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1. INTRODUCTION 

A separatrix trajectory of a general solution to an ordinary differential equation 
is one which differs topologically from near by trajectories. Maximal regions of 
parallel flow are separated by a union of separatrices. The structure of these 
solutions has been a useful tool in the qualitative theory, especially in the plane 
(see, for example, [‘2, 6, 71). We will consider the separatrix structure of a flow 
near a solitary periodic solution in 3-space (cf. [Sj). A periodic orbit y is solitary 
if it has a compact neighborhood (neighborhood of solitude) G such that any 
negative (respectively, positive) semitrajectory contained in i? has its 4imit 
(resp., w-limit) at y. 

Within a neighborhood of solitude, trajectories are distinguished by their 
eventual behavior in time. For those sets of trajectories which are elhptic, that is, 
are contained in L’ and hence have CL- and w-limit at y, an analysis of separatrix 
structure in a slightly different situation has already been set forth [a]. Our 
interest here will be primarily in the set &I+ of positively attracted trajectories, i.e.,. 
those which have w-limit at y, but leave U in the negative time direction. 

In contrast with the situation in two-dimensional settings, where each separa- 
trix trajectory is thought of as separating two canonical regions, our analysis of 
separatrix structure must be concerned with connected components of the union 
of all separatrices. Thus, whereas a study of a planar flow is concerned with 
the geometry of individual trajectories, we must concern ourselves with the 
geometry of “surfaces” of separatrices. In general, these surfaces may be quite 
different from manifolds, even for C” flows. Our approach here is to restrict 
attention to those flows whose separatrix sets satisfy some kind of “manifold 
hypothesis.” We will also demand that no positive semitrajectory with initial 
state in the boundary of A !- be internally tangent to the boundary of the neigh- 
borhood of solitude. Under a strict version of these hypotheses, a classification 
of regions of 9, is given by boundary type. 

* This research was partially supported by the U.S. Army Rcsearc’h OfKce (Durham) 
under Grants DA-ARO-D-31-124-71-GI2-S2 and DA-ARO-D-31..324-73-G130 while 
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We find that in every case but one, the separatrix structure is trivial and 
trajectories are uniformly asymptotic to y. In the remaining case, where the 
region of A, is a fan, the separatrix structure is closely associated with nearby 
elliptic regions. 

To increase understanding by means of comparison, we weaken the manifold 
hypothesis in the final sections. A few properties will be discussed, and some 
examples will be presented which emphasize the differences between the weak 
and strict version of the manifold hypothesis. 

There are many basic properties of solitary periodic solutions and of sepa- 
ratrices which do not depend on any additional hypotheses. Sotne of these are 
set forth in the next section. 

2. DEFINITIONS, BASIC PROPERTIES 

A11 our definitions are given for flows on compact spaces. The case of a flow on 
R” generated by a vector field 17 is easily handled by forming the one point 
compactification of Rn and declaring that the point cc will be a zero of the 
“estension” of 77. Let 4: X x R -+ R be a continuous flow on a compact metric 
space X; let a(~, $), w(;Y, +)? respectively, denote the w and w-limits of the 
+trajectory through .x’. We will use a(x), W(X) when the context is clear. Let 
d(., .) denote the distance on X and let &(., .) denote the induced Hausdorff 
distance between compact subsets of X. Continuity of set valued maps will 
always be with respect to the Hausdorfl metric topology. 

We say that 4 is positively pmallel near its trajectory through x and write 
x E P+(4) (or 3~’ E 9+ when context is clear) if w is continuous at E and if there 
is a neighborhood N of x and a function T(E) such that d(+(y, t), W(Z)) < E 
whenever y E fV, t > Z’(c), and E > 0. Using B(X) and negative times, one 
similarly defines + being negatively parallel near the trajectory through x, 
x E P-(4). If N E P = P’+ n P-, then 4 is parallel near x. The sepmatri.x: set 
Y = yY#) = X - 9 is partitioned into three parts: the boundaql sepmatrix 
set, PO = PO(+) = {.Y / 01 or w is discontinuous at x}, the pri%-zaTy separatrix set, 
Yr = Y;(4) = (x E 9 - YO 1 there exists Z, + x, t,n - CO such that either 
lim+(X, , - tn) $ a(x) or lim +(q , t,) $ w(x)}, and the secondary separatrix set, 
ZZ = PZ(+) := 9’ - (Sp, u Yr). Notice that Y1 consists of trajectories which 
have a nontrivial prolongation (cf. [l]): th e a-prolongation of the $-trajectory 
through x is given by A-(x, 4) = k(x) = {y 1 y 6 a(x) and there exists ‘u, --f zz, 
t, + -co, such that #(“vn , tn) --f y as n + 03); the u-prolongation is defined 
similarly using t + + co. 

Remark 2.1. Where 01 and w are continuous, P, P, and .9 are open. 

Remark 2.2. P2 C +Tt(9 - 2X2) (Vb = closure). 
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THEOREM 2.3. Let V be a +invariant opera region of X contained &. 
X - (,Yo U LX(X) U w(X)). Then th eye is a global uoss section to 4 OR .9 i7 17, 
that is, there is a continuous function g: .9 n V + R, strictly monotone on trajectories 
and such thatgl(0) intersects every trajectoqr in 9 n V. Moreover, if 9 n I,- hs a 
smooth (P) manifold structure (compatible with dj and if 4 is generated by a 
continuous vector J;eld, then g may be chosen smooth with zonzero derivative abxg 
trajectories. 

