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1. INTRODUCTION

A separatrix trajectory of a general solution to an ordinary differential equation
is one which differs topologically from near by trajectories. Maximal regions of
parallel flow are separated by a union of separatrices. The structure of these
solutions has been a useful tool in the qualitative theory, especially in the plane
(see, for example, [2, 6, 7]). We will consider the separatrix structure of a flow
near a solitary periodic solution in 3-space (cf. [5]). A periodic orbit y is solitary
if it has a compact neighborhood (neighborhood of solitude) U such that any
negative (respectively, positive) semitrajectory contained in U has its «-limit
(resp., w-limit) at .

Within a neighborhood of solitude, trajectories are distinguished by their
eventual behavior in time. For those sets of trajectories which are elliptic, that is,
are contained in U and hence have o~ and w-limit at y, an analysis of separatfrix
structure in a slightly different situation has already been set forth [4]. Our
interest here will be primarily in the set 4, of positively attracted trajectories, i.e.,
those which have w-limit at y, but leave U in the negative time direction.

In contrast with the situation in two-dimensional settings, where each separa-
trix trajectory is thought of as separating two canonical regions, our analysis of
separatrix structure must be concerned with connected components of the union:
of all separatrices. Thus, whereas a study of a planar flow is concerned with
the geometry of individual trajectories, we must concern ourselves with the
geometry of ‘‘surfaces’” of separatrices. In general, these surfaces may be quite
different from manifolds, even for C= flows. Our approach here is to restrict
attention to those flows whose separatrix sets satisfy some kind of “manifold
hypothesis.” We will also demand that no positive semitrajectory with initial
state in the boundary of 4, be internally tangent to the boundary of the neigh-
borhood of solitude. Under a strict version of these hypotheses, a classification
of regions of 4, is given by boundary type.

* This research was parttially supported by the U.5. Army Research Office (Durham)
under Grants DA-ARO-D-31-124-71-G12-82 and DA-ARO-D-31-124-73-G130 while
the author was at Brown University, Providence, Rhode Island.
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We find that in every case but one, the separatrix structure is trivial and
trajectories are uniformly asymptotic to y. In the remaining case, where the
region of A_ is a fan, the separatrix structure is closely associated with nearby
elliptic regions.

To increase understanding by means of comparison, we weaken the manifold
hypothesis in the final sections. A few properties will be discussed, and some
examples will be presented which emphasize the differences between the weak
and strict version of the manifold hypothesis.

There are many basic properties of solitary periodic solutions and of sepa-
ratrices which do not depend on any additional hypotheses. Some of these are
set forth in the next section.

2. DerFINITIONS, BASiC PROPERTIES

All our definitions are given for flows on compact spaces. The case of a flow on
R" generated by a vector field 7 is easily handled by forming the one point
compactification of R” and declaring that the point oo will be a zero of the
“extension’ of 7. Let¢: X X R—> R be a continuous flow on a compact metric
space X; let a(w, d), w(w, ¢), respectively, denote the o~ and w-limits of the
¢-trajectory through x. We will use ofx), w(x) when the context is clear. Let
d(-, *) denote the distance on X and let dy(, -) denote the induced Hausdorff
distance between compact subsets of X. Continuity of set valued maps will
always be with respect to the Hausdorfl metric topology.

We say that ¢ is positively parallel near its trajectory through x and write
x € PH(p) (or x € P+ when context is clear) if w is continuous at » and if there
is a neighborhood N of x and a function T'(e) such that d(¢(y, £), w(x)) < e
whenever ye N, ¢t > T(¢), and e > 0. Using ox) and negative times, one
similarly defines ¢ being negatively parallel near the trajectory through x,
xcP(¢). If xeP = P+ NP, then ¢ is parallel near x. The separatrix set
& = F(¢p) = X — & is partitioned into three parts: the boundary separatrix
set, Sy = Fo($) = {x | « or w is discontinuous at x}, the primary separatrix set,
S = Hd) = {xe F — F, | there exists x, — %, #, — o such that either
lim ¢(x, , —1,) & o) or lim ¢(x, , 2,) ¢ w(x)}, and the secondary separatrix set,
G = F(P) = F — (FH U ). Notice that & consists of trajectories which
have a nontrivial prolongation (cf. [1]): the a-prolongation of the ¢-trajectory
through x is given by A~(x, ) = A~(x) = {v | ¥ ¢ o(x) and there exists x, — «,
t, — — o0, such that ¢(x, , t,) — ¥ as n — o0}; the w-prolongation is defined
similarly using f — 4 co.

Remark 2.1. Where « and « are continuous, #+, -, and & are open.

Remark 2.2. %, CENS — &%) (64 = closure).
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Tueorem 2.3. Let V be a ¢-invariant open region of X contained in
X — (AU AX) U w(X)). Then there is a global cross section to ¢ on NV,
that is, there is a continuous function g: P N\ V — R, strictly monotone on trajectories
and such that g=Y(0) intersects every trajectory in® N V. Moreover, if Z# N V has a
smooth (C=) manifold structure (compatible with d) and if ¢ is genevated by a
continuous vector field, then g may be chosen smooth with nonzero derivative along
trajectories.

