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Abstract

The Chern–Simons-like theories of gravity (CSLTG) are formulated at first order formalism. In this for-
malism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved 
charge is problematic. In this paper we overcome these problems by considering the concept of total vari-
ation and the Lorentz–Lie derivative. We firstly find an expression for the ADT conserved current in the 
context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to 
be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any 
vector field which generates a diffeomorphism. The formalism presented here is based on the concept of 
quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two 
space-like surface surrounding a black hole and the results are independent of the chosen surface. By using 
the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calcu-
late the central extension term. We apply the formalism to the BTZ black hole solution in the context of the 
Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro gener-
ators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black 
hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of 
the off-shell conserved charges.
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1. Introduction

As is well known, the concept of conserved charges of gravity theories is related to the con-
cept of the Noether charges corresponding to the Killing vectors which are admitted by solutions 
of a theory. There are several approaches to obtain the mass and angular momentum of black 
holes solutions of different gravity theories [1–15]. According to the Arnowitt, Deser, and Mis-
ner method (ADM method) [2] one can obtain the conserved charges of an asymptotically flat 
spacetime solution of a general theory of relativity, but this is not a covariant method. The ADM 
method has been extended to include asymptotically AdS spacetime solution of Einstein grav-
ity [1]. Deser and Tekin have extended this approach. By this extension one can calculate the 
energy of asymptotically dS or AdS solutions in higher curvature gravity models and also in 
a topologically massive gravity model (TMG) [3]. This method is a covariant formalism; it is 
known as the Abbott–Deser–Tekin (ADT) formalism. Another method is the Brown–York ap-
proach [4] which is based on a quasi-local concept, but this approach also is not covariant. The 
authors of [7] have computed the ADT charges for a solution of TMG linearized about an arbi-
trary background and have applied the result to evaluate the mass and angular momentum of the 
non-asymptotically flat, non-asymptotically AdS black hole solution (ACL black hole) of TMG.

A general definition of conserved charges in general relativity and other theories of gravity 
has been proposed in [16]. In the metric formalism of gravity for the covariant theories defined 
by a Lagrangian n-form L, Wald has shown that the entropy of black holes is the Noether charge 
associated with the horizon-generating Killing vector field evaluated at the bifurcation surface. 
Tachikawa extended the Wald approach to include non-covariant theories [17]. Hence, regard-
ing this extension one can calculate the black hole entropy as a Noether charge in the context 
of non-covariant theories as well. But it is clear now that the derivation of the classical Wald 
formula for entropy is problematic in the first order formalism using the spin connection. In the 
first order formalism, the expression of conserved charges are proportional to the Killing vector 
field ξ . It is clear that ξ must be zero on the bifurcation surface when we calculate the entropy 
of black hole, because ξ is the horizon-generating Killing vector field which is zero on the bi-
furcation surface. It seems disappointing at the first glance because it appears that the entropy 
will be zero, but it is not true. On the other hand there is a class of gravitational theories in 
(2 + 1)-dimension (e.g. Topological massive gravity (TMG) [18], New massive gravity (NMG) 
[19], Generalized Massive Gravity (GMG) [20], Minimal massive gravity (MMG) [21], Zewi-
dreibein gravity (ZDG) [22], Generalized minimal massive gravity (GMMG) [23], etc.) which 
are well-known as the Chern–Simons-like theories of gravity (CSLTG) [24], and can be written 
in the first order formalism. The authors of [25] have shown that in approaching the bifurcation 
surface, the spin-connection diverges in a way that the spin-connection interior product in ξ re-
mains finite ensuring that there is no problem. Recently we have extended this formalism in the 
on-shell case, to the Lorentz-diffeomorphism non-covariant theories [27]. Here we would like to
extend this formalism to the off-shell case in the framework of CSLTG. We derive the conserved 
charge formula by a new method and explicitly compute conserved charges in some models.