Procf. The essence of this proof is due to Wilson, [9, Sect. I]. Let h = 
m(X) u w(X). Alth ough Wilson was concerned only when h is a periodic solution, 
his argument remains valid when h is compact as in the case at hand. For the 
sake of completeness, we summarize the main ideas of his proof. Define the 
function g, , g-: P n Y + R by 

g&> = ~~P{W(% 9, A)((1 + 2t)l(1 + t)) I t b 0), 

g-(x> = sup(d($(x, t), h)((l - 2t)/(l - tjj j t < 0). 
(2.4) 

Using the uniformity condition from the definition of 8, one establishes the 
continuity of g, , and shows that the derivative lim,,,+ sup((g+$(x, t) - g+(z)j/t) 
is negative and uniformly bounded away from 0 on compact subsets of 9 n 6’. 
The same properties hold for g = g+ - g- . If 3 n V is smooth, then using 
[lo, 2.51 one may assume g is a smooth function. Finally, a consideration of the 
limiting values of g, and g- on each trajectoq,r as t -+ &OO shows that g is 
somewhere zero. 

THEOREM 2.5. Let V and h be as ZTZ 2.3 and let x E V. Then a necessary and 
su#cierlt condition that s E 9’ is the existence of local swjace of section 547 to 4 
through x intersecting each trajectory at most once, such that $(g,!(W), R) is closed 
in n4 - A. 

This was proved in [4] in a straightforward fashion, using our Theorem 2.3 
to establish the necessity. 

In regions where a and UJ are continuous, it might be expected that .P is not 
only open, but also dense in AL! - A. However, Beck [2] has constructed an 
example of a flow in the plane which, when extended to the 2-sphere S”, has 
CX(S~) = W(P) = (a> and has a dense set of primary separatrices. Hence evei> 
trajectory is a separatrix, by Remarks 2.1 and 2.2. Such examples motivate the 
following theorem, first proved in [4] for different definitions. 

THEOREM 2.6. The set Yl is of first category in. X. 

PYOO~. We need some notation and a lemma. For each E > 0 let .9+(c) be 
the set of all x E Yi such that there exist sequences E,, + x, t, --+ +a satisfying 
+(xn , tii) ---f y with d(~‘, W(X)) > E. Define .9-(e) similarly using 01 and -fn -+ - co. 
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Noting that Y+(Q) C Y+(EJ whenever or > us, and similarly for E , we can 
write Y; as the countable union u(Y+(l/n) u %(1/a)) taken over all positive 
integers n. In that which follows we will concern ourselves only with 9’+(e) 
since analogous statements can be established for X(E) by considering 4 with 
time orientation reversed. We complete the proof of the theorem with a lemma. 

LEMMA 2.7. Y+(E) is nowhme dense. 

Proof. Let t(x, y) = sup{t E R ] d(&y, t), W(X)) > E). If x E Y+(E), then w 
is continuous at x and t(x, y) is finite for y close enough to x, but because A+(x) 
is not contained in the +neighborhood of W(X), the function t(x, 0) must be 
unbounded in every neighborhood of x. 

Suppose the lemma is false. Then there is a nonempty open set V,, contained 
in %‘/(Y+(E)) and a point x1 E V, n Y+(E). S inc w is continuous at points of e 
Y1 , we can find an open neighborhood Vr of x1 with Vr C V, and such that 
dH(w(xl), w(d)) < ~14 if x’ E VI . Pick T > 0. Since x1 E Y+(E), t(x, , .) is 
unbounded on V, , so there is a point u1 in V, and a corresponding tr > T such 
that d(+(u, , t,), w(q)) > E, and hence $(z+ , tr) is in the open set 

w = (y j d(y, W(X~)) > &>. 

Choose an open set Va containing u1 , of diameter less and +, and with its closure 
contained in VI n $(W, -tr). Since Y+(E) is dense in V0 and so also in V, , we 
can find xa E V, n Y+(E). Then t(x, , .) is unbounded in V, , so there is a point 
us E V, and a corresponding t, > 2T such that d($(~s , ta), w(xJ) > E. Hence 

d($(uz 3 tcJ, w(q)) 3 d(& , tn), w(xJ) - dH(++), w(xl)) > 2~ and so 
$(q , ts) E W. Proceeding recursively, given 21, E V, with diam(Vn) < l/zz and 

~VTJ c VTn-1 7 and given t,n > nT satisfying +(un , t,) E W, we find an open set 
V,+l with diameter less than l/(n + 1) containing u, and with %‘@?n+,) C V,% n 

$(W, -t,). Since Y+(E) is dense in V0 , so is it in V,,, and we can pick 

%+1E T7n+1 n Y’+(E). This means that t(s,+l , .) is unbounded in V.n+l so there 
is a point u,+~ E V,,, and a corresponding tn+l 3 (n + l)T satisfying 

d(#(un+, > &+A 43-‘n+d) > E. so 

that is, +(~,~+r , t,,,) E IV. 
Note that V, C V, whenever n > K, and that +(V, , tr) C W whenever n > k. 

Since the diameter of VT* goes to 0 as n becomes large, we have by the finite inter- 
section property of compact sets that the intersection n %L(V,J taken over all ?z 
is a singleton, which we denote by {y}. Theny is in V, and d(#(y, t,), w(q)) > &, 
so that dH(w(xl), w(y)) > &. But y E Vr , which is in contradiction with the 
defining property of Vr . Hence the lemma is proved, as is Theorem 2.6, 

The following lemma supports a very basic part of our intuition. 
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LEMMA 2.8. Oppose X is a manifold (Co is suj’icient). Then w(x) meets the 
closure of each connected component of A+(x). 

