tofand the second is 
the fact that the rate of convergence cannot exceed l/n, except when f is a 
linear function. This latter statement expresses the fact that the Bernstein 
polynomials are saturated with order l/n. The proof, of these results are 
known to depend only on the behavior of B, on the subspace of quadratic 
polynomials and the observation that B, is a positive linear operator for all II 
[2, 61. Thus the convergence of the Bernstein polynomials can be proved by 
applying Korovkin’s theorem while their saturation is proved by the “para- 
bolic method” of BajSanski and Bojanic [2]. Here we will give a general 
setting for these two results. This setting will follow naturally from a study 
of the following question suggested in [8] (see also [9]). 

PROBLEM 1. Given a compact set X and a set of “test functions” S (always 
assumed to be a closed subspace of C(X) containing a positive function), 
describe all nonnegative operators Ton C(X) with the property that whenever 
{T,} is a sequence of nonnegative operators converging to T on S it follows 
that lim,,, T,f -z= Tf for allyE C(X). 

305 
Coppripht 0 1975 by Academic Press, Inc. 
~211 rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82492765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


306 C. A. MICCHELLI 

We note that in the case that the identity operator 1 has the property 
described above, the set S is called a Korovkin subspace of C(X). 

Here we will denote the dual of C(X) (Radon measures on X) by M(X) 
while M ~ (X) will denote the cone of positive Radon measures on X. In 
Section 1 we show that solution of the above problem requires the identi- 
fication of all elements of M+(X) which are uniquely determined by S. We 
denote this set by U(S). Thus p E U(S) provided that whenever v G A4 (X) 
with p(j) v(,f‘) for allf’E S then p -~~ V. In Section 2 we give a characteri- 
zation of U(S) while Section 3 contains a closer discussion of U(S) when S 
is a subspace of “parabolic functions” (see Section 3 for their definition). 
Section 3 also contains some applications to fixed points and saturation of 
positive linear operators. It is in Section 3 that we generalize and unify the 
two properties of the Bernstein polynomials mentioned earlier. We conclude 
the paper with some remarks about possible extensions of our results. 

I. CO~VERGENCL 01; POSITIVE LINEAR OPERATORS 

Let S be a closed linear subspace of C(X) which contains a positive function. 
We define K(S) to be the class of all nonnegative linear operators Ton C(X) 
with the property that if {T,} is a net of positive linear operators which 
converge to Ton S then {TJ converges to T 011 C(X). 

The use of nets rather than sequences as described in the introduction 
allows us to state Theorem I. 1 below without the hypothesis of metrizability 
on the compact setX. When X is first countable this distinction is unnecessary. 

We will use the symbol tS to denote the Dirac measure defined by 
Em = .fix), ,f’g C(X). 

THEOREM 1.1. Let X be u compact Huusdoyfl’ space mrl S a closed linear 
subspace of C(X) which contains a positive ,functiolr. Then T E K(S) v’ and 
only if E, 0 T E U(S) for all x E X. 

ProoJ Suppose there exists a point J E X such that cY 0 7’~ U(S). We will 
construct a net of positive linear operators converging to T on S but not 
on C(X). From our hypothesis there exists a p E M+(X) and a s E C(X) such 
that 

T( K, 1,) f P( s) and w; Y) =- p(f), ,fES. (1.1) 

Let {VA ; h E ;11 be the set of all open neighborhoods containing I’. For 
every A E A, let fn be a function in C(X) which satisfies the following con- 
ditions 

o<J,Jx)-:l, ) s E x (1.2) 
and 

Jxx) = 0, x $ vn and f;(J) == 1. (1.3) 
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We define for X E A the mapping 

T,i.f = (1 -.A) Tf'+Mf>> fE C(X). (1.4) 

Obviously, {TA 1 h E Al is a net of positive linear operators on C(X) which in 
view of (1 .l )-( 1.3) satisfies the inequality 

! T,(,f; s) - T(.r; .x)~ < sup / r(.L x-j - T(.L J.11 , 
XEVh 

(1.5) 

for all f E S, x E A’. Thus {TJ converges to T on S. But 7’,( g, J’) r= p(g) ;A 
T( g, y) for A E fl which means {r,,} does not converge to T on C(X). Thus 
we conclude T $ K(S). 