Proof. 'The essence of this proof is due to Wilson, [9, Sect. 1]. Let A =
o(X) U w(X). Although Wilson was concerned only when A is a periodic solution,
his argument remains valid when A is compact as in the case at hand. For the
sake of completeness, we summarize the main ideas of his proof. Define the
function g, g ZN ¥V —->R by

8+(%) = sup{d($(, 1), N((1 + 20)/(1 + 1)) | =0
g-{x) = sup{d(g(, 1), Y((1 — 20){(1 — 2)} | £ < O}

9

(2.4)

Using the uniformity condition from the definition of 2, one establishes the
continuity of g, , and shows that the derivative lim, o+ sup((g.¢(x, t) — g.()}/#)
is negative and uniformly bounded away from 0 on compact subsets of #Z N V.
The same properties hold for g = g, — g_. If Z NV is smooth, then using
[10, 2.5 one may assume g is a smooth function. Finally, a consideration of the
limiting values of g, and g_ on each trajectory as ¢ — —-oc shows that ¢ is
somewhere zero.

TreorEM 2.5. Let V and A be as in 2.3 and let x € V. Then a necessary and
sufficient condition that x € P is the existence of local surface of section W to ¢
through x intersecting each trajectory at most once, such that B (W), R) is closed
m M — A

This was proved in [4] in a straightforward fashion, using our Theorem 2.3
to establish the necessity.

In regions where « and w are continuous, it might be expected that #7 is not
only open, but also dense in M — X. However, Beck [2] has constructed an
example of a flow in the plane which, when extended to the 2-sphere S, has
ol 8%) = w(S?) = {co} and has a dense set of primary separatrices. Hence every
trajectory is a separatrix, by Remarks 2.1 and 2.2. Such examples motivate the
following theorem, first proved in [4] for different definitions.

TuroreM 2.6.  The set S, is of first category in X.

Progf. We need some notation and a lemma. For each ¢ > 0 let &,(¢) be
the set of all x € & such that there exist sequences »,, — x, £, — --00 satisfying
d(x, , £,) — y with d(y, w(x)) > e Define & (¢) similarly using o and £, — —oco0.
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Noting that %, (¢;) C ¥, (e,) whenever ¢ > ¢, , and similarly for &% , we can
write %, as the countable union (}(&.(1/#) U & (1/n)) taken over all positive
integers 7. In that which follows we will concern ourselves only with &, (¢)
since analogous statements can be established for % (¢) by considering ¢ with
time orientation reversed. We complete the proof of the theorem with a lemma.

Lemma 2.7. F.(e) is nowhere dense.

Proof. Let t(x,y) = sup{fe R | d($(¥, 1), o(x)) > €}. If x€ &, (e), then w
is continuous at x and #(x, ¥) is finite for y close enough to %, but because A+(x)
is not contained in the e-neighborhood of w(x), the function #(x, -} must be
unbounded in every neighborhood of x.

Suppose the lemma is false. Then there is a nonempty open set I, contained
in ¥/(F,(€)) and a point x; € Vy N &, (€). Since w is continuous at points of
F , we can find an open neighborhood V) of », with V] C V and such that
dy(o(xy), w(x)) < /4 if ' €Vy. Pick T > 0. Since x; € £, (e), t(xy, ") is
unbounded on V5, so there is a point %, in V; and a corresponding #; > T such
that d(d(uy , t,), w(x,)) > ¢, and hence $(u, , £;) is in the open set

W ={y|d(y, o(x)) > i

Choose an open set V, containing #, , of diameter less and 4, and with its closure
contained in V; N $(W, —1,). Since F,(e) is dense in V;, and so also in V, , we
can find x, € Vy N & (€). Then t(x,, ) is unbounded in V,, so there is a point
u, € V, and a corresponding £, 2> 2T such that d(d(u, , ty), w(¥,)) > e. Hence
A, ), w(%)) = Az, 1), w(m)) — dglw(m), o(x) > e and  so
&(u, , t,) € W. Proceeding recursively, given u, € V,, with diam(V,)) < 1/# and
¢/(V,)CV,_,and given £, == nT satisfying ¢(u, , 1,) € W, we find an open set
V.1 with diameter less than 1/(n + 1) containing »,, and with €£(V,, ) C V, N
H(W, —t,). Since F,(e) is dense in Ty, so is it in V,,; and we can pick
%41 € Vir N P, (€). This means that #(x,,., , -) is unbounded in ¥, so there
is a point #,,,€V,,, and a corresponding ¢,,, = (n + 1)T" satisfying
d(P(tniz > tnta), @(¥n41)) > € So

(P11 tn+1)) (1)) 2 d($(ns1, tn+1)’ w(xn»fl)) - dH(w(x'nwhl)’ w(xl)) > fe,

that is, ¢p(#y iy , tan) € W.

Note that V,, C V, whenever # = &, and that§(V,, , ,) C W whenever n > k.
Since the diameter of ¥, goes to 0 as n becomes large, we have by the finite inter-
section property of compact sets that the intersection () €4(V,,) taken over all n
is a singleton, which we denote by { ¥}. Then yisin V,, and d(¢(y, £,), w(5y)) > Ze,
so that dg(w(x;), w(¥)) = %e. But y € I, , which is in contradiction with the
defining property of 7 . Hence the lemma is proved, as is Theorem 2.6,

The following lemma supports a very basic part of our intuition.
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Lemma 2.8. Suppose X is a manifold (C° is sufficient). Then w(x) meets the
closure of each connected component of A+(x).

Proof. Let {W,} be a fundamental sequence of neighborhoods at x with each
W, homomorphic to an open ball in Euclidean space. Then

v e (€L, , [n, o).