Proof. Let (W?J be a fundamental sequence of neighborhoods at x with each 
Tisr, homomorphic to an open ball in Euclidean space. Then 

Pick CL, E Wn and t, >, n such that I\‘, + II and 4(x, , t,J “3’. Choose an arc a, 
in %?c?(c$(W~ , [w, CD))) which originates at $(xs , tn) and terminates at #(x, r,). If 
IR is an integer such that ~/WZ < d(y, w(x)), let B,,, = (U E X 1 d(z~, w(x)) < l/nQ. 
For n large enough, a, intersects B, , and for such R we let So be the subarc of a,, 
originating at +(x, , tn) and terminating at the first (in the parameterization of a,) 
point where a,n meets B, . In the Hausdorff metric topology of compact subsets 
of M, the sequence (an} has a subsequence converging to a continuum avi . Note 
that y E L+ and 01,~ C A+(x), so that 01, must be contained in the same component 
of A+(x) as y. Furthermore, ol,, n B, f ,z, and since X is compact 
lim sup{a,,, n B,) is nonempty. But such a limit is simultaneously contained in 
w(x) and in the closure of the component of A+(x) under consideration. 

Remark 2.9. An easy modification of the above proof maintains the result 
when X is locally connected. Obviously, the statement dual to 2.8 regarding A- 
and 01 is valid. Furthermore, if Y; = /M(X) u A+(X) (in particular whenever a 
and w are continuous), each component of Y1 is connected a(X) u w(X). 
Finally, if one defines the analogs of cx, w, II-, and A+ for actions of the integers 
on X, then a similar lemma holds. This point of view is particularly convenient 
when a PoincarC map is induced on 2 surface of section, and we will adopt it in 
the next section. 

3. SOLITARY PERIODIC SOLUTIONS 

We now suppose that # is generated by a smooth (CL?) vector field 17 on 3-space. 
We furthermore assume that $ has a solitary periodic solution y, which is not a 
rest point. 

LEMMA 3.1. There is a neighborhood of solitude U for y satisfying: 

(i) U is @geomorphic .with D2 x S such that y = -(O) x S1 

(13” =(ZECIIZj ,(l); 

9 = aLY; a = boundaql of maxifold with boundary); 

(ii) There is a Riemannian metric on Usuch that if 7 is represented in Da x S1 
coordinates as q(z,19) = (5, e), then &’ E 2~. 
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Proof. We may choose a tubular neighborhood f : R2 x 9 + R3 of y such 
that y = J({O} x S) an d so that +(x, .): R -+ y is a covering off 1 (0} x S’ for 
some x E y. In the coordinates given by f, 0 = 1 on y. The continuity of 0 assures 
that a disk D, in R2 centered at the origin, may be chosen small enough that 4 is 0 
nowhere on U = f(D” x Sl). On the tangent space of U, we multiply the given 
coordinates by 244 to obtain new coordinates with 6’ = 2-ir, as desired. 

Given solitude U around y satisfying 3.1, we would like to perturb the 
boundary of U slightly to obtain nice tangency with 7. This is done in 3.3 after 
“nice” is defined in 3.2. By “circle” we mean a homeomorphic image of S1. 

DEFINITICN 3.2. The vector field 7 has generic contact with the submanifold 
aU in R3 if the following conditions are satisfied: the subset of aU where 7 is 
tangent to aU is either empty or a finite set of circles collectively denoted by 7. 
Each circle separates a region of egress from a region of ingress of n relative to U. 
Everywhere on 7 the component of 7 normal to aU (it is 0 precisely on T) has 
nonzero derivative in a direction in aU transverse to 7 in au. Furthermore the 
subset of 7 where f is tangent to T is either empty or a finite set of points, 
collectively denoted x. Each point of x separates an open subarc of 7 where 17 
points toward a region of ingress from an open subarc of 7 where q points 
toward a region of egress. Finally, at each point of x the component of v tangent 
to 7 (is 0 precisely on x by definition and) has nonzero derivative in a direction of 7. 

The following lemma is a special case of [5, Theorem 11. Its proof is given 
essentially by Percell [S, Proof of Theorem 2.51. 

LEMMA 3.3. Suppose U satisfies 3.1 and V is an open set containing U with 
17 # 0 on V. Let J& denote the space of C“ embeddings of s1 x 9 in V zuith the 
CT topology, and let dO’ C dT consist of all embeddings f such that f (9 x 9) has 
generic contact with 7. If I’ > 3, then dir is open and dense in JX!“. 

We will say that U is a generic neighborhood of solitude if aU has generic 
contact with 7. Henceforth zue use U to denote a fixed genevic neighborhood of 
solitude for y, satisfJling 3.1. Notice that if x is a point of the tangency set r C a U 
and T(X) points from ingress to egress then the $-trajectory through x is externally 
tangent to aU at X. Dually, if T(X) points from egress to ingress, an internal 
tangency results. If T(X) is tangent to 7, i.e., x E x, then the +trajectory through x 
crosses from inside U to the outside, or vice versa, at x. Hence x is called the set 
of crossing tangencies. 

Basic regions of U are defined as follows: 

77, = {X E U / +(x, It) E U for all t > O}; 
E=U+nU---y (elliptic set); 

A, = U+-(Euy) (positively attracted set); 
A- = U- - (E v y) (negatively attracted set); 
H = U- (U+v li) (hyperbolic set). 
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Remzmk 3.4. U is an isolating neighborhood for y in the sense of Conley 
and Easton [3] if and only if E = 0. 

Rewmk 3.5. It is convenient to notice that Lr* are closed in li, as is E;‘ in 
I; - y, whereas H is open in U and LF - y. However, & may be open or closed 
or neither in li - y. 

