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Abstract

With some modifications, we adopt the coding/decoding method of image processing based on the direct and inverse
fuzzy transforms defined in previous papers. By normalizing the values of its pixels, any image can be considered as a fuzzy
matrix (relation) which is subdivided in submatrices (possibly square) called blocks. Each block is compressed with the
formula of the discrete fuzzy transform of a function in two variables and successively it is decompressed via the related
inverse fuzzy transform. The decompressed blocks are recomposed for the reconstruction of the image, whose quality is
evaluated by calculating the PSNR (Peak Signal to Noise Ratio) with respect to the original image. A comparison with
the coding/decoding method of image processing based on the fuzzy relation equations with the Lukasiewicz triangular
norm and the DCT method are also presented. By using the same compression rate in the three methods, the results show
that the PSNR obtained with the usage of direct and inverse fuzzy transforms is higher than the PSNR determined either
with fuzzy relation equations method or in the DCT one and it is close to the PSNR determined in JPEG method for small
values of the compression rate.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of Fuzzy transform (shortly, F-transform) of a function, introduced in [18–20,22], establishes a
correspondence between the set of continuous functions on the interval [a,b] and the set of n-dimensional vec-
tors. Conversely, the concept of inverse F-transform converts an n-dimensional vector into a continuous func-
tion which approximates the original function up to a small quantity e. In many problems involving complex
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computations, then it is possible to operate with an image of the original function obtained by using the F-
transform and hence by translating the functional problem into the respective problem of linear algebra, which
is more convenient to manipulate since one deals with vectors. After that the computations are made, the
result (which is an n-dimensional vector) is converted, via the inverse F-transform, to a continuous function
which approximates the original function.

The same ideas concern also functions assuming assigned values in determined points of [a,b] by using the
concepts of discrete F-transform and inverse discrete F-transform. Indeed, these last concepts are applied to a
coding/decoding method of image processing already mentioned in [19], here slightly modified in accordance
to the papers [1,2,11,12,16]. In literature the usage of based fuzzy logic methods in image processes is widely
known (see, e.g., [6,7,9,10,13,21,23]).

By normalizing the values of its pixels with respect to the length of the gray scale used, any image can be
considered as a fuzzy matrix (relation). We subdivide this matrix in submatrices (possibly square) called
blocks. Each block is compressed with the formula of the discrete F-transform of a function in two variables
and successively it is decompressed via the related discrete inverse F-transform. We recompose the decom-
pressed blocks by obtaining a new image which is very similar to the original image and the quality of this
reconstructed image is evaluated by calculating the PSNR (Peak Signal to Noise Ratio) with respect to the
original one. A comparison with the coding/decoding method of image processing based on the fuzzy relation
equations with the Lukasiewicz triangular norm [1,2] (for short, FEQ) and with the Discrete Cousin Trans-
form (for short, DCT) method are also presented. By using approximately the same compression rate in
the three methods, the results show that the PSNR obtained with the usage of direct and inverse F-transforms
(briefly, FTR) is higher than the PSNR determined with FEQ and DCT methods. Further, it assumes values
close to the PSNR calculated in the JPEG method for low values of the compression rate. This paper is orga-
nized as follows: in Section 2 we give the concepts and theorems concerning the F-transforms of a continuous
function in one variable and in Section 3, we extend these concepts to the F-transforms of continuous func-
tions in two variables. In Section 4, we show how the techniques based on the discrete F-transform and its
inverse are used for coding/decoding processes of images and in Section 5, we present our simulation results
based on our proposed algorithm which is firstly compared with the FEQ method, afterwards with DCT and
finally, with JPEG, by using several compression rates. In order to have an exhaustive picture of the experi-
ments, we have considered 100 images of sizes 256 · 256 (pixels) extracted from Image Database of the Uni-
versity of Southern California (http://sipi.usc.edu/database/), but we show the results only for four wellknown
images ‘‘Bridge’’, ‘‘Camera’’, ‘‘Lena’’ and ‘‘House’’ for brevity of presentation. Section 6 contains the
conclusions.
2. F-transforms in one variable