The authors of [5] have obtained the quasi-local conserved charges for black holes in any 
diffeomorphically invariant theory of gravity. By considering an appropriate variation of the 
metric, they have established a one-to-one correspondence between the ADT approach and 
the linear Noether expressions.1 They have extended this work to a theory of gravity contain-

1 In quasi-local approach [5,6], the Killing vector field ξ is defined not only in the asymptotical part of space, but 
also in any other points of the space-time. For example see equation (33) below, where � is an arbitrary space-like 
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ing a gravitational Chern–Simons term in [6], and have computed the off-shell potential and 
quasi-local conserved charges of some black holes in TMG. We have obtained the quasi-local 
conserved charges of Lorentz-diffeomorphism covariant theories of gravity in the first order for-
malism, in paper [26]. But there are theories which are not Lorentz-diffeomorphism covariant. 
In previous paper [27] by introducing the total variation of a quantity due to the infinitesimal 
Lorentz-diffeomorphism transformation, we have obtained the conserved charges in the Lorentz-
diffeomorphism non-covariant theories. The proposed formalism in [27] is for on-shell case. As 
we have mentioned above, we are going to generalize the proposed formalism to the off-shell 
case. We try to find an expression for the ADT conserved current which is off-shell conserved 
for a given Killing vector field. We generalize off-shell conserved current JADT to make sure 
that it is conserved for any diffeomorphism generator ξ . For this purpose, we follow the method 
presented in [28] in which the authors took advantage of the metric formalism. JADT is off-shell 
conserved if ξ is a Killing vector field. We will show that one can introduce the generalized ADT 
current J̃ADT which is off-shell conserved for an arbitrary diffeomorphism generator ξ . Then, 
we can find the generalized ADT conserved charge by virtue of the Poincare lemma, such that 
J̃ADT = dQ̃ADT . We will fix the ambiguity in definition of the generalized ADT conserved cur-
rent by considering the phase space analysis. Then we try to obtain the central extension term, 
C(ξ±

m , ξ±
n ), for the algebra of the conserved charges in the context of the CSLTG. We apply our 

formalism to the Einstein gravity in the presence of negative cosmological constant, and also 
to the GMG. We will find the central charges of dual CFT of the BTZ black hole solutions of 
mentioned gravity theories. Then by obtaining the eigenvalues of the Virasoro generators, l±n , 
and using the Cardy formula we will obtain the Bekenstein–Hawking entropy of the BTZ black 
hole, as well as the energy and the angular-momentum of the BTZ solution of GMG. By using 
the Killing vectors corresponding to the mentioned quantities we will obtain energy, angular-
momentum and entropy of the BTZ black hole solution of GMG again which exactly coincide 
with previous results.

2. Generalized conserved current

In this section, we are going to find an off-shell conserved current and corresponding con-
served charge of the Chern–Simons-like theories of gravity. We generalize this conserved current 
so that it corresponds to an arbitrary diffeomorphism rather than a diffeomorphism which is gen-
erated by a Killing vector field.

The Lagrangian 3-form of the Chern–Simons-like theories of gravity (CSLTG) is given 
by [24]

L = 1

2
grsa

r · das + 1

6
frsta

r · as × at . (1)

In the above Lagrangian ara = ara
μdxμ are Lorentz vector valued one-forms where, r =

1, . . . , N and a indices refer to flavor and Lorentz indices, respectively. We should mention 
that, here, the wedge products of Lorentz-vector valued one-form fields are implicit. Also, grs is 
a symmetric constant metric on the flavor space and frst is a totally symmetric “flavor tensor”, 
which are interpreted as the coupling constants. We use a 3D-vector algebra notation for Lorentz 

codimension-two surface. As can be seen in Eq. (22), JADT is conserved current when ξ is a Killing vector field in any 
point of space-time. In this case δξ ar = δξ Er = 0, so dJADT = 0.
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vectors in which contractions with ηab and εabc are denoted by dots and crosses, respectively.2

We know that ara is a collection of the dreibein ea , the dualized spin-connection ωa , the auxil-
iary field ha

μ = ea
νh

ν
μ and so on. It is worth mention that for all interesting CSLTG we have 

fωrs = grs [29].
The total variation of ara due to a diffeomorphism generator ξ is [27]

δξ a
ra = Lξ a

ra − δr
ωdχa

ξ , (2)

which is caused by a combination of variations due to the diffeomorphism and the infinitesimal 
Lorentz gauge transformation. In the above expression Lξ denotes the Lie–Lorentz derivative 
(L–L derivative) which is defined by [25]