Pick », € W, and £, > n such that x, — x and ¢(x, , £,) — v. Choose an arc a,,
in €Z(HW, , [n, 0))) which originates at ¢(x,, , #,) and terminates at ¢(x, t,). If
m is an integer such that 1/m < d(y, w(x)), let B, = {# e X | d(u, w(x)) < 1/m}.
For n large enough, a,, intersects B,, , and for such » we let &, be the subarc of a,,
originating at ¢(x,, , t,) and terminating at the first (in the parameterization of a,,)
point where g, meets B,, . In the Hausdorff metric topology of compact subsets
of M, the sequence {a,} has a subsequence converging to a continuum a,; . Note
that y € o, and o, C . A+(x), so that «,, must be contained in the same component
of A*(x) as y. Furthermore, o, N B, % &, and since X is compact
lim sup{x,, N B,,} is nonempty. But such a limit is simultaneously contained in
w(x) and in the closure of the component of A*(x) under consideration.

Remark 2.9. An easy modification of the above proof maintains the result
when. X is locally connected. Obviously, the statement dual to 2.8 regarding A~
and « is valid. Furthermore, if & = A~(X) U AHX) (in particular whenever «
and w are continuous), each component of ¥ is connected o(X) U w(X).
Finally, if one defines the analogs of «, w, /1, and A+ for actions of the integers
on X, then a similar lemma holds. This point of view is particularly convenient
when a Poincaré map is induced on a surface of section, and we will adopt it in
the next section.

3. SovLrTary PERIODIC SOLUTIONS

We now suppose that ¢ is generated by a smooth (C*) vector field % on 3-space.
We furthermore assume that ¢ has a solitary periodic solution y, which is not a
rest point.

Levma 3.1.  There is a neighborkood of solitude U for y satisfying:

(i) U is diffeomorphic with D* x S* such that v = {0} x St
(D2 ={zeCllz| <1}
S = 8D?% 6 = boundary of manifold with boundary);

(i1) Thereis a Riemannian metric on U such that if vy is vepresented in D? x St
coordinates as n(z, 8) = (2, 0), then § = 2=.
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Proof. We may choose a tubular neighborhood f: R? x S'— R® of y such
that y = f({0} X S') and so that ¢(x, -): R >y is a covering of f| {0} x S’ for
some x € y. In the coordinates given by £, & = 1 on y. The continuity of § assures
that a disk D, in R2 centered at the origin, may be chosen small enough that § is 0
nowhere on U = f(D? X S1). On the tangent space of U, we multiply the given
coordinates by 2x/0 to obtain new coordinates with § = 27, as desired.

Given solitude U around y satisfying 3.1, we would like to perturb the
boundary of U slightly to obtain nice tangency with ». This is done in 3.3 after
“nice” is defined in 3.2. By “‘circle” we mean 2 homeomorphic image of S

DerFinrTioN 3.2, The vector field n has generic contact with the submanifold
aU in R3 if the following conditions are satisfied: the subset of 0U where 7 is
tangent to &U is either empty or a finite set of circles collectively denoted by .
Each circle separates a region of egress from a region of ingress of 4 relative to U.
Everywhere on 7 the component of % normal to 2U (it is O precisely on 7) has
nonzero derivative in a direction in 80U transverse to 7 in 0U. Furthermore the
subset of 7 where f is tangent to  is either empty or a finite set of points,
collectively denoted y. Each point of y separates an open subarc of  where 7
points toward a region of ingress from an open subarc of + where 7 points
toward a region of egress. Finally, at each point of y the component of 7 tangent
to = (is 0 precisely on y by definition and)has nonzero derivative in a direction of 7.

The following lemma is a special case of [5, Theorem 1]. Its proof is given
essentially by Percell [8, Proof of Theorem 2.5].

Lemva 3.3. Suppose U satisfies 3.1 and V is an open set containing U with
n % 0 on V. Let o7 denote the space of C" embeddings of 81 X S'in V with the
C7 topology, and let <4," C /7 consist of all embeddings f suck that f(S* x SY) has
generic contact with m. If ¥ > 3, then Sy is open and dense in 7.

We will say that U is a generic neighborhood of solitude if 8U has generic
contact with n. Henceforth we use U to denote a fixed generic neighborhood of
solitude for v, satisfying 3.1. Notice that if x is a point of the tangency set r C 28U
and 7(x) points from ingress to egress then the ¢-trajectory through v is externally
tangent to oU at x. Dually, if 5(x) points from egress to ingress, an internal
tangency results. If %(x) is tangent to 7, i.e., x € x, then the ¢-trajectory through x»
crosses from inside U to the outside, or vice versa, at . Hence y is called the set
of crossing tangencies.

Basic regions of U are defined as follows:

Us = f{xe U|d(x, +t)e U for all £ > 0};

E=UnNnU_—y (elliptic set);
A, =U_ —(EVy) (positively attracted set);
A =U_—(Evy) (negatively attracted set);

H=U—-(U,vulU) (hyperbolic set).
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Remark 3.4. U is an isolating neighborhood for y in the sense of Conley
and Easton [3] if and only if £ = 3.

Remark 3.5. 1t is convenient to notice that U, are closed in U, as is E in
U — y, whereas H is open in U and U — y. However, 4. may be open or closed
or neither in U — y.