Following the definitions and notations of [19], let [a,b] be a closed interval, n P 2 and x1,x2, . . . ,xn be
points of [a,b], called nodes, such that x1 = a < x2 < � � � < xn = b. We say that an assigned family of fuzzy sets
A1, . . . ,An : [a,b]! [1,0] is a fuzzy partition of [a,b] if the following conditions hold:

(1) Ai(xi) = 1 for every i = 1,2, . . . ,n;
(2) Ai(x) = 0 if x 62 (xi�1,xi+1), where we assume x0 = x1 = a and xn+1 = xn = b by comodity of

presentation;
(3) Ai(x) is a continuous function on [a,b];
(4) Ai(x) strictly increases on [xi�1,xi] for i = 2, . . . ,n and strictly decreases on [xi,xi+1] for i = 1, . . . ,n � 1;
(5) 8x 2 ½a; b�;

Pn
1AiðxÞ ¼ 1

The fuzzy sets {A1(x), . . . ,An(x)} are called basic functions. Moreover, we say that they form an uniform

fuzzy partition if
(6) n P 3 and xi = a + h Æ (i � 1), where h = (b � a)/(n � 1) and i = 1,2, . . . ,n (that is the nodes are

equidistant);
(7) Ai(xi � x) = Ai(xi + x) for every x 2 [0, h] and i = 2, . . . ,n � 1;
(8) Ai+1(x) = Ai(x � h) for every x 2 [xi,xi+1] and i = 1,2, . . . ,n � 1.

http://sipi.usc.edu/database/
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Let {A1,A2, . . . ,An} be a fuzzy partition of [a,b] and f(x) be a continuous function on [a,b]. Thus we can
consider the following real numbers for i = 1, . . . ,n:
F i ¼
R b

a f ðxÞAiðxÞdxR b
a AiðxÞdx

: ð1Þ
Then we can define the n-tuple [F1,F2, . . . ,Fn] as the fuzzy transform of f with respect to {A1,A2, . . . ,An}. The
Fi’s are called components of the F-transform and if the fuzzy partition is uniform, then the components (1) are
given (cf. [19, Lemma 1]) by
F i ¼

2
h

R x2

x1
f ðxÞA1ðxÞdx if i ¼ 1;

1
h

R xi

xi�1
f ðxÞAiðxÞdx if i ¼ 2; . . . ; n� 1;

2
h

R xn

xn�1
f ðxÞAnðxÞdx if i ¼ n:

8>>><
>>>:

ð2Þ
On the basis of knowledge of the components, now we can define the following function on [a,b]:
fF ;nðxÞ ¼
Xn

i¼1

F iAiðxÞ; ð3Þ
where x 2 [a,b]. It is called inverse F-transform of f with respect to {A1,A2, . . . ,An} and it approximates a given
continuous function f on [a,b] with arbitrary precision in the sense of the following theorem (cf. [19, Theorem
2]):

Theorem 1. Let f(x) be a continuous function on [a,b]. For every e > 0, then there exist an integer n(e) and a
related fuzzy partition {A1,A2, . . . ,An(e)} of [a,b] such that for all x 2 [a,b]:
jf ðxÞ � fF ;nðeÞðxÞj < e;
where fF,n(e)(x) is the inverse F-transform of f with respect to {A1,A2, . . . ,An(e)}.

Note that such a fuzzy partition {A1,A2, . . . ,An(e)} of [a,b] is not necessarily uniform. Theorem 1 concerns
the continuous case, but now we deal the discrete case, that is we only know that the function f assumes deter-
mined values in some points p1, . . . ,pm of [a,b]. We assume that the set P of these nodes is sufficiently dense

with respect to the fixed partition, i.e. for each i = 1, . . . ,n there exists an index j 2 {1, . . . ,m} such that
Ai(pj) > 0. Then we can define the n-tuple [F1,F2, . . . ,Fn] as the discrete F-transform of f with respect to
{A1,A2, . . . ,An}, where each Fi is given by
F i ¼
Pm

j¼1f ðpjÞAiðpjÞPm
j¼1AiðpjÞ

ð4Þ
for i = 1, . . . ,n. Similarly as in (3), we call the discrete inverse F-transform of f with respect to {A1,A2, . . . ,An}
to be the following function defined in the same points p1, . . . ,pm of [a,b]:
fF ;nðpjÞ ¼
Xn

i¼1

F iAiðpjÞ: ð5Þ
Analogously to Theorem 1, we have the following approximation theorem (cf. [19, Theorem 5]):