In the local analysis we are developing, we would like the boundaries of E, H, 
A+ to be composed of separatrices. However, due to the global nature of the 
definition of separatrix, this is usually not so, since E, H, A+ are relative to our 
choice of U. Hence, a modification of definition is necessary for the local situation. 
Our naive viewpoint is that U should be like a point at infinity, and any trajectory 
which leaves U is lost from our view. Therefore, let g be a smooth nonnegative 
valued function on R3 with g-l(o) = R3 - Int(U) (Int = topological interior) 
and let $ be the solution flow to the vector field g 7. Use CF generically to denote 
a maximum trajectory segment of #(+(N, I) where I is the maximum closed, 
not necessarily bounded, interval such that 4(x, I) C U), and note that each G 
is a union of $-trajectories. Say 0 is a separatrix of $ relative to U if it contains a 
+-separatrir. Our notation: 

(3.6) 

Henceforth in the paper, we will be concerned only with separatrices of 4 relative 
to LT. Therefore we write 9, Y, , Y; , 9s , and .9 to denote the respective sets 
above. 

In order to clarify some relations between the tangency subset of U and the 
set of separatrices, we need some notation. Let 75 , ~~ , x, respectively, denote 
the sets of internal, external, and crossing tangencies. Let F denote the union 
of all &trajectory segments c such that (J C U and g n TV + 2. Let 1’; (respec- 
tively, C) be the set of x E U where w(x, 4) = y but w(.~ I/J) is discontinuous at x 
(respectively! using a). Notice that if W(X, $J) f y, then it is a singleton subset of 
ZiU, in which case we slightly abuse notation to write w(x, 4) E BLi, and similarly 
for a. 

LEMMA 3.7. w(., #) is continuous at x tjc W(X, tj) E aU - 7i . 

Proof. Let y = w(x, $I) E L3lJ - T< . We will proceed, considering various 
cases. In each case, we choose local coordinates (u, z), zu) in a neighborhood V of y 
in R” so that the vector field 7 is given by zb = 1 and ii. = 5 = 0 and, in addition, 
r and r?G are “nicely” related to 7 in the local coordinates. In every case, the 
choice of such coordinates is based on a theorem of Percell [X, 2.21. Since 



332 RICHARD H. ELDERKIN 

y = 4(x, t) for some t > 0, there is no loss of generality in assuming s E V. 
Our first case is y E aU - r. Here (u, v, w) may be chosen so that, in addition, 
SU is given near y by r~ = 0. The resulting continuity of w(., 4) is now obvious. 
Next, suppose y is an external tangency of 4 (so x = y). In this case the coor- 
dinates may be chosen to straighten v as above and so that U n T/I is given by 
v > ~9 with 7, n V given by w = v = 0. Again, the local coordinates make 
continuity of w(., #) obvious. Finally, if y E x and q(y) points from ri to 7, , 
we may obtain: 

U n V = ((24, V, W) j v 2 2u3 - UW), 

r n V = ((u, v, W) j v = w3 - uw and &j&u = 0}, 

and y = (0, 0, 0). (If v(y) points from T, to 7i , we alter only the characterization 
of U n V to ZJ < w3 - UW.) This viewpoint not only allows an easy verification 
of the continuity of w(‘, zJ), but it also provides an interesting look at 
discontinuities along ri accumulating at x. 

COROLLARY 3.8. y. c 9 U r, u r- . 

We also have the following partial converse to 3.7. 

THEOREM 3.9. w(., #) is disco~ztinuous at x ;f W(X, 2)) E 7i ad x t$ ,4+(x, #). 

Proof. Let y = w(x, #) E 7i . Letting to 3 0 be determined by 4(x, t,) = y, 
we see that 4(x, t) E U for some t > to because #J(x, to) = y E 7i . Consider first 
the case where $(x1 t’) $ U for some t’ > t, . Then there are times t1 and t, such 
that 0 < t, < tl < ta , 4(x, [0, tJ) C U, and +(x, [tl , te]) n U = 4. We may 
choose a neighborhood Vs of y with local coordinates (u, v, w) satisfying the 
following: (i) 17 is given by zi = d = 0, ti E 1; (ii) U n V, , TV n V. , y are 
given, respectively, by v < wa, ZJ = w = 0, (0, 0, 0); (iii) the intersection of 
#(x, [0, tJ) with ?Zt(V,,) is the trajectory segment u = v = 0. For E > 0 let B, 
be that subset of V, given by 21‘2 + v2 < E and zu = 0. Then E may be chosen 
small enough, along with a S > 0 so that #(BE, (--6, 6)) C V, , so that 

W, , (-to - S, t, - to + 6)) is an open neighborhood of 4(x, [0, tJ) which inter- 
sects V, only in the cylinder 2 + vs < E, and so thatd(B, , t, - to + 6) n U f a. 
It is clear from the last condition that ~(a, +) E aU for all x in the neighborhood 
qb(B< , (-to - 6, -to + 6)) of x. But because of the properties of V,, , it is also 
clear that for an open set of such x, w(z, zJ) is not in the neighborhood 
y5(BE , (--6, 6)) of y = w(x, #). Hence w(., 4) is not continuous at x in this case. 

Finally consider the case where $(x, t) E U for all t > 0, but x E /l-+(x, 4). Let 
V,, and its local coordinates be chosen as above. Choose a sequence (y,J in the 
region of V,, given by v < 0 and such that lim y, = y as n --f 03. Letting 
x, = $(yn , -to), we have xrL + x. Suppose w(., 4) were continuous at s. Then 
w(x, , #) -y, so for each n there is a t, > 0 such that w(x, , #) = $(xn , t,J and 
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C(hT ,? , [O, t,J) C CT. Since w(x”, , $) +J’, we also have $(xn , f, - t,) + s. But 
since w(x, 4) = y, we deduce t, -+ 00. But then x E A+(%, $I), contradicting the 
lemma’s hypothesis, so w(., #) cannot be continuous at x. 