LξA
a···

b··· = £ξA
a···

b··· + λa
ξ cA

c···
b··· + · · · − λc

ξ bA
a···

c··· − · · · , (3)

where £ξ denotes the ordinary Lie derivative along ξ and λab
ξ generates the Lorentz gauge trans-

formations SO(n − 1, 1). In general, λab
ξ is a general function of space-time coordinates and 

of the diffeomorphism generator ξ . Also, χa
ξ is defined as χa

ξ = 1
2εa

bcλ
bc
ξ and δr

s denotes the 
ordinary Kronecker delta. It should be noted that χξ is linear in term of ξ . Presence of the extra 
term, −δr

ωdχa
ξ , in (2) may cause the Lagrangian (1) not be invariant under a general Lorentz-

diffeomorphism transformation.
The variation of the Lagrangian (1) is given by

δL = δar · Er + d�(a, δa), (4)

where

E a
r = grsdasa + 1

2
frst (a

s × at )a, (5)

so that E a
r = 0 are the equations of motion, and

�(a, δa) = 1

2
grsδa

r · as, (6)

is the surface term. By virtue of (2), the total variation of the Lagrangian due to diffeomorphism 
generator ξ can be written as

δξL = LξL + dψξ , (7)

where ψξ is given by

ψξ = 1

2
gωrdχξ · ar . (8)

Now, by considering that the variation in (4) is the total variation generated by ξ and using (7), 
we will have

dJ =(iξω − χξ ) · (DEω + ar ′ × Er ′)

+ iξ a
r ′ · DEr ′ − iξDar ′ · Er ′ − iξR · Eω,

(9)

where, we define J as follows:

J (ξ) = �(a, δξ a) − iξL − ψξ + iξ a
r · Er − χξ · Eω. (10)

2 Here we consider the notation used in [24].
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In the above equations iξ , D and R = dω + 1
2ω × ω are interior product, exterior covariant 

derivative and the curvature 2-form, respectively. Also, the prime on r indicates that the sum is
run over all the flavor indices except ω.

We expect that the last line in (9) can be rewritten as

iξ a
r ′ · DEr ′ − iξDar ′ · Er ′ − iξR · Eω = iξ a

r ′ · Xr ′(a). (11)

The Bianchi identities can be expressed as following identities

DEω + ar ′ × Er ′ = 0, X a
r ′ (as) = 0. (12)

To clarify this, one can consider the Einstein gravity with the cosmological term in which we 
have

ar = {e,ω}, geω = −1, feωω = −1, feee = . (13)

In this theory, the Bianchi identities introduced in (12) reduce to the ordinary Bianchi identities 
respectively

DT = R × e, DR = 0. (14)

Due to the Bianchi identities (12), J (ξ) is a closed form and, by the Poincare lemma, it can be 
written as J (ξ) = dK(ξ).

Now, we take an arbitrary variation over J in (10) then we obtain

d
(
δK(ξ) − iξ�(a, δa)

) = δ�(a, δξ a) −Lξ�(a, δa) − δψξ

+ δar · iξEr + iξ a
r · δEr − χξ · δEω.

(15)

On the one hand, the total variation of the surface term �(a, δa) is given by

δξ�(a, δa) = Lξ�(a, δa) + �ξ, (16)

where

�ξ = 1

2
gωrdχξ · δar . (17)

On the other hand, the symplectic current is defined as

�(a, δ1a, δ2a) = δ1�(a, δ2a) − δ2�(a, δ1a). (18)

Using the equations (8), (16), (17), and (18), the equation (15) can be rewritten as

d
(
δK(ξ) − iξ�(a, δa)

) = �(a, δa, δξ a) + δar · iξEr + iξ a
r · δEr − χξ · δEω. (19)

Since the symplectic current is linear in δξa, when ξ is a Killing vector field the symplectic 
current vanishes. So, in the manner of the papers [5,6], we can consider the ADT conserved 
current and the ADT conserved charge as3

JADT = δar · iξEr + iξ a
r · δEr − χξ · δEω, (20)

and

3 Regarding Eq. (20), in fact we have proposed this equation following from Eq. (5) in [5] (see also [6,7,15]). In the 
another term, Eq. (20) in our paper is first-order analog of Eq. (5) in [5], which has been written in metric formalism. 
Eq. (21) comes from Eqs. (19), (20) easily. Also from Eq. (22) it is clear that when ξ is Killing vector field in any given 
point of space time, the current JADT is conserved current.
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QADT (δa, ξ) = δK(ξ) − iξ�(a, δa), (21)

respectively. The last term in (20) helps us to define a covariant conserved current and conse-
quently a covariant conserved charge.