Theorem 2. Let f(x) be a function assigned on a set P of points p1, . . . , pm of [a,b]. Then for every e > 0, there

exist an integer n(e) and a related fuzzy partition {A1,A2, . . . ,An(e)} of [a,b] such that P is sufficiently dense with

respect to {A1,A2, . . . ,An(e)} and for every pj 2 [a,b], j = 1, . . . ,m
jf ðpjÞ � fF ;nðeÞðpjÞj < e
holds true.
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3. F-transforms in two variables

We can extend the above concepts to functions in two variables. Assume that our universe of discourse is
the rectangle [a,b] · [c,d] and let n,m P 2, x1,x2, . . . ,xn 2 [a,b] and y1,y2, . . . ,ym 2 [c,d] be n + m assigned
points, called nodes, such that x1 = a < x2 < � � � < xn = b and y1 = c < � � � < ym = d. Furthermore, let
A1, . . . ,An : [a,b]! [0,1] be a fuzzy partition of [a,b], B1, . . . ,Bm : [a,b]! [0,1] be a fuzzy partition of [c,d]
and f(x,y) be a continuous function on [a,b] · [c,d]. Then we can define the n · m matrix [Fkl] as the F-trans-

form of f with respect to {A1, . . . ,An} and {B1, . . . ,Bm} if we have for each k = 1, . . . ,n and l = 1, . . . ,m,
x 2 [a,b] and y 2 [c,d] (cf. [19, Definition 49]):
F kl ¼
R d

c

R b
a f ðx; yÞAkðxÞBlðyÞdxdyR d
c

R b
a AkðxÞBlðyÞdxdy

: ð6Þ
Similarly as the formula (3), we define the inverse F-transform of f with respect to {A1,A2, . . . ,An} and
{B1, . . . ,Bm} to be the following function on [a,b] · [c,d] (cf. [19, Definition 51]):
f F
nmðx; yÞ ¼

Xn

k¼1

Xm

l¼1

F klAkðxÞBlðyÞ: ð7Þ
Of course, an approximation theorem, similar to Theorem 1, holds also in the case of two variables (cf. [19,
Theorem 14]). In the discrete case, we assume that the function f assumes determined values in some points
(pj,qj) 2 [a,b] · [c,d], where i = 1, . . . ,N and j = 1, . . . ,M. Moreover, the sets P = {p1, . . . ,pN} and
Q = {q1, . . . ,qM} of these nodes are sufficiently dense with respect to the chosen partitions, i.e. for each
i = 1, . . . ,N there exists an index k 2 {1, . . . ,n} such that Ai(pk) > 0 and for each j = 1, . . . ,M there exists an
index l 2 {1, . . . ,m} such that Bj(ql) > 0.

In this case we define the matrix [Fkl] to be the discrete F-transform, extension of (4), of f with respect to
{A1, . . . ,An} and {B1, . . . Bm} if we have for each k = 1, . . . ,n and l = 1, . . . ,m:
F kl ¼
PM

j¼1

PN
i¼1f ðpi; qjÞAkðpiÞBlðqjÞPM

j¼1

PN
i¼1AkðpiÞBlðqjÞ

: ð8Þ
By extending (5) to the case of two variables, we give the discrete inverse F-transform of f with respect to
{A1,A2, . . . ,An} and {B1, . . . ,Bm} to be the following function defined in the same points (pj,qj) 2 [a,b] · [c,d],
with i 2 {1, . . . ,N} and j 2 {1, . . . ,M}, as
f F
nmðpi; qjÞ ¼

Xn

k¼1

Xm

l¼1

F klAkðpiÞBlðqjÞ: ð9Þ
The following generalization of Theorem 2 holds:

Theorem 3. Let f(x, y) be a function assigned on the points (pj, qj) 2 [a,b] · [c,d], with i 2 {1, . . . ,N} and

j 2 {1, . . . ,M}. Then for every e > 0, there exist two integers n(e), m(e) and related fuzzy partitions

{A1,A2, . . . ,An(e)} of [a,b] and {B1,B2, . . . ,Bm(e)} of [c,d] such that the sets of points P = {p1, . . . , pN} and

Q = {q1, . . . , qM} are sufficiently dense with respect to {A1,A2, . . . ,An(e)} and {B1,B2, . . . ,Bm(e)} and for every

(pj, qj) 2 [a,b] · [c,d], i 2 {1, . . . ,N} and j 2 {1, . . . ,M}
jf ðpi; qjÞ � f F
nðeÞmðeÞðpi; qjÞj < e
holds true.