In the local analysis we are developing, we would like the boundaries of E, H,
A: to be composed of separatrices. However, due to the global nature of the
definition of separatrix, this is usually not so, since E, H, 4 are relative to our
choice of U. Hence, a modification of definition is necessary for the local situation.
Our naive viewpoint is that U should be like a point at infinity, and any trajectory
which leaves U is lost from our view. Therefore, let g be a smooth nonnegative
valued function on R® with g71(0) = R® — Int(U) (Int = topological interior),
and let ¢ be the solution flow to the vector field g - 4. Use o generically to denote
a maximum trajectory segment of ${d(x, 1) where I is the maximum closed,
not necessarily bounded, interval such that ¢(x, I} C U), and note that each ¢
is a union of -trajectories. Say o is a separatrix of ¢ rvelative to U/ if it contains a
-separatrix. Our notation:

(b U) = fxealon () = o)

b U) = (xeolon %) # o)

H$ U)=(xcalol S, U)andon AW = 5% (3.6)
F$, U) = L, U)o, U) U A, U));

P($, U) = U — S, U).

Henceforth in the paper, we will be concerned only with separatrices of ¢ relative
to U. Therefore we write &, %, & , %, and Z to denote the respective sets
above.

In order to clarify some relations between the tangency subset of U/ and the
set of separatrices, we need some notation. Let 7;, , , x, respectively, denote
the sets of internal, external, and crossing tangencies. Let 7~ denote the union
of all ¢-trajectory segments o such that o C U and o N 7; = . Let I, (respec-
tively, I"_) be the set of ¥ € U where w(®, §) = y but o(:, ¢} is discontinuous at x
(respectively, using o). Notice that if w(x, ) 5= v, then it is a singleton subset of
2U, in which case we slightly abuse notation to write w(x, ¢) € 2U, and similarly
for .

Lesmsa 3.7, o, ) is continuous at x if w(x, )€ éU — 7, .

Proof. Let y = w(y, )€ 06U — 7,. We will proceed, considering various
cases. In each case, we choose local coordinates (u, 2, =) in a neighborhood ¥ of y
in R? so that the vector field 7 is given by % = 1 and & = ¥ = 0 and, in addition,
7 and 0U are “nicely” related to 7 in the local coordinates. In every case, the
choice of such coordinates is based on a theorem of Percell [8, 2.2]. Since
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y = ¢(x, 2) for some ¢ = 0, there is no loss of generality in assuming x e V.
Our first case is y € 8U — 7. Here (u, v, @) may be chosen so that, in addition,
oU is given near y by @ = 0. The resulting continuity of w(", 1) is now obvious.
Next, suppose ¥ is an external tangency of ¢ (so x = y). In this case the coor-
dinates may be chosen to straighten 5 as above and so that U N ¥ is given by
v = w? with 7, N V given by w = v = 0. Again, the local coordinates make
continuity of w(:, 4) obvious. Finally, if y € ¥ and %(y) points from 7; to =,,
we may obtain:

UnV ={uv,w)v>=uw® — uw},

TNV ={(u,v,w)| v =u®— uw and dv/ow = O},

and y = (0, 0, 0). (If 5(¥) points from 7, to ; , we alter only the characterization
of UN V to v < w® — uw.) This viewpoint not only allows an easy verification
of the continuity of w(:,#), but it also provides an interesting look at
discontinuities along =; accumulating at y.

CoroLLArY 3.8, S CT Ul UT_.

We also have the following partial converse to 3.7.

THEOREM 3.9. (', ) is discontinuous at x if w(x,$)er; and x ¢ A+ (%, ¢).

Proof. Lety = w(x, ) e, . Letting ¢, >> 0 be determined by ¢(x, 2,) = v,
we see that ¢(x, 1) € U for some ¢ > £, because ¢(x, ¢,) = y € 7, . Consider first
the case where (%, t') ¢ U for some ¢’ > ¢, . Then there are times ¢, and #, such
that 0 < #) < t; < 1y, &(x, [0, £]) C U, and ¢(x, [#,, ,]) N U = ¢. We may
choose a neighborhood ¥, of y with local coordinates (u, v, w) satisfying the
following: (i) n is given by e =9=0, o= 1; (ii) UNnV,, .0 V,, y are
given, respectively, by v << 2%, v = @ = 0, (0, 0, 0); (iii) the intersection of
b(x, [0, £,]) with 4(V,) is the trajectory segment u = v = 0. For ¢ > 0 let B,
be that subset of V given by #? 4+ 9?2 < ¢ and @ = 0. Then ¢ may be chosen
small enough, along with a 8 >0 so that ¢(B.,(—8,8)CV,, so that
#(Be, (—ty — 8, t; — fy -+ 8)) is an open neighborhood of ¢(x, [0, £,]) which inter-
sects V, only in the cylinder #? 4+ 22 <C ¢, and so that (B, , £, — t, - 8) N U #£ .
It is clear from the last condition that w(z, ¢) € 2U for all & in the neighborhood
&(B. , (—ty — 6, —ty + 8)) of x. But because of the properties of V), it is also
clear that for an open set of such z, w(z,3) is not in the neighborhood
H(B., (—8, 8)) of ¥ = w(x, ). Hence w(-, #) is not continuous at x in this case.

Finally consider the case where ¢(x, £) € U for all ¢ == 0, but x € A+(x, ). Let
V', and its local coordinates be chosen as above. Choose a sequence {y,} in the
region of V, given by v <C 0 and such that limy, = y as n — . Letting
%, = H( ¥, , —t,), we have x,, — x. Suppose w(+, ) were continuous at x. Then
w(x, , ) — ¥, so for each n there is a ¢, == 0 such that w(x,, , ) = ¢(x, , t,) and
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#(x,,10,2,)) CU. Since w(x,,$)—y, we also have ¢(x, , ¢, — #) — x. But
since w(x, ¢) = y, we deduce ¢, — o0. But then x € 4*(x, ¢), contradicting the
lemma’s hypothesis, so w(+, ) cannot be continuous at x.