Conversely, suppose T $ K(S). By virtue of the compactness of X, there 
exists a net (7’, ; h E 111 of positive linear operators which converges to T on 
S, a net {xJ of points in X which converge to some y E X, a function II t C(X) 
and an E” ;. 0 such that 

1 T,,(k .x,4 - TV?, XJ 3 ~0, x E A. (1.6) 

Since S contains a positive function the net {E,~ 0 T,, / h E n} is a norm 
bounded subset of M;(X). This implies that there exists a subnet {E,.,~, = T,,j 
which converges weakly to some 11 E M i (X). v and t!, 2 T agree on S because 
by hypothesis {T,) converges to T on S. But it follows from (1.6) that 
cy 0 T f v and so E!, 3 T 6 U(S). This completes the proof. 

Remark. Theorem 1 can be generalized in the following way. For any 
weakly closed convex subset L of M(X) consider the set of operators on C(X) 
such that E* 0 TEL for all x E X. Theorem 1 remains valid if we replace the 
class of positive linear operators by the above class induced by L and M:(X) 
by L, wherever they appear in Theorem 1.1, and in the definition of K(S) 
and U(S). In addition to the case L = M+(X), Lorentz considers in [S] 
the two choices L, = {p i p E M(X), : p i(X) .:< I> and L,’ L, n M’(X). 

Perhaps the most interesting example of subspaces to consider are those 
which are finite dimensional. If we specialize Theorem 1.1 to a linite 
dimensional linear subspace, dim S = N, we conclude that every TE K(S) 
is of the form 

T(.f: x) =- 1 h,(s>.f(n,(x>>, (1.6) 
j-1 

where 
i+.(x) ;: 0, Uj(.Y) E X, j - I,..., IV, x E x. 

This result follows from the fact that every p E M+(X) can be represented 
on S as a nonnegative sum of at most A’ Dirac measures p(f) =- Cy=, x,<,.,(f), 
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J’E S. This fact is sometimes referred to as Tchakaloff’s theorem. Thus, for 
finite dimensional subspaces it is possible to obtain results analogous to 
Korovkin’s theorem only for the operators in (1.6). When X is connected we 
may reduce the support of T in (1.6) to !V 1) (a consequence of Fenchel’s 
theorem). This number can not in general be reduced further even when X is 
assumed to be convex. We showed in [IO] that the operator defined by 
W; x) (I x) f(0) I- d‘(l), x t [0, I], ,f’E C[O, I] is in K(S) for 
S mm quadratic polynomials. This positive operator is supported on two 
points while the dimension of S is three. WC will say more about this 
code in Section 3. Let us now present a c!:aracterization of U(S). 

2. A CHARACTERIZATION OF U(S) 

For any pi M’~(X) and w E C(X) we define 

Since S contains a positive function it follows that ~ m <: 0~~ .:. ws < -+a. 
Furthermore, the definition of (2.1) and (2.2) yield the inequalities 

We may interpret (2.3) as stating that the number V(W) where v is any extension 
of p from S to S,,, = [w, S], the linear subspace spanned by Q and S, lies in 
the closed interval [ws(p), We&)]. Conversely, the linear functional defined 

F(.( g + au) ~-- p( g) + !a!(‘. g c s. Y E R. (2.3) 

is a positive linear functional on S,, if and only if c t [cI)&), W,(p)]. Further- 
more, since S contains a positive function, Fc can be extended to a positive 
measure v,. on C(X). These remarks are basic results from moment theory 
and can be found in [3] or [5]. They enable us to establish the following 
characterization of U(S). 

THEOREM 2. I. p t U(S) lf and only if gs(p) = W+)for all w t C(X). 

Proof. If p 6 U(S) then there exists a v c M’(X) and a w t C(X) such that 
4s~) = Ad, s E S and 4~) # P(W). Therefore, the interval [oJ&), w.~(P)] 
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contains two distinct points which implies es(~) + w&). Conversely, 
suppose w&) # c;)&) for some w E C(X). Choose two distinct numbers c 
and d in the interval [w&), W,(P)]. The measures 18, and vd are distinct 
extensions of p and so p 6 U(S). 