The proof is omitted since it follows the same lines of the analogous Theorem 5 in [19] for one variable.
4. By coding/decoding images

In [19], a method of compression/decompression of images based on the FTR method is mentioned, but
here we modify it slightly.
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Let R be a grey image divided in N · M pixels. It is seen as a fuzzy relation R : (i, j) 2 {1, . . . ,N} ·
{1, . . . ,M}! [0,1], R(i, j) being the normalized value of the pixel P(i, j), that is R(i, j) = P(i, j)/255 if the length
of the grey scale, for instance, has 256 levels. In [19], the image R is compressed by using a discrete F-transform
in two variables [Fkl] (cf. formula (8)) defined for each k = 1, . . . ,n and l = 1, . . . ,m, as
F kl ¼
PM

j¼1

PN
i¼1Rði; jÞAkðiÞBlðjÞPM

j¼1

PN
i¼1AkðiÞBlðjÞ

; ð10Þ
where, by simplicity of notation, we have assumed pi = i and qj = j (consequently, a = c = 1, b = N, d = M),
A1, . . . ,An and B1, . . . ,Bm, with n� N and m�M, are basic functions forming a fuzzy partition of the real
intervals [1,N] and [1,M], respectively. The compressed image can be decoded by using the following inverse
discrete F-transform (cf. formula (9)) for every (i, j) 2 {1, . . . ,N} · {1, . . . ,M}:
RF
nmði; jÞ ¼

Xn

k¼1

Xm

l¼1

F klAkðiÞBlðjÞ: ð11Þ
We have subdivided the image R of sizes N · M (pixels) in submatrices RB of sizes N(B) · M(B) (pixels), called
blocks (cf. [1,2]), each compressed to a block FB of sizes n(B) · m(B)(3 6 n(B) < N(B), 3 6 m(B) < M(B)) via
the discrete F-transform F nðBÞmðBÞ½RB� ¼ ðF B

klÞ (cf. formula (10)) whose components, for each k = 1, . . . ,n(B) and
l = 1, . . . ,m(B), are given by
F B
kl ¼

PMðBÞ
j¼1

PNðBÞ
i¼1 RBði; jÞAkðiÞBlðjÞPMðBÞ

j¼1

PNðBÞ
i¼1 AkðiÞBlðjÞ

: ð12Þ
The following basic functions {A1, . . . ,An(B)} and {B1, . . . ,Bm(B)}, used in (12), form an uniform fuzzy parti-
tion of [1, N(B)] and [1,M(B)], respectively:
A1ðxÞ ¼
0:5 1þ cos p

h ðx� x1Þ
� �

if x 2 ½x1; x2�;

0 otherwise;

(

AkðxÞ ¼
0:5 1þ cos p

h ðx� xkÞ
� �

if x 2 ½xk�1; xkþ1�;

0 otherwise;

(

AnðxÞ ¼
0:5 1þ cos p

h ðx� xnÞ
� �

if x 2 ½xn�1; xn�;

0 otherwise;

(
ð13Þ
where n = n(B), k = 2, . . . ,n, h = (N(B) � 1)/(n � 1), xk = 1 + h Æ (k � 1) and
B1ðyÞ ¼
0:5 1þ cos p

s ðy � y1Þ
� �

if y 2 ½y1; y2�;

0 otherwise;

(

BtðyÞ ¼
0:5 1þ cos p

s ðy � ytÞ
� �

if y 2 ½yt�1; ytþ1�;

0 otherwise;

(

BmðyÞ ¼
0:5 1þ cos p

s ðy � ymÞ
� �

if y 2 ½ym�1; ym�;