COROLLARY 3.10. F C .Ya U *Yr _ 

Proof. 1’l-e have just seen that if x E F - 9s then x E A’(x, $) u I’f-(.~, 4). 
Moreover, the actual procedure used also shows that .x E 0(x, #) u A-(x, #), 
which shows that x E .U; . 

THEOREM 3.11. 9s u 9; = 5 u r+ u C u Yr($). 

Pm$. Inclusion of the right side in the left follows immediately from 3.6 
and 3.10. For the converse question, 3.8 shows that it will suffice to show 
Yr C 7 L’ Yr($). Let 0 be a maximum #-trajectory segment in Y1 . Then u is 
a union of #-trajectories and contains a primary $-separatrk But a contains 
more than one noncritical #-trajectory iff cr C F-, and rest points of # in CT are 
easily accounted for. 

LEn,ll\rs 3.12. .F leas Lebesgue measure zero and is noz&ere dense. 

ProoJf. Since F C %:6( X) C$(T x R) u y, the lemma folloxvs from an 
application of Sard’s theorem to the restriction of ~5 to 7 x R. 

LE%I,InI.l 3.13. r, is nowhere dense in CT. 

Proof. Let I7 be any open set in U. If x E r+ n V, then for w(., +) to be 
discontinuous at x, there must be a pointjj E P’ such that a(~, #) E U. There are 
two possibilities: either w(y, Z/J) E a?7 - 7 or w(y, #) E 7. In the former case, there 
is an open set Vr containing 3’ so that ~(.a, #) E au - 7 for every 2: E Vr . Wence 
the open subset Vr n F’is excluded from I7 n r, , and r+ cannot be dense in V. 
In case ~(39, $) E 7, the generic contect makes it easy to find a point z near y 
(z E V) such that U(Z, #) E iii7 - 7. This puts us back in the former case, with 
P+ not dense in T/-. Since V was arbitrary, r, is nowhere dense. 

THEOREM 3.14. Y. u Yl is offirst category in U. 

PFOC$ This is a direct consequence of 3.11-3.13 together with 2.6. 

4. THE REGIONS Ai. 

Because of the duality between A, and A_ , we restrict our attention to A+ I 
Our first concern is b(d+) (b = topological boundary in U), especially in its 
relation to internal tangencies. Consider a point s E b(A+) - y, and let 
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L = L(x) -= sLlp{t I$+, [O, t]) c b(A+)}. It is easily seen that L is infinite when 
x E Q-4,) n E. Furthermore, if x E &A+) - E, then x E b(H). 

THEOREM 4.1. If x E b(A+) n b(H) - E, Uzez L may be jirzite or infinite. In 
the jirzite case 4(x, L) is an internal tazgency with 4(x, [O, L]) C b(H) and 
#J(x, [L, cTJ)) C Int(A+). If L is injkite, then 4(x, Rf) C b(,4+) n b(H) and there is 
a T 3 0 such that $(x, (T, a)) contaim no internal tangencies. Furthermore if 

x, -+4(x, t) with t > T and .T,? E H (aZZ n), tl zen there is a divergent sequence of 

positke times, {t,J, such that 4(xn , [0, t.J) C H (an z). 

Proof. To verify that L may be finite consider the vector field 2 == -2, 
6 E 1 on R2 x .Y1 and let aLr n (R2 n {e}) be as shown in Fig. 1. That L may 
be infinite is clear from considering a simple vector field zi = u” + o”, 8 = 0, 
4 = 1 for (u, V, 0) E R” x S, with U = {(u, a) 1 u” + v2 < l> x S. 

b (A+) 

FIGURE 1 

Suppose x E b(H) and L is finite. Now if 4(.x, t) E b(A+) n Int(U), then 
9(x, t -+ c) E b(A+) for sufficiently small E > 0. Therefore, since L is finite, 
f&Y, L) E au, x E B(A+) c u+ ,4(x, L) must be an internal tangency. Since r is in 
%?QL4+) which is positively+invariant, for t > L we must have$(x, t) E @Q/J+) - 
(b(;4+) u r) = Int(A,), that is, 4(x, (L, a)) C Int(14+). This clearly precludes 
4(x, s) E E for s < L; therefore #(x, [0, L]) C b(H). 

Finally suppose x E b(H) - E and L is infinite. Then $(x, R+) C b(A+) - E = 
b(A+) n b(H). Since W(X) = y, we may find T = inf{t 3 0 / $(x, (t, a)) C Int U>. 
If II”, -+ s with x, E H, ley t, = sup(t j +(xn , [0, t]) C U}. Since x, E H, t, is 
finite, and certainly &x,[O, tJ) E H. To show that (tn} diverges observe that 
for each E > 0 there is a neighborhood V, of x such that for some t > l/c +(VG , t) 
is contained in the E-neighborhood of y. Since {x.,J is eventually in l/-C , we also 
eventually have t, > l/c. The proof is complete. 

Any analysis of A, and its boundary is complicated by the possibility of 
b(,4+) not being positively $-invariant. A reasonable question is: can U be 
altered, preferably by a shrinking, to effect the positive invariance ? Certainly 
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it can in the simple example of Fig. 1. That situation is typical to the extent that 
in general, one would need to excise a portion of U bounded by 5U and a 
“surface” of trajectory segments emanating from an arc of internal tangency. 
There ends the generality of our example. -4 first “excision” theorem of this sort 
is given in [.5]. The scope of the entire problem is beyond our present efforts. 
However, on the basis of our implied conjecture and Theorem 4.1; we hence- 
forth assume 

(A) #(_A+), R+) contains no internal tangencies (R+ = (1 E R j t > 0)). 

Remark 4.2. As an immediate consequence of Assumption A and 4.1, we 
have #(b[,g+), R+) C b(A+). 