As we know, JADT and QADT are off-shell conserved current and off-shell conserved charge, 
respectively, only when ξ is a Killing vector field. Now, we try to generalize JADT such that it is 
not only off-shell conserved but it becomes conserved for any diffeomorphism generator ξ rather 
than a Killing vector field diffeomorphism generator. For this purpose, we follow the method 
presented in the paper [28] which has been written in the metric formalism. To this end, we take 
an exterior derivative form JADT (20) and we find following relation

dJADT = δξ a
r · δEr − δar · δξEr, (22)

which is first order analog of Eq. (2.6) in [28]. From the above equation, it is obvious that JADT

is conserved off-shell if ξ be a Killing vector field. The right hand side of the above equation can 
be rewritten as an exact form

δξ a
r · δEr − δar · δξEr = −d

(
grsδξ a

r · δas
) = −dJ�. (23)

Thus, we can introduce the generalized ADT current as

J̃ADT = JADT +J�, (24)

so that dJ̃ADT = 0 and hence, it is off-shell conserved for an arbitrary diffeomorphism genera-
tor ξ . In this way, we can find the generalized ADT conserved charge by virtue of the Poincare 
lemma, J̃ADT = dQ̃ADT (δa, ξ). It is obvious that (24) reduces to the ordinary ADT conserved 
current when ξ is a Killing vector field.

3. Comparison with the covariant phase space analysis

We know that the variation of the Lagrangian 3-form (1) is given by (4). So, by taking another 
variation from (4), and demanding δ1δ2L = δ2δ1L and δ1δ2a

r = δ2δ1a
r , we will have

d�(a, δ1a, δ2a) = δ1a
r · δ2Er − δ2a

r · δ1Er, (25)

where �(a, δ1a, δ2a) is the symplectic current which is defined by (18). It is clear that the sym-
plectic current is conserved when ar and δar satisfy the equations of motion and the linearized 
equations of motion respectively. If we take δ1 = δ and δ2 = δξ then d� will given by

d�(a, δa, δξa) = δar · δξEr − δξ a
r · δEr = dJ�, (26)

in the last equality we have used (23), so

J� = �(a, δa, δξ a) + dZ(a, δa, δξ a). (27)

Using Eq. (6) and definition of symplectic current (18), we obtain

�(a, δa, δξ a) = grsδξ a
r · δas. (28)

By substituting (28) into (27) and comparing the obtained result with the last equality in (23), we 
find that Z(a, δa, δξ a) can be chosen to be zero. In this way, the generalized ADT current will 
have the following form

J̃ADT = JADT + �(a, δa, δξ a). (29)
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From this equation, we easily see that, if ξ is a Killing vector field then the generalized ADT 
current is reduced to the ordinary one and, if the equations of motion and the linearized equations 
of motion both are satisfied then the ADT current is reduced to the symplectic current, as we 
expected.

4. Conserved charges

In the previous sections, we generalized the ADT conserved current of the CSLTG so that it 
is conserved for a general diffeomorphism generator ξ . In this section, using the concept of the 
generalized ADT conserved charge, we extract a general formula for the conserved charges. As 
we know, the generalized ADT current is conserved off-shell and for any diffeomorphism gen-
erator ξ , dJ̃ADT = 0. Then, by virtue of the Poincare lemma, we can introduce the generalized 
ADT conserved charge Q̃ADT such that, J̃ADT = dQ̃ADT (δa, ξ). By comparing (19), (20) and 
(29), we deduce that

Q̃ADT (δa, ξ) = δK(ξ) − iξ�(a, δa). (30)