Cororrary 3.10. J C S U S .

Progf. We have just seen that if xe.J — % then x € A~(w, ) U A~(x, $).
Moreover, the actual procedure used also shows that x € A¥(x, ) U A~(x, ),
which shows that xe .4 .

Treorem 3.11. SKLUA =T VI UI_UFA@H).

Proof. Inclusion of the right side in the left follows immediately from 3.6
and 3.10. For the converse question, 3.8 shows that it will suffice to show
S CT O F(h). Let o be a maximum ¢-trajectory segment in % . Then o is
a union of J-trajectories and contains a primary y-separatrix. But & contains
more than one noncritical y-trajectory iff ¢ C 7, and rest points of ) in o are
easily accounted for.

Levmia 3.12. .9 has Lebesgue measure zero and is nowhere dense.

Progf. Since T CEL(X)Cd(r x R) Uy, the lemma follows from an
application of Sard’s theorem to the restriction of ¢ to 7 X R.

Levnia 3.13. T, is nowhere dense in U.

Proof. Let IV be any open set in U. If xe ', NV, then for w(-, ¢) to be
discontinuous at x, there must be a point y € I such that w(y, ) € U. There are
two possibilities: either w(y, ) € @U — 7 or w(¥, ¥) € 7. In the former case, there
is an open set I/, containing y so that w(z, ) € 0U — 7 for every 2 € I, . Hence
the open subset V', N is excluded from V' N I"_, and I", cannot be dense in IV,
In case w(y, ¢) € 7, the generic contect makes it easy to find a point 2 near v
(z € V) such that w(z, #) € 6U — 7. This puts us back in the former case, with
I"_ not dense in I, Since V" was arbitrary, I, is nowhere dense.

TuroreM 3.14. S, U I is of first category in U.

Proof. This is a direct consequence of 3.11-3.13 together with 2.6.

4. Tue RecionNs A.

Because of the duality between A, and 4_, we restrict our attention to 4, .
Our first concern is b(A,) (b = topological boundary in U), especially in its
relation to internal tangencies. Consider a point xeb(4.) —y, and let
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L = L(x) = sup{t | $(x, [0, t]) C 6(A4,)}. It is easily seen that L is infinite when
xeb(4,) N E. Furthermore, if x e b(4,) — E, then x e b(H).

TaroreM 4.1. If x e b(4.) N b(H) — E, then L may be finite or infinite. In
the finite case $(x,L) is an internal tangency with $(x,[0,L]) Cb(H) and
é(x, [L, 0)) CInt(A,). If L is infinite, then é(x, RT) C b(4A.,) N b(H) and there is
a T =0 such that ${x, (T, o)) contains no internal tangencies. Furthermore if
X, — d(x, t) with t > T and x, € H (all n), then there is a divergent sequence of
‘positive times, {t,}, such that ¢(x, , [0, t,]) C H (all ).

Proof. To verify that L may be finite consider the vector field & = —z,
6 =1onR? x ¥ and let 8U N (R2 N {6}) be as shown in Fig. 1. That L may
be infinite is clear from considering a simple vector field i = u® + ¢%, 7 =0,
6 = 1 for (u, v, 0) eR2 x SL, with U = {(u, 0) | 1 + 0% < 1} x SL

Ficugre 1

Suppose xeb(H) and L is finite. Now if ¢(x, t) € b(4,) N Int(U), then
d(x, t -+ €) €b(A,) for sufficiently small e > 0. Therefore, since L is finite,
¢(x, L) e olU, x e B(4.) C U, , ¢(x, L) must be an internal tangency. Since x is in
%4 (4. ) which is positively $-invariant, for t > L we must haved(x, t) e €/(4,) —
(b(4.,) U y) = Int(4,), that is, ¢(x, (L, 0)) CInt(4,). This clearly precludes
(%, s) € E for s < L; therefore ¢(x, [0, L]) C b(H).

Finally suppose x € b(H) — E and L is infinite. Then ¢(x, R*) C b(4.) — E =
b(A.) N b(H). Since w(x) = y, we may find T = inf{z > 0 | ¢(x, (¢, o0)) CInt U}.
If x, — x with x, € H, ley ¢, = sup{t | é(x, , [0, £]) C U}. Since », € H, ¢, is
finite, and certainly ¢(x,[0, t,]) € H. To show that {#,} diverges observe that
for each ¢ > 0 there is a neighborhood V, of x such that for some # > 1/e (V. , )
is contained in the e-neighborhood of y. Since {x,,} is eventually in }7_, we also
eventually have #, > 1/e. The proof is complete.

Any analysis of A, and its boundary is complicated by the possibility of
b(A4,) not being positively ¢-invariant. A reasonable question is: can U be
altered, preferably by a shrinking, to effect the positive invariance ! Certainly
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it can in the simple example of Fig. 1. That situation is typical to the extent that
in general, one would need to excise a portion of U bounded by U and a
“surface” of trajectory segments emanating from an arc of internal tangency.
There ends the generality of our example. A first “‘excision” theorem of this sort
is given in [5]. The scope of the entire problem is beyond our present efforts.
However, on the basis of our implied conjecture and Theorem 4.1, we hence-
forth assume

{A) &(b(,), Rt) contains no internal tangencies (R = {teR 1z > 0}).