For purposes of intuition, we often think of separatrices as lying on smooth 
surfaces. This is not generally the case: examples are given in [4] of smooth 
flows where L4p = :Yr and .L” is not a manifold. The remainder of this paper will 
be concerned with the effect of a strict hypothesis of manifold structure for ,Y’, 
with some consideration of a weakening of that hypothesis. The strict manifold 
hypothesis is 

II. (9, v Y;) n @Q/J+) - y is an embedded submanifold of U. 

By “submanifold of U” we mean that for each point x of Sp, U Y1 - y either (a) 
h* E Int(U) and the usual condition holds, or (b) x E 8U and either the usual 
condition holds in U, or else there is a submanifold chart in the double of U for 
Ye u Y; - y at ?c. This weakened definition allows .YO or Y; to be internally 
tangent to au. 

Henceforth, let M = (YO u Y;) n %‘t(A,) - y. 

THEOREN 4.3. M is t.2~0 dime~~sional. 

P~ooj. By 3.14, dim(M) < 2, but since U is positively +-invariant 
dim(M) > 1. The +-invariance of M, together with the transversality of+ with 
the coordinate disks D, = Dz x (O>, implies that A4 n D, is an embedded sub- 
manifold of D, . It will suffice to show that no point of that submanifold is 
isolated in D, . 

Let IL be in M n D, . We consider cases: x E Int(A+) or E E b(A+). Assume the 
former. Then x # r+ . But .X 6 5 by 3.2, so that x $ r- . Hence x E ,sp1@), and 
in fact, one may check that A-(x, #) = ‘Z so that we may picky E A+(x, 4) n D, . 
Then x E ~l-(y, #) and consideration of 2.8 and 2.9 shows that x is connected to y 
within D, n A-(~7, $). But ,!-(>I, #) C Y;(#) and so x is not isolated in ilil n D, . 

If x E 6(/Z+) we consider two subcases: x E @A+) n b(H) or x E b(A+) - b(1T). 
In the former case, we may use 4.1 and 4.2 to find JJ E A+(s, 4) and proceed as 
above. In the latter case, we must have x E b(-4+) r\ (b(A) n b(E)) C r/, n z;i_ = 
E u y, that is, J E E. It is easy to obtain points of b(A+) if $(x, R-) contains an 
internal tangency, so assume to the contrary that #x, R) C Int(rr). Then one 
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finds, by considering the accumulation of A, at X, that A-(X, 4) is not empty. 
Since +(x, R) C Int(U), we have A-(X, 4) = A-(x, E), and hence by 2.8 and 3.11 
Y1(#) r\ 978(A+) accumulates near x. Hence dim(M n DB) > 1, and finally 
dim(M) = 2. 

Since ild is two dimensional and transverse to D, , the components of M n D, 
are embedded one-dimensional submanifolds of D, , and hence must be homeo- 
morphic to an interval (0, I), (0, I], or [0, I], or the circle S1. Iff: (0, l] + D, is 
an embedding onto a component of M n D, , then f(1) E a U and the limit as 
s + 0 off(s) is D, n y. When confusion will not arise, we will identify (0, l] with 
its image under f, and write 1 E aD, , 0 E y, and etc. In the case that a component 
of M n D, is S, then the region bounded by 9 is contained in A, . Since points 
of A, must exit from U in negative time, there must be a t < 0 such that 
$(a, t) meets au. It is precisely because of this that we use a weak definition of 
submanifold for the manifold hypothesis. 

We need some notation. Let 0: U = LY x 9 + s1 also be the projection. Let 
A be a connected component of A+; fix x in A; let A”, denote the component of 
A n Int(P x {0(&q t))>) w lc h’ h contains 4(x, t); and finally let A, = V&(_&) - y. 

THEomn% 4.4. Assume H. Then thue is a T > 0 such that one of the following 
holds. 

(a) There is a homeomorphism F: Ut>r A, + D” x [0, NJ) such that 
F(A,) = D” x {t - Tj-. In this case lim sup A, = y as t ---t m ik, the Hausdorff 
metric topology, and Int(A) C 8. 

(b) There is a homeomorphism F: A + (0, l] x 9. Here F(A,) C (0, l] x e*it/m 
where m is a positive a’nteger such that +(At , mn) C At for .euery positive integer n. 
F extends to a homeomorphism of A u y onto a quotient space [0, l] >< S/R where 
R is the relation (sl , pl) R(s, , Be) ifsI = sg = 0 and /$ = /JeVinliiafor some integer 
n and with m as before. y is mapped onto (0) x S/R. Finall?, A C y6 . 

(c) Let (T, 5) be polar coordinates for the plane. There is a sequence (possibly 
void or finite) of nonoverlapping subintervals ((ai , bJ} of (0, n) and continuous 
functions ri: (ai , bi) + (0, 1) with ~~(5) ---t 0 as either < + ai or 5 - bi , such that 
for each t > T there is a homeomorphism 

ft: A, + ((r, 5) / 0 < 7 < 1, 0 < [ < ‘7~ and r 3 r&J .when a, < t: < bi}. 

Heref@Un A,) ={(Y, 5) 1 r = 1,0 < 5 <rr}andifq+ yinA,and(r, , 5,) = 
ft(x,), then I’, + 0. For each i, the set 

Es = d(f&raph c), R) u Y 

is a tube, wrapping around y and bounding a component of the elliptic set. Precisely, 
Ei is an embedded copes of one of the following quotient spaces: 
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(cl) (sl x R)/l? h w ere R is the relation determined by a preferred point 
w0 E S1 with (c+ , /3,) R(a, , ,k$) if q = 01~ = w0 and /3Z = /11 + n for some 
integm n. 