On the other hand, one can read off K(ξ) from (10) as

K(ξ) = 1

2
grsiξ a

r · as − gωsχξ · as, (31)

so, by substituting (31) into (30), we find that the generalized ADT conserved charge is given by

Q̃ADT (δa, ξ) = (
grsiξ a

r − gωsχξ

) · δas. (32)

Now, we can define the conserved charge perturbation for the diffeomorphism generator ξ as 
follows:

δQ(ξ) ≡ c

∫
�

Q̃ADT (δa, ξ) = c

∫
�

(
grsiξ a

r − gωsχξ

) · δas, (33)

where � is an arbitrary space-like codimension two surface and c is just a normalization factor. 
For obtaining the conserved charges of a black hole solution, we can take an integration from 
(33) over the one-parameter path on the solution space [5] so we have

Q(ξ) = c

1∫
0

ds

∫
�

Q̃ADT (s|ξ). (34)

It should be noted that (33) is an off-shell conserved charge perturbation for an arbitrary dif-
feomorphism generator ξ . Presence of χξ in (33) is due to the Lorentz gauge transformation. 
In absence of this term the conserved charge is proportional to ξ . Now to obtain entropy as a 
conserved charge, we should consider � as a bifurcation surface, then we should put ξ = 0, 
which leads to a zero value for entropy. But as it is clear from Eq. (46) below, χξ is proportional 
to ∇μξν , so the presence of this term gives us a correct value for the entropy of black hole. 
Therefore, using the definition of total variation we could overcome the mentioned problem.

5. Virasoro algebra and the central term

Using the result of the previous section, we can obtain the central charges of the CSLTG. So 
in this section we find the central extension term for these theories form which one can read off 
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the central charges. We know that, two copies of the classical centerless Virasoro algebra, which 
is known as the Witt algebra, is given by

[ξ±
m , ξ±

n ] = i(n − m)ξ±
m+n, [ξ+

m , ξ−
n ] = 0, (35)

where ξ±
m (m ∈ Z) are the vector fields and the square brackets denote the Lie bracket.

The central extension term C(ξ±
m , ξ±

n ) is given by the following equation [30]

[Q(ξ±
m ),Q(ξ±

n )] = Q([ξ±
m , ξ±

n ]) + C(ξ±
m , ξ±

n ). (36)

Since the conserved charge (33) is linear in ξ , then

Q([ξ±
m , ξ±

n ]) = i(n − m)Q(ξ±
m+n), (37)

on the other hand, we know that

[Q(ξ±
m ),Q(ξ±

n )] = δξ±
n
Q(ξ±

m ), (38)

thus, the central extension term will be obtained from the following equation

C(ξ±
m , ξ±

n ) = δξ±
n
Q(ξ±

m ) − i(n − m)Q(ξ±
m+n). (39)

Since for a black hole solution, the integration surface � can be taken as an arbitrary 
(t, r)-constant surface then, the obtained result will be same for any choice of the integration 
surface, at the spatial infinity [30,31] or at the near horizon region [32,33]. So, we can take � at 
spatial infinity without losing the generality and we are confident that the obtained result holds 
on the near horizon.

Now, at the spatial infinity, we can rewrite the conserved charge as follows:

Q(ξ) = − 1

8πG

∫
∞

(
grsiξ a

r − gωsχξ

) · δas, (40)

where quantities are calculated on the background and δas denotes deviation of the 1-form valued 
fields form background one. In the above expression (and from now on) we take the normaliza-
tion factor as c = − 1

8πG
. In the left hand side of (40) we are dropped δ in front of Q because, 

what we calculate in the right hand side is exactly the conserved charge (one can deduce this 
from (34) and the concept of the spatial infinity). Now, from (40) and (33), we have

Q(ξ±
m ) = − 1

8πG

∫
∞

(
grsiξ±

m
ar − gωsχξ±

m

)
· δas, (41)

and

δξ±
m
Q(ξ±

n ) = − 1

8πG

∫
∞

(
grsiξ±

n
ar − gωsχξ±

n

)
· δξ±

m
as. (42)

Then, by substituting these results in (39), we will find an expression for the central extension 
term and consequently we can read off the central charges of the considered theory.
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6. Examples

In this section, we apply the obtained results in the previous section on the Einstein gravity 
with the negative cosmological constant and on the Generalized Massive Gravity for the BTZ 
black hole solution. We will see that this method is easier and more clear than other methods
which were proposed until now. At first, we derive some useful equations.