Remark 4.2. As an immediate consequence of Assumption A and 4.1, we
have ¢(b(A4,), RT) Cb(A4,).

For purposes of intuition, we often think of separatrices as lying on smooth
surfaces. This is not generally the case: examples are given in [4] of smooth
flows where & = & and % is not a manifold. The remainder of this paper will
be concerned with the effect of a strict hypothesis of manifold structure for &,
with some consideration of a weakening of that hypothesis. The strict manifold
hypothesis is

H. (U A)NGL(A,) — y is an embedded submanifold of U.

By “submanifold of U’ we mean that for each point x of &, U &, — yeither (a)
x € Int(U) and the usual condition holds, or (b) x€¢U and either the usual
cendition holds in U, or else there is a submanifold chart in the double of U for
S J S, — v at x. This weakened definition allows ., or %] to be internally
tangent to oU.

Henceforth, let M = (U FH) NGLHA,) — y.

TueorEM 4.3. M is two dimensional.

Proof. By 3.14, dim(M) < 2, but since M is positively ¢-invariant
dim(M) > 1. The ¢-invariance of M, together with the transversality of ¢ with
the coordinate disks D, = D? x {6}, implies that M N Dy is an embedded sub-
manifold of D, . It will suffice to show that no point of that submanifold is
isolated in Dy .

Let x be in M N D, . We consider cases: x € Int(4,) or x € 6(4, ). Assume the
former. Then x ¢ I, . But x ¢ .7 by 3.2, so that x ¢ I"_ . Hence x € (¢}, and
in fact, one may check that A—(x, ) = @ so that we may picky e A+{(x, ) " Dy
Then x € A-(y, ) and consideration of 2.8 and 2.9 shows that x is connected to y
within Dy 0\ Ay, ). But A-(y, ) C F($) and so x is not isolated in M N D, .

If x € b(4,) we consider two subcases: x € b(A4,) N b(H) or x € b(A,) — b(H).
In the former case, we may use 4.1 and 4.2 to find v € A¥(x, ¢) and proceed as
above. In the latter case, we must have x e (4. ) OV (H(A)Y N BENCU. N TU_ =
E Uy, that is, x € E. It is easy to obtain points of &(4,) if ¢(x, R™) contains an
internal tangency, so assume to the contrary that ¢(x, R) CInt(U). Then one
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finds, by considering the accumulation of A4_ at x, that A-(x, $) is not empty.
Since ¢(x, R) C Int(U), we have A-(x, ) = A~(x, ¢), and hence by 2.8 and 3.11
Hp) N €£(A4,) accumulates near x. Hence dim(M N D,) > 1, and finally
dim(M) = 2.

Since M is two dimensional and transverse to Dy , the components of M N D,
are embedded one-dimensional submanifolds of D, , and hence must be homeo-
morphic to an interval (0, 1), (0, 1], or [0, 1], or the circle SLIf £: (0, 1] — Dy is
an embedding onto a component of M N D, , then f(1) €U and the limit as
s — 0 of f(s) is Dy N y. When confusion will not arise, we will identify (0, 1] with
its image under f, and write 1 € 8Dy, 0 € y, and etc. In the case that a component
of M 0 Dyis S, then the region bounded by S* is contained in 4., . Since points
of 4, must exit from U in negative time, there must be a ¢ <{ 0 such that
H(S?, t) meets 0U. It is precisely because of this that we use a weak definition of
submanifold for the manifold hypothesis.

We need some notation. Let 8: U = D?* x S*— S also be the projection. Let
A be a connected component of 4, ; fix x in 4; let 4, denote the component of
ANInt(D* x {§(¢(x, ))}) which contains ¢(x, #); and finally let 4, = F£(4,) — y.

TueoreM 4.4.  Assume H. Then thereis a T = O such that one of the following
holds.

(a) There s a homeomorphism F:\)pr Ay—> D? X [0, 00) such that
F(Ayy = D? x {t — T%}. In this case lim sup A, =y as t — oo in the Hausdorff
metric topology, and Int(4) C 2.

(b) There is a homeomorphismF: 4 — (0, 13 < S*. Here F(A4;) C (0, 1] x evét/m
where m is a positive integer such that $(A, , mn) C A, for every positive integer n.
F extends to a homeomorphism of A U y onio a quotient space [0, 1] < SY/R where
R is the relation (s; , By) R(s, , Bo) if s = s, = 0 and By = Be™™™/™ for some integer
n and with m as before. v is mapped onto {0} x SY/R. Finally AC %,

(c) Let (r, ) be polar coordinates for the plane. There is a sequence ( possibly
void or finite) of nonoverlapping subintervals {(a;, b))} of (0, 7) and continuous
Sfunctions v;: (a; , b;) — (0, 1) with v,({) — O as either { — a; or { — b; , such that
for each t > T there is a homeomorphism

frAdi—={r, D)0 <r <1,0 < < mandr = v, (L) when a; << { < b;}.

HerefQUNA)={(r,)|r=1,0<I{<mandifx,~>yinA,and (r,, L) =
Ffi(x,), then v, — Q. For each i, the set

E, = ¢(fr'(graphr), R) U y

is a tube, wrapping around y and bounding a component of the elliptic set. Precisely,
E; is an embedded copy of one of the following quotient spaces:
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(c1}) (S* X R)/R where R is the relation determined by a preferred point
wye St with (o, By) Ry, Bs) tf oy = oy = wy and Py, = By + n for some

integer m.