(~2) (9 x S)IR where R is the relation determined by a preferred pokt 
w0 E SI and a positive integer m with (oil , pl> R(ae , /Q ;f 01~ = ol, = w0 and 
p2 = p,.z+nl~~ f or some integer n. This integu m also satkjies $(AB , mu) C A, for 
all positive integers n. 

In eitkev case, (cl) OT (c2), A is flat necessarily homeoFlzorphic to -4? x S. 

(d) This may be viewed as a degenerate case of(c). With the same notation, 
the subintervals (ai , bi) are in (0, 27;] and ft: A, + ((T, 5) j 0 < r < 1) zaith 
f@U n A,) = ((T, 5) j r = 11. After these mod$cations, we use the description 
in (c)for the tubes Ei . Corresponding to (cl) and (~2) are respective cases zohich we 
call (dl) and (d2). 

Proof. Consider the topological type of a component of b(9,) - y. If it is Sr: 
then since$(b(A,), s) n alJ = o for s 3 0, it must be true that A,, = $(A,, s), 
and $ gives a homeomorphism of D” x [0, 03) onto U,~,~~,+, . We also need to 
show lim sup At+, = y as s + co. Since A, C U+ , y C lim sup A,,, . Furthermore, 
given a neighborhood V of y, if A,,, were not eventually in V, one would 
obtain a contradiction to the embedding aspect of H. If 4 is the component 
of A+ which contains A, , then # is parallel for positive time in M(A) since 
lim sup Al+ = y, and likewise for negative time because of 4.1. Rence we 
have established conclusion (a) for any x E -4, where b(A,) is a circle for some 
T > 0. 

Consider the possibility that a component of b(A,) - y is homeomorphic to 
(0, 11. Abusing notation, 1 E aU and 0 E y. Since points of such component 
are arbitrarily close to Attz f o for each s < 0 and so for all real s. Since 
s = 257, A,,, is in the same disk D, as A, , for all integers n. But only finitely 
many Attn can be distinct if H holds. Furthermore, the distinct ones may be 
listed as 8,+r, A,,, ,..., At+,, = A,. 

There are two cases: that where A, = b(A,) - y, and that where b(;4,) C 
%[(A, - b(A,)). In the former case, part (b) of the theorem follows from what 
we have established above. In the case where (0, l] C FZL’(A, - b(A,)), one may 
see that there is a distinct component of A, , also homeomorphic to (0, 11, with 
1 E 80, , 0 E y. Let these two components be denoted b, and b, , respectively 
We may assume they have been chosen so that one of the two sectors of D, 
between them contains points of A and yet contains no other boundary component 
of type (0, I]. Let d be the open arc of aD, between b, and b, in that sector. We 
claim that d C -4, . Indeed if y E d n b(A+), then y must be a point of ingress by 
A, so that y E U - U- and consequently y E b(H). But then one may use 2.8 and 
2.9 to obtain a component of A+(y, 4) n D,C b(A+) which extends from y0 to 8D0 f 
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in contradiction of the choice of b, and b, . Since 6, u b, u d u 3/s is contained in 
U, , so is the closed sector R of De bounded by that union. If A, = R - y, 
then an argument, similar to that given above when A, = (0, 11, establishes 
conclusion (c) with a void set of functions Ci . On the other hand, if A, is 
properly contained in R - y, we have R - (A, U 7) C U+ - (A, u y) C E - y. 
Furthermore, if y E R n E, then y is connected to aD, or y within D, n U- (by 
2.8 and 2.9). Since d C A+ , each component of E n R contains 3/e in its closure, 
and hence the mutual boundary of such a component Ei and A, is given by 
(0, 1) U ys , with Ei bounded by (0, 1) u ye in D, . There can be only a countable 
number of the regions Ei . If A,, = A, , it may be the case that $(Ei , m) = Ei . 
But it is easy to construct examples and index the Ei in such a way that 
+(Ei , m) = E,+l for every integer i. In any case, conclusion (c) of the theorem is 
satisfied. 

We have just seen one way in which the boundary type (0, 1) can occur. The 
region R bounded by such a curve and y must be contained in U, . Furthermore 
R C U- , since if a point in R were to exit U in negative time then the boundary 
type (0, 1) would be broken up to contain boundary components of type (0, 11, 
which cannot happen in view of our previous treatment of (0, 11. Hence the 
component A must be exterior to (0, 1) U ys . Now either A n D, has boundary 
components of type (0, l] as above, and conclusion (c) holds, or 87.J C A and 
conclusion (d) holds. 

It remains to be shown that boundary type [0, l] cannot occur as an even- 
tuality. Suppose [0, l] were a component of b(A,) and denote it b, . Let the 
component of b(A,+,) be denoted by b, . Since b, C U+ , it is impossible that 
+(b, , n) u b, for any positive integer n, and furthermore y0 E lim sup b, as 
‘IZ * co. Under H, we must have ys = lim sup b, , or lim b, = ye as n + co. 
The only way this can occur is for the endpoints of 6, to come together as s 
increases, so that for sufficiently large n, b, is a circle and conclusion (a) applies. 
This completes the proof of Theorem 4.4. 

THEOREM 4.5. If C is a component of A n L+ , theta A is described by (c) or (d) 
of 4.4, and description (b) of 4.4 applies to C. If A is described by (~2) or (d2), 
the corresponding integH m may be diferent than the one used to describe C. For 
each x E C, the prolongation A+(x) is a nontrivial union of tubes Ei . 