The AdS3 metric is given by

ds2 = − r2

l2
dt2 + l2

r2
dr2 + r2dφ2, (43)

so, we can write down the dreibein as follows:

et̂ = r

l
dt, er̂ = l

r
dr, eφ̂ = rdφ. (44)

We will take these as the background dreibein. As we know, the following vector fields satisfy 
the Witt algebra [34]

ξ±
n = 1

2
einx±

[
l

(
1 − l2n2

2r2

)
∂t − inr∂r ±

(
1 + l2n2

2r2

)
∂φ

]
, (45)

where x± = t/ l ± φ.
If we demand that δξ e

a = 0 when ξ is Killing, we find the following expression for χξ [27,25]

χa
ξ = iξω

a − 1

2
εa

bce
νb(iξ T

c)ν + 1

2
εa

bce
b
μec

ν∇μξν. (46)

Since the following examples are torsion-free so we will have

iξ±
n
ωa − χa

ξ±
n

= ±1

l
(ξ±

n )a. (47)

On the other hand, the total variation of dreibein and the spin-connection along the diffeomor-
phism generator ξ are [25]

δξ e
a
μ = 1

2
eaν£ξ gμν, δξω

a = iξR
a + D(iξω

a − χa
ξ ). (48)

For the AdS3 spacetime we have R = − 1
2l2

e × e so we find that

δξ±
n
ωt̂

φ ± 1

l
δξ±

n
et̂

φ = − iln3

2r
einx±

,

δξ±
n
ωr̂

φ ± 1

l
δξ±

n
er̂

φ = 0,

δξ±
n
ω

φ̂
φ ± 1

l
δξ±

n
e
φ̂
φ = ± iln3

2r
einx±

.

(49)

Now, as mentioned above, we take AdS3 as the background spacetime and then we consider the 
following examples.
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6.1. Einstein gravity with the negative cosmological constant

The Lagrangian 3-form of the Einstein gravity with the negative cosmological constant is 
given by

LE = −e · R − 1

6l2
e · e × e, (50)

so, the non-zero components of the flavor metric are geω = gωe = −1. Then, using Eq. (47) the 
conserved charge (41) for Einstein gravity takes the following form

QE(ξ±
m ) = 1

8πG
lim

r→∞

2π∫
0

(ξ±
m )a

(
δωa

φ ± 1

l
δea

φ

)
dφ. (51)

On the other hand the connections corresponding to the two SO(2, 1) gauge groups can be de-
fined as [35]

(A±)a = ωa ± 1

l
ea, (52)

so, (51) can be written as

QE(ξ±
m ) = 1

8πG
lim

r→∞

2π∫
0

(ξ±
m ) · δA±

φdφ. (53)

For BTZ black hole spacetime [36], at spatial infinity we will have

δea
φ = 0, δωt̂

φ = − r2+ + r2−
2lr

, δωr̂
φ = 0, δω

φ̂
φ = − r+r−

lr
. (54)

By substituting (45) and (54) into (53) we will find the following result

QE(ξ±
m ) = l

16G

(
r+ ∓ r−

l

)2

δm,0. (55)

In a similar way, for this theory, (42) will reduce to

δξ±
n
QE(ξ±

m ) = 1

8πG
lim

r→∞

2π∫
0

(ξ±
m ) · δξ±

n
A±

φdφ. (56)

Then using Eq. (42) and (49), the above equation reduces to the following expression

δξ±
n
QE(ξ±

m ) = iln3

8G
δm+n,0. (57)

Now, by substituting (55) and (57) into (39) we will find the following expression for the central 
extension term in the considered theory

CE(ξ±
m , ξ±

n ) = i
l

8G

[
n3 −

(
r+ ∓ r−

l

)2

n

]
δm+n,0. (58)
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Although this result is in agreement with previous results (for instance, see [37]) but to obtain 
the usual n dependence, that is n(n2 − 1), it is sufficient to make a shift on Q by a constant [38]. 
Thus, by considering Q(ξ±

n ) ≡ L±
n and {Q(ξ±

m ), Q(ξ±
n )} ≡ i[L±

m, L±
n ], (36) becomes

[L±
m,L±

n ] = (n − m)L±
m+n + c±

12
n(n2 − 1)δm+n,0, (59)

where c± = 3l
2G

are the central charges, and L±
n are generators of the Virasoro algebra. So the 

algebra among the conserved charges is isomorphic to two copies of the Virasoro algebra.