(c2) (ST x SYR where R is the relation determined by a preferred point
wo € ST and a positive integer m with (o, By) Roy , By) of op = g = w, and
By = Bie?i* ™ for some integer n. This integer m also satisfies $(A; , mn) C A, for
all positive integers n.

In either case, (cl) or (c2), A is not necessarily homeomorphic to A, X S'.

(d) This may be viewed as a degenerate case of (). With the same notation,
the subintervals (a;,b;) are in (0,27] and fi: A, —{(r, )10 <+ << 1} with
fEUN Ay ={(r, 0) | r = 1}. After these modifications, we use the description
in (c) for the tubes E; . Corvesponding io (c1) and (c2) are vespective cases which we
call (d1) and (d2).

Proof. Consider the topological type of a component of 5(4,) — y. If it is S,
then since (b(4,), s) N 08U = & fors > 0, it must be true that 4, ; = ¢(4;, s),
and ¢ gives a homeomorphism of D* x [0, c0) onto U 4, . We also need to
show lim sup 4;. ;= y as s — 0. Since 4, C U, y Clim sup 4, . Furthermore,
given a neighborhood V of v, if A4;,, were not eventually in ¥, one would
obtain a contradiction to the embedding aspect of H. If 4 is the component
of A, which contains 4,, then ¢ is parallel for positive time in Int(4) since
lim sup 4;,; =y, and likewise for negative time because of 4.1. Flence we
have established conclusion (a) for any x € .4, where b(47) is a circle for some
T=0.

Consider the possibility that a component of 5(4;) — v is homeomorphic to
(0, 1]. Abusing notation, 1 €8U and O ey. Since points of such component
are arbitrarily close to A4, , 55 @ for each 5 << 0 and so for all real s. Since
6 = 27, Ay, is in the same disk D, as 4, , for all integers n. But only finitely
many 4., can be distinct if H holds. Furthermore, the distinct ones may be
listed as Ayq, Appg yerry Appm = Ay -

There are two cases: that where 4, = b(4,) — y, and that where 5(4,) C
CL(A; — b(4y). In the former case, part (b) of the theorem follows from what
we have established above. In the case where (0, 1] C€/(4, — b(A4,)), one may
see that there is a distinct component of 4;, also homeomorphic to (0, 1], with
leaD,, 0ey. Let these two components be denoted &, and b, , respectively
We may assume they have been chosen so that one of the two sectors of D,
between them contains points of 4 and yet contains no other boundary component
of type (0, 1]. Let d be the open arc of 8D, between b, and b, in. that sector. We
claim that d C 4, . Indeed if y € d M b(A4 ), then y must be a point of ingress by
A4, so that y € U — U_and consequently y € 5(H). But then one may use 2.8 and
2.9 to obtain a component of A+( v, )N D,Ch(A,) which extends from v, to 8D,

505/25/3-53
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in contradiction of the choice of b; and b, . Since b, U b, U d U y, is contained in
U, , so is the closed sector R of D, bounded by that union. If 4, = R — v,
then an argument, similar to that given above when 4; = (0, 1], establishes
conclusion (c) with a void set of functions C;. On the other hand, if 4, is
properly contained in R — y, wehave R — (4, UV y)C U, — (4, U y)CE —y.
Furthermore, if y € R N E, then y is connected to 8D, or y within D, © U_ (by
2.8 and 2.9). Since d C 4, each component of E N R contains y, in its closure,
and hence the mutual boundary of such a component E; and 4, is given by
(0, 1) U y, , with E; bounded by (0, 1) U y,in D, . There can be only a countable
number of the regions E; . If 4,,,, = A, , it may be the case that$(E; , m) = E; .
But it is easy to construct examples and index the E; in such a way that
H(E; , m) = E,;,, for every integer . In any case, conclusion (c) of the theorem is
satisfied.

‘We have just seen one way in which the boundary type (0, 1) can occur. The
region R bounded by such a curve and y must be contained in U, . Furthermore
R C U_, since if a point in R were to exit U in negative time then the boundary
type (0, 1) would be broken up to contain boundary components of type (0, 1],
which cannot happen in view of our previous treatment of (0, 1]. Hence the
component 4 must be exterior to (0, 1) U y, . Now either 4 N D, has boundary
components of type (0, 1] as above, and conclusion (c) holds, or 0U C 4 and
conclusion (d) holds.

It remains to be shown that boundary type [0, 1] cannot occur as an even-
tuality. Suppose [0, 1] were a component of 5(4;) and denote it b,. Let the
component of b(4,,.) be denoted by b, . Since b, C U,_, it is impossible that
&by, n) U by for any positive integer n, and furthermore y, € lim sup b,, as
# — 00. Under H, we must have y, = lim sup b,,, or lim b, = y, as n— 0.
The only way this can occur is for the endpoints of b, to come together as s
mncreases, so that for sufficiently large #, b, is a circle and conclusion (a) applies.
This completes the proof of Theorem 4.4.

Taeorem 4.5, If Cis a component of A N 5, , then A is described by (c) or (d)
of 4.4, and description (b) of 4.4 applies to C. If A is described by (c2) or (d2),
the corresponding integer m may be different than the one used to describe C. For
each x € C, the prolongation A*(x) is a nontrivial union of tubes E; .

Proof. If C is a component of 4 N ¥, then C is a component of 4, then
C ClInt(4) and €4(C) N 8(A) = @ because of H. Hence C is a component of
A, N (FH YU SHA) and is a submanifold of U -— y, invariant under ¢ in positive
time. Let x be a fixed point in C and let 6 = 8(x). Now A+(x)CE€/(A)CU, .
But A*+(x) C U_ so that A+(x) C E N b(A4). Using the methods of (2.8), one may
show that each component of C' N D, intersects 8D, and contains y, in its closure.
Hence C is described by 4.4b. Since A*(x) must be nonempty and contained in
E N b(4), it must be a union of tubes, by 4.4c, d.