Proof. If C is a component of A n Yr , then C is a component of A, then 
CC Int(A) and g{(C) n b(A) = m b ecause of H. Hence C is a component of 
A+ n (YO u Y;) and is a submanifold of U - y, invariant under 4 in positive 
time. Let x be a fixed point in C and let 6 = e(x). Now A+(x) C+?/‘(A) C U+ . 
But A+(x) C U- so that A+(X) C E n b(A). Using the methods of (2.8), one may 
show that each component of C n D, intersects aD, and contains ye in its closure. 
Hence C is described by 4.4b. Since A+(x) must be nonempty and contained in 
E n b(A), it must be a union of tubes, by 4.4c, d. 
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5. ‘II'E.4KENING THE IfTPOTHESIC H 

For contrast with the above theorems, it is instructive to consider the following 
weaker hypothesis: Assume YO u YI - y an immersed submanifold of U, such 
that each component of YO n (P x (81) - y or Yr r? (DB x (e>) - 7 is an 
embedded submanifold. A relevent example is constructed by suspending the 
composition of two diffeomorphisms, the first of which maps the region Xi onto 
X,,l (Fig. 2) with no lateral effect, and the second of which moves every point 
strictly to its right, excepting y and the right endpoints of the Xi ? which shall 
be fixed, and having only enough vertical displacement so that the X, are 
invariant sets. Then A, = 9?E(ui XJ, and the remainder is in H, save the ray 
emanating from y to the right, which is in d- . 

FIGURE 2 

6. OTHER EXAMPLES 

Define a vector field (&8) = 7(x, 0) for (x, 0) E RZ x s’ as follows: d = 2~ 
and .* = f(s) so that the solution flow to 3i = f(x) in the plane has trajectories as 
indicated by the solid curves in Fig. 3. Call the rest point ‘yo . If V is the closed 
region of R2 bounded by the closed (broken) curve of uniform dashes in Fig. 3, 
then U, = V >( S1 is a neighborhood of solitude for the periodic solution. 
yO x S1 in R2 x S1. Furthermore, U, satisfies conditions A and H of Section 4.. 
There is a region of H on the left, one of E at the top, and one of d, on the right 
of u,. 

T?‘e now alter U, slightly to obtain neighborhoods of solitude E4 and Ua I 
Fix 0, in S. We wiI1 let the respective intersections of U, , U, , U, with R’ x {S> 
be all the same if 0 is not near 0, in S’, so that the alterations of CT1 will occur 
only in R* >< (8) for B near 0, . Let U, n (R” ): (e,)) be given by that alteration 
of V in Fig. 3 indicated by the dotted curve. Let Uz n (Rz x 1;8&) be similarly 
indicated by the dahes of alternating size. Finally, let U, and Us be smooth, using 
an isotopy over fI in a neighborhood of 0, in S’ to patch together the required 
shapes. 
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FIGURE 3 

The qualitative analysis of Us is the easier. We have cut into the elliptic 
region of U, , so that trajectories, which remained in U, for all time, briefly exit 
from Us . Hence in U, there is a tube of 4- (type (4.4a) for Y-) spiraling down 
the hyperbolic side of the elliptic set of U, . 

In Us notice that the elliptic region is the same as in U, , but some of the 
trajectories which are hyperbolic in U, become part of /l+ in U2 . To get a 
complete idea of the change, let 01 be an arc in (Us - U,) n (R* x (B,]) contained 
in il+( U,) and abutting on E. For t < 0 let OI~ be the image of a: moved by the flow 
for time t. Notice that there is a T < 0 such that at C Us if and only if t > T. 
However, each at abuts on E. Hence the union of the at over t < 0 is a fin attached 
to E, spiraling around to have limit as t --f -co in the closure of the separatrix 
surface which comes up from the bottom to meet y. If one fattens 01 out to 
include the entire part of A+( U,) which is outside U, , a satisfactory vision of U, 
may be obtained. Notice that neither condition A nor H of Section 4 is satisfied. 

7. ON THE POSSIBLE LACK OF SEMICONTINUITY OF (Y AND w 

Although we have concerned ourselves only in whether or not a: and w are 
continuous, a brief note on the semicontinuity of these functions may be of 
interest. Recall the definitions of semicontinuity: for example, w is lower S.C. at x 
if for every open set V meeting W(X), there is a neighborhood N of x such that 
y E hr implies w(y) meets I/; and w is upper S.C. at x if for every open set Ti’ 
containing W(X), there is a neighborhood N of x such thaty E N implies w(y) C 17. 

We can construct smooth vector fields such that the resulting w-limit function 
is (a) neither upper S.C. nor lower s.c., (b) lower S.C. near some point but not 
upper S.C. there, or (c) upper S.C. near some point but not lower S.C. there. 
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For (a) and (b) let (I’, 0) be polar coordinates for the plane. If the vector 
field (i-, 6) = ~(r, 0) ’ g’ IS rven by I: = ~(1 - re), 8 = 1, then the resufting omega 
function satisfies (a) at the origin. If we multiply 17 by a nonnegative valued 
function which is zero exactly at (Y, 19) = (1,O) the resulting w function satisfies 
(b) at this new rest point. 

Finally, for (c) we construct an example in the Cartesian (?c, y) plane as 
follows. Set k = -X exp(- I/X”) an in the closure of quadrants two through d 
four set j = 0. For x, y positive, let ZL be given by y = U( 1 + x i sinf 1,‘~)) and 
set D = -u(u - 1)” exp(-l/x”. This determines j in the open first quadrant, 
and one may verify that 2, j are Ci” in the entire plane. Furthermore it is possible 
to verify that 

W(X~ , yO) = ((0, yo)) if either x0 < 0 or y,, < 0; 

= ((0, 0)} if s,, > 0 and 0 < ye < 1 + x,, + sin( l/&Q; 

= ((0, y) 1 0 < y < 25 if x0 > 0 and y,, > 1 + .~a f sin(l/x,). 

Hence (c) is fulfilled for (x,, , y,,) on the curve y = 1 + x f sin( 1 ,‘x) (X > 0). 
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