6.2. Generalized massive gravity

In the Generalized massive gravity (GMG), there are four flavors of one-form, as =
{e, ω, h, f } and the non-zero components of the flavor metric are [24]

geω = −σ, geh = 1, gωf = − 1

m2
, gωω = 1

μ
. (60)

By solving the corresponding equations of motion one can find the following expressions for the 
auxiliary fields

ha
μ = − 1

μ
Sa

μ − 1

m2
Ca

μ, f a
μ = −Sa

μ, (61)

where Sμν and Cμν are the 3D Schouten tensor and the Cotton tensor, respectively. So, we can 
obtain for the AdS3 background

Ra = − 1

2l2
(e × e)a, Sa = − 1

2l2
ea, Ca = 0,

ha = 1

2μl2
ea, f a = 1

2l2
ea.

(62)

One can show that (40) have the following form for this model

QGMG(ξ±
n ) =

(
σ ± 1

μl
+ 1

2m2l2

)
QE(ξ±

n )

+ 1

8πG
lim

r→∞

2π∫
0

dφ(δh
μ
φ ± 1

m2l
δf

μ
φ)(ξ±

n )μ

(63)

Since the 3D Schouten tensor is given by Sμν =Rμν − 1
4gμνR then we have

δSμν = δRμν − 1

4
gμνδR+ 3

2l2
δgμν, (64)

where

δRμν = 1

2

(−�δgμν − ∇μ∇ν(g
αβδgαβ) + ∇λ∇μδgλν + ∇λ∇νδgλμ

)
,

δR = −�(gαβδgαβ) + ∇μ∇νδgμν + 2

l2
(gαβδgαβ),

(65)

also, we know that the Cotton tensor is defined as Cμ
ν = ε

αβ
ν ∇αS

μ
β so we can show that its 

variation is δCμ
ν = ε

αβ
ν ∇αδS

μ . For the BTZ black hole solution at the spatial infinity we have
β
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δgtt = r2+ + r2−
l2

, δgtφ = − r+r−
l

, δgrr = l2(r2+ + r2−)

r4
, (66)

then, δCμ
φ = δS

μ
φ = 0. Therefore, for the BTZ solution, (63) will reduce to

QGMG(ξ±
n ) =

(
σ ± 1

μl
+ 1

2m2l2

)
QE(ξ±

n ) (67)

which shows that the conserved charges of BTZ solution of GMG are simply a constant time the 
conserved charge of BTZ solution of Einstein gravity. In a similar way, for GMG model, we can 
show that (42) can be simplify as

δξ±
m
QGMG(ξ±

n ) =
(

σ ± 1

μl
+ 1

2m2l2

)
δξ±

m
QE(ξ±

n )

+ 1

8πG
lim

r→∞

2π∫
0

dφ(δξ±
m
h

μ
φ ± 1

m2l
δξ±

m
f

μ
φ)(ξ±

n )μ.

(68)

One can show that δξ±
m
h

μ
φ = δξ±

m
f

μ
φ = 0, so (68) can be rewritten as

δξ±
m
QGMG(ξ±

n ) =
(

σ ± 1

μl
+ 1

2m2l2

)
δξ±

m
QE(ξ±

n ). (69)

Now, by substituting (67) and (69) into (39), we find that

CGMG(ξ±
m , ξ±

n ) =
(

σ ± 1

μl
+ 1

2m2l2

)
CE(ξ±

m , ξ±
n ), (70)

so, we can easily read off the central charges of the General Massive Gravity as follows:

c± = 3l

2G

(
σ ± 1

μl
+ 1

2m2l2

)
. (71)

This result is in agreement with what was found in [20]. We can read of the eigenvalues of the 
Virasoro generators L±

n from (67) as

l±n = l

16G

(
σ ± 1

μl
+ 1

2m2l2

)(
r+ ∓ r−

l

)2

δn,0. (72)