If we specialize Theorem 2.1 top =-= cl. , x E X, we obtain from Theorem 1.1 
a characterization of a Korovkin set which is due to Berens and Lorentz [4]. 

COROLLARY 1. I. S is a Koroukin subspace (f and only [ffor euery CLI E C(X) 
andxEX 

inf g(x) = sup g(X). 
g--w gc, 
h-s uts 

3. U(S) WHEN S IS A SUBSPACE OF PARABOLIC FUNCTIONS 

The simplest example of a Korovkin subspace for the space c’[O, I] is 
the subspace of quadratic polynomials. 

In [lo] we show that U(S) where S is the subspace of quadratic polynomials, 
consists precisely of nonnegative multiples of any Dirac measure E,, x E [0, l] 
or “boundary measures” (measures supported on the extreme points of 
LO, ll>, (1 - 4 co + XC1 > x E [0, 11. In this section we give a generalization 
of this result. To do this we will rely on several results which can be found 
in [l]. 

E will denote a locally convex linear topological space and K a compact 
convex subset of E. A(K) is the subspace of C(K) consisting of all continuous 
affine function on K. Let ii,,K denote the set of extreme points of K. It is 
proved in [l] that 

U(A(K)) == (he,, I h E R’, x t i’,Kj. (3.1) 

As a consequence of (3.1) and Theorem 1 we see that any positive linear 
operator T which preserves affine functions satisfies the relation 

E, 0 T = E, , x E %,K. 

Another obvious conclusion of (3.1) is that A(K) is not a Korovkin subspace 
of C(K). However, we can remedy this by adding just one more function to 
A(K). This leads use to define “parabolic functions” as any subspace of C(K) 
of the form S = S[#J] = [#, A(K)] where $ is a strictly convex continuous 
function of K. 

Recall that every convex function has a right Gateaux derivative, given by 
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for all x, y such that x t K, x i- J’ E K. We will say that $ is smooth provided 
that for all x E K the mapping J --f D$(x; y ~ x) is in ,4(K). Any smooth 
convex function has the property that it coincides with its lower envelope, 

+(x) z= d(x) z--- max{a(.y) / a . . (b, a t .4(K)]. (3.2) 

We may now! prove the following result. 

PROPOSITION 3.1. !f 4 is CI strict/J, conoex .wiooth ,firnc.tion then 
{xc,,, 1 /I E R ‘, x E K) is cotltuimd in CJ(S[4]). 

Proof. Given any s c- K we conclude from (3.2) that there exists an afhne 
function a c A(R) such that a .’ I$ and a(x) m= d(x). The strict convexity 
of 4 implies that a( J) c d(y) for all J‘ t’ .Y. Now, let p be any measure in 
&F(X) which agrees with he,. on the subspace St+]. Then ~(4 U) = 0. 
This implies that p p(I) cZ To arrive at this conclusion we use the 
foilowing property of positive measures. If p(h) = 0 for some /I E C(K) 
which is nonnegative on K then p(,f‘) = 0 for allfsuch that {x i /z(x) = O> C 
{x If(x) := 0). Since 1 E S[+] we also have h pm p.(l). Thus he, t U(s[$]). 

Before we can identify other members of U(S[d]) we hrst describe 
several results from [I]. 

A boundary measure is defined to be any p F M (X) which is “supported” 
on the extreme points of K. It can be shown that 

wherePis the upper envelope off’defined by 

f(,r> = inf{a(x) a -,f; a E A(K);. (3.4) 

Therefore ,u is defined to be a boundary measure if and only if 

p(.f’ - j> = 0, for all f c C(K). (3.5) 

Boundary measures can also be characterized in terms of the following 
ordering induced by the set P(K) of all continuous convex functions on K. 