SEPARATRICES AND PERIODIC SOLUTIONS 335
5. WEARENING THE Hyportmrsis

For contrast with the above theorems, it is instructive to consider the following
weaker hypothesis: Assume %, U % — y an immersed submanifold of U/, such
that each component of SN{D2 X {f}) —y or SN (D2 X {f}) — v is an
embedded submanifold. A relevent example is constructed by suspending the
composition of two diffeomorphisms, the first of which maps the region X onte
X5 (Fig. 2) with no lateral effect, and the second of which moves every point
strictly to its right, excepting v and the right endpoints of the X, which shall
be fixed, and having only enough vertical displacement so that the X are
invariant sets. Then 4, = 4 J; X;), and the remainder is in H, save the ray
emanating from v to the right, which is in A4_ .

)

) Xo

) %,

FicUure 2

6. OtHER EXAMPLES

Define a vector field (%, §) = (x, 0) for (x, §) e R% x S’ as follows: § = 2=
and & = f(x) so that the solution flow to # = f(¥) in the plane has trajectories as
indicated by the solid curves in Fig. 3. Call the rest point y, . If ¥ is the closed
region of R? bounded by the closed (broken) curve of uniform dashes in Fig. 3,
then U; = I x S is a neighborhood of solitude for the periodic solution.
vp X Stin R% x S* Furthermore, U, satisfies conditions 4 and & of Section 4.
There is a region of H on the left, one of E at the top, and one of .4, on the right
of Uj.

We now alter U, slightly to obtain neighborhoods of solitude U, and Uj.
Fix 6y in S* We will let the respective intersections of Uy , U, , U, with R? x {6}
be all the same if 6 is not near 6, in S’, so that the alterations of [’} will occur
only in R? X {0} for # near 6, . Let U, N (R? X {#,}) be given by that alteration
of V in Fig. 3 indicated by the dotted curve. Let Uy N (R? % {6,}) be similarly
indicated by the dahes of alternating size. Finally, let U, and U, be smooth, using
an isotopy over 8 in a neighborhood of 6, in S’ to patch together the required
shapes.
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The qualitative analysis of U is the easier. We have cut into the elliptic
region of U, so that trajectories, which remained in U, for all time, briefly exit
from Uy . Hence in Uj there is a tube of 4_ (type (4.4a) for A_) spiraling down
the hyperbolic side of the elliptic set of U .

In U, notice that the elliptic region is the same as in U, , but some of the
trajectories which are hyperbolic in U; become part of 4, in U,. To get a
complete idea of the change, let a be an arcin (U, — U;) N (R? X {f,}) contained
in A, (U,) and abutting on E. For ¢ < 0 let «; be the image of « moved by the flow
for time #. Notice that there is a T' << O such that o, C U, if and only if # > T
However, each o, abuts on E. Hence the union of the «, over # <{ Qisa fin attached
to FE, spiraling around to have limit as £ — — o0 in the closure of the separatrix
surface which comes up from the bottom to meet y. If one fattens « out to
include the entire part of A, (U,) which is outside U, , a satisfactory vision of U,
may be obtained. Notice that neither condition 4 nor H of Section 4 is satisfied.

7. ON THE PossiBLE LACK OF SEMICONTINUITY OF o AND @

Although we have concerned ourselves only in whether or not « and w are
continuous, a brief note on the semicontinuity of these functions may be of
interest. Recall the definitions of semicontinuity: for example, w is lower s.c. at x
if for every open set V' meeting w(x), there is a neighborhood N of x such that
v € N implies o(y) meets V; and w is upper s.c. at x if for every open set V¥
containing w(x), there is a neighborhood IV of x such that y € N implies w(y) C V.

We can construct smooth vector fields such that the resulting w-limit function
is (a) neither upper s.c. nor lower s.c., (b) lower s.c. near some point but not
upper s.c. there, or (c) upper s.c. near some point but not lower s.c. there.



SEPARATRICES AND PERIODIC SOLUTIONS 341

For (a) and (b) let (r, 6) be polar coordinates for the plane. If the vector
field (7, §) = n(r, 8) is given by # = #(1 — #%), 6 = 1, then the resulting omega
function satisfies (2) at the origin. If we multiply 5 by a nonnegative valued
function which is zero exactly at (7, 6) = (1, 0) the resulting w function satisfies
{b) at this new rest point.

Finally, for (c) we construct an example in the Cartesian (x, v) plane as

follows. Set & = —ux exp(—1/3%) and in the closure of quadrants two through
four set y = 0. For «, y positive, let # be given by 3 = u(1 -+ x 4 sin(i/x)) and
set # = —u(u — 1) exp(—1/x% This determines 7 in the open first quadrant,

and one may verify that %, y are C* in the entire plane. Furthermore it is possible
to verify that

(X, yo) = {(0, vo)} if either x;, << 0 or y, < 0;
={(0,0)} if ¥y > 0 and 0 < ¥y <1 + x4 + sin(l/xy);
={0,3)]0 <y <2t if xy > 0and y, = 1 4 x5 + sin{l/x,).

Hence (c) is fulfilled for (i, ¥,) on the curve y = 1 + & + sin(1/x) {x > 0).
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