The eigenvalues of the Virasoro generators L±
n are related to the energy E and the angular mo-

mentum j of the BTZ black hole by the following equations respectively

E = l−1(l+0 + l−0 ) = 1

8G

[(
σ + 1

2m2l2

)
r2+ + r2−

l2
− 2r+r−

μl3

]
, (73)

j = l−1(l+0 − l−0 ) = 1

8G

[(
σ + 1

2m2l2

)
2r+r−

l
− r2+ + r2−

μl2

]
. (74)

Also, we can calculate the entropy of the considered black hole solution by the Cardy formula 
[39,40] (see also [34])

S = 2π

√
c+l+0 + 2π

√
c−l−0 , (75)
6 6
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then using Eqs. (71), (72), we will have

S = π

2G

[(
σ + 1

2m2l2

)
r+ − r−

μl

]
. (76)

Now, we try to find out the energy, the angular momentum and the entropy of the BTZ black hole 
from conserved charge formula (34) by the corresponding vector fields. To this end, we suppose 
that s = 0 and s = 1 correspond to the AdS3 background and the BTZ black hole spacetime, 
respectively. Thus, for the General Massive Gravity (33) takes following form

δQ(ξ) = 1

8πG

2π∫
0

dφ

[(
σ + 1

2m2l2

)
ξa + 1

μ
�a

]
· δωa

φ, (77)

where the integration runs over a circle of arbitrary radii also. In the above equation ξa and �a

are given by

ξa = ea
μξμ, �a = −1

2
ea

λε
λμν∇μξν. (78)

The energy, angular momentum and the entropy of the BTZ black hole correspond to the follow-
ing Killing vectors respectively

ξ(E) = ∂t , ξ(j) = −∂φ, ξ(S) = 4π

κ
(∂t + �H ∂φ), (79)

where �H = r−
lr+ is the angular velocity of horizon and κ = r2+−r2−

l2r+
is the surface gravity. By 

substituting these Killing vectors into (77) and making an integration over a one-parameter path 
on the solution space, we will find (73), (74) and (76) exactly. It is easy to show that these results 
satisfy the first law of black hole mechanics.

7. Conclusion

In this paper we have considered the Chern–Simons-like theories of gravity (CSLTG) in the 
context of the first order formalism. We have studied the problem of defining off-shell conserved 
charges in the framework of the CSLTG. In order to obtain the ADT current, we used the formal-
ism presented in [27]. We know that the ADT current is an off-shell current and has defined by 
the virtue of the Killing vector fields. We have generalized the ADT current such that it is con-
served for any diffeomorphism generator vector fields. We have fixed the ambiguity in definition 
of the generalized ADT conserved current by considering the phase space analysis. Form this 
generalized ADT conserved current, in section 4, we read off the conserved charge associated 
with a diffeomorphism generator vector field ξ by Eq. (34) and its perturbation by Eq. (33). We 
have shown that the perturbation of the conserved charge is off-shell and is conserved for any 
diffeomorphism generator ξ . On the other hand, since these conserved charges are quasi-local so 
we can consider the asymptotic symmetries as well as near horizon symmetries to obtain central 
extension term for any black hole solution. In section 5, we have considered a set of vector fields 
which satisfy the Witt algebra and have found a general expression for the central extension term 
at spatial infinity (see Eqs. (39), (41) and (42)). Since the quasi-local conserved charge pertur-
bation (33) is independent of the integration surface and is conserved for any diffeomorphism 
generator ξ , then the one we found by Eq. (34) holds near horizon. In section 6, we have applied 
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the method to the Einstein gravity with negative cosmological constant and the Generalized Mas-
sive Gravity as examples. For these examples, we have calculated the central extension term and, 
through it, we read off the central charges and the eigenvalues of the Virasoro algebra generators 
for the BTZ black hole solution. We have obtained the entropy of the BTZ black hole (76) by 
using the Cardy formula. Also we have calculated the energy (73) and the angular momentum 
(74) of this black hole using the eigenvalues of the Virasoro algebra generators. Eventually, we 
have shown that the formula (34) gives the same results.
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