P < v oPL(.f) G vv,, .f E P(K). (3.6) 

It can be shown that p is a boundary measure if and only if it is a maximal 
element with respect to this ordering. A positive measure p is said to represent 
x E K if ~~(a) == ~(a), for all a E A(K). Every positive measure p represents 
exactly one point in K. This point is called the resultant ofp. A compact convex 
set K is called a Bauer simplex if and only if %,K is closed and every .Y E K 
is represented by a unique positive boundary measure fl,,. . 
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PROPOSITION 3.2. Suppose K is a Bauer simpie.u and 4 is a strict/y conrex 
continuous jiirlctioll on K. then {AH,. : X cr R+, x E K) C CJ(S[+]). 

Proof. Suppose x E K, p E M+(X) and ,4 g) - All,(y), g E S[+]. Since K 
is a Bauer simplex, we have $ E A(K)([I]). Since IIJ is a boundary measure 
we have from (3.5) 

However, the strict convexity of 4 implies 

{x / 4(x) :-= J(x): -L i,.KC{x if(x) --j(x);, .f’t W)([ll:~. 

Thus &” - f^) = 0 for all J’E C(K) and so p must be a boundary measure. 
Hence, p = AU,, where y is the resultant ofp. This follows from the assumption 
that K is a Bauer simplex. Since A(K) separates points, we obtain. x == J’. 
This completes the proof. 

Our next proposition shows that every element in U(S) is a convex combi- 
nation of a Dirac measure and a boundary measure. 

PROPOSITION 3.3. Suppose 4 is a continuous convex fLrnctiorl on a compact 
comex set. Then erery p E U(S[+]) with p(1) : I has the ,fbrm p =-~ 
(I - A) E,. + Ml,, for some h E [0, I] M’here x is the resultant ,u. Furthermore. __ 
lf 0 < A < I then x E ii’,,K --- il,.K. 

Proqf We have from (3.6) the inequalities 

<A$, i p(#) .z rr,c+, (3.7) 

where flX is a boundary measure representing x. the resultant of p. Thus 
there exists a h E [0, I] such that ~(4) == (1 - A) es(+) + An,.($). It follows 
thatp and (I - A) Ed + hII,. agree on the subspace U(S[$]). Thus we conclude 
that p =_ (1 - A) E, f An,, . 

Suppose that 0 < h -.; 1 then clearly 

%(#) < pt+, < n,c+,. (3.8) 

Therefore x $ ii,K since otherwise from (3.1) we would obtain E,~. = p. 
Hence there exists a nonzero y E E such that x 4 c J’E K for all E sufficiently 
small. By virtue of (3.8) we obtain 

SC%,C?,(~, + %-EV($)) < PC+) < fl,(4). (3.9) 

for some positive E. Now we may argue just as before to conclude that there 
exists an a: E (0, 1) such thatp = (1 - IY)[$(E,,.~!, + E,. .!,)I + ~fl,~. . However, 



312 C. A. MICCHELLI 

we have already proved p = (I - h) E,,. + XII, . Thus it follows that 
x E 8,K. This completes the proof. 

We remark that there is an example (kindly communicated to us by 
A. Gleit) which shows that in general no stronger conclusion can be made 
about an element in U(S[$]). Let V denote the subspace of C[O, I] defined 
by I,’ i.f;f(: C[O, Il,f(i) :(1(O) -j(l))). For our compact convex set 
Kwe choose the state space of V, namely K {p ; IL IZ V*, p . 0, ~(1) I/ ,LL I,;. 
It can easily be verified that {E,;~) i,,,K i’,.K: this leads us to the desired 
example. 

Combining Propositions 3.1-3.3 we obtain a complete description of 
U(S[+]) when K is a Bauer simplex. 

THEOREM 3.1. Suppose 4 is a strictly comex smooth function on a Bauer 
simplex K. Then 

Let us specialize Theorem 3.1 to a finite dimensional simplex. In this 
case, E ~- RjV and K ~~~ A,v --=- (x 1 .x E R.‘, CE, xi < 1 ,x, -, 0, i -= I,..., N). The 
extreme points iJeK z {e, , e, ,..., e,Vj are defined by (ei)j aii , i -= 0, l,..., N. 
j = l,..., N. If we choose $(x) L .Y s = CE, xi2 then 

The case N =:: 1 was previously referred to in the beginning of this section. 
We give two applications of the results presented in this section. The 

first concerns fixed points of nonnegative operators. In the following 
discussion we always assume K is a Bauer simplex. 

Let T be a nonnegative linear operator on C(K) which preserves afTme 
functions T(a) -= a, a E A(K). Define S(K) (#I 1 4 ;,. 0, q5 strictly concave, 
smooth and continuous on Kt. 

Set 

and 

NT) = c,i& X(7-, 4). 

Note that 0 :< h(T) -< 1. 

THEOREM 3.2. Suppose T is a nonnegatire operator on C(K) which presemes 
afJt’ne,firnctions. If h( T) < 1 then the only,fixed points of T are in A(K). 
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Prooj: Since X(T) < 1 there exists a 4 E S(K) such that for x == i( 1 +X(T)) 
(<I) we have 

T(l#l, x) ~5; X4(x). for x E K. 

Thus Jim,,, 7’“($, X) =I 0 uniformly in x E K. However, since x < 1 we 
necessarily have 4(x) --: 0 for all x E i,,K. This implies that lim,.,, Tl:g = 2, 
for all g E S[$], where j is defined by 17,(g) = g”(x), x E K. The corre- 
spondence g + g” is a positive linear operator on C(K) whose range is 
contained in A(K)([I]). Thus by Theorem 1.1 and Proposition 3.2 we have 
for all f E C(X) 

FE Ti:f == j. 

Hence, if 11 is a fixed point of Tin C(K) we obtain /I = h E A(K). 
Using the idea employed in Theorem 3.2 we may prove a general “little 0” 

saturation theorem for positive operators on a Bauer simplex. 

THEOREM 3.3. Let {T,} be a sequence of positiue linear operators OH C(K) 
which presetves afine functions and satisfy the condition 

,for some 4 E S(K). Thei? {T,] is saturated with order 1 - h(T, , a$). Thus 
Tnf - f == o(1 - x(T, , 6)) impliesf p= JE A(K). 

Proqf: Our hypothesis implies that the norm of T,i is one. Therefore the 
identity 

L-1 

T,,‘;f‘ - ,f y c T,“( T,, f’ ~~ .f) 
I4 

implies that 
1; T,rL7:f ---,fl’ ’ k ‘I Tnf -.I”,. (3.11) 

This inequality and our hypothesis imply that there exists a sequence of 
integers {k,}, such that lim,,, k,( I ~- x(T, , 4)) = co and lim,,, T> f : = jI 
However, from (3.10) we conclude that there exists a 4 E S(K) and a sub- 
sequence (n’} such that lim,,, h(T,, , $) = 1 and Tn,+ SZ h(T,, ) 4) $I. Thus 
it follows that lim,_, T3’$ = 0. Just as before we conclude that 
lim,,, T$‘f = $ Thusf = Jand the theorem is proved. 

EXAMPLE 3.2. As an application of Theorem 3.3 let us look at the 
Bernstein polynomials defined on the N-simplex d, , 
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B, is a positive linear operator C(d,) which preserves affine functions. 
Furthermore, B,4 ~ (I --- 1’~) $ where 4(x) : x:-r ;uj( 1 ~~ x,). Thus from 
Theorem 3.3, {B,,j is saturated with order I /II. 

It is interesting to note that for N I there is no local saturation result 
for the Bernstein polynomials on the simplex d,V, while for n! -. 1 such a 
result is known to be true. For details on this matter see [2] and [9]. 

We end this paper with a question which is concerned with a possible 
extension of Theorem 3. I. 

Let C be a cone contained in C(X). C induces an ordering in Mt(X) 
defined by 

p SC.. 11 if and only if I ei v(,f). ,/‘E C. 

Suppose this ordering admits maximal and minimal elements. Thus for 
every p there exists a minimal p and maximal ,I? such that p < p < ii. Choose 
some 4 c C and let S[$] be the subspace spanned by $%d the base of the 
cone C n (-C). When is it true that 

Our paper [IO] as well as Theorem 3. I give instances in which (3.12) is valid. 
It would be interesting to have other examples of (3.12). 
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