0 otherwise;

(
ð14Þ
where m = m(B), t = 2, . . . ,m, s = (M(B) � 1)/(m � 1), yt = 1 + s Æ (t � 1).
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The compressed block FB is decoded to a block RF
nðBÞmðBÞ of sizes N(B) · M(B) by using the inverse discrete

F-transform (cf. formula (11)) defined for every (i, j) 2 {1, . . . ,NB} · {1, . . . ,MB} as
RF
nðBÞmðBÞði; jÞ ¼

XnðBÞ
k¼1

XmðBÞ
l¼1

F B
klAkðiÞBlðjÞ; ð15Þ
which approximates the original block RB with arbitrary precision in the sense of Theorem 3. For every block
RB and e, this theorem guarantees the existence of integers n(B) = n(B, e) and m(B) = m(B, e) such that, by
taking in account formula (15), the following inequality:
jRBði; jÞ � RF
nðBÞmðBÞði; jÞj < e
holds true. Unfortunately Theorem 3 does not give a practical method for building such integers n(B, e) and
m(B, e) for an arbitrary e. Thus we assume several known values of n(B) and m(B) with n(B) < N(B) and
m(B) < M(B) and further, for every block RB we consider different compression rates q(B) given by
q(B) = (n(B) Æ m(B))/(N(B) Æ M(B)). By simplicity, we have considered N = M and N(B) = M(B), that is square
matrices subdivided in square blocks, in turn compressed to square blocks FB with size n(B) = m(B) and
decoded to blocks RF

nðBÞmðBÞ with sizes N(B) = M(B). For each compression rate, we evaluate the quality of
the reconstructed image via the Peak Signal to Noise Ratio (shortly, PSNR) given by
PSNR ¼ 20log10

255

RMSE
; ð16Þ
where RMSE (Root Mean Square Error) is given by
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PM
j¼1ðRði; jÞ � RF

NMði; jÞÞ
2

N �M

s
: ð17Þ
We note that RF
NM in formula (17) represents the reconstructed image obtained from the recomposition of the

blocks RF
nðBÞmðBÞ. In order to give a precise idea we give a suitable example of a original block RB with

N(B) = M(B) = 8, firstly compressed to a block FB with sizes n(B) = m(B) = 3 and after decoded to a block
RF

nðBÞmðBÞ with N(B) = M(B) = 8, in which the corresponding values of the normalized pixels vary within a grey
scale of length equal to 255.

Example. Consider the following fuzzy relation R of sizes 8 · 8 with value pixels between 0 and 255 corre-
sponding to the image of Fig. 1, which we normalize by obtaining the fuzzy relation RB:
Fig. 1. The original image 8 · 8.
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R ¼

21 27 65 44 36 98 87 112

63 98 46 58 80 75 117 120

75 71 78 75 102 88 122 176

79 85 86 103 123 96 91 145

83 113 101 118 131 121 98 134

85 131 201 203 127 148 87 165

88 124 212 189 139 162 106 139

91 141 224 197 154 197 111 133

2
66666666666666664

3
77777777777777775

;

RB ¼

0:082 0:105 0:253 0171 0:140 0:382 0:339 0:437

0:246 0:382 0:179 0:226 0:312 0:292 0:457 0:468

0:292 0:277 0:304 0:292 0:398 0:343 0:476 0:687

0:308 0:332 0:335 0:402 0:480 0:375 0:355 0:566

0:324 0:411 0:394 0:460 0:511 0:472 0:382 0:523

0:332 0:511 0:785 0:792 0:496 0:578 0:339 0:644

0:343 0:484 0:828 0:738 0:542 0:632 0:414 0:542

0:355 0:550 0:875 0:769 0:601 0:769 0:433 0:519

2
66666666666666664

3
77777777777777775

:

The original block RB is firstly compressed to a block FB of sizes 3 · 3 (hence q = 0,14063 = (3 · 3)/(8 · 8)) by
using formula (12), in which the basic functions A1,A2,A3 and B1,B2,B3 are defined by formulas (13) and (14),
respectively, and they form an uniform fuzzy partition of the interval [1,8]. The obtained block FB is repre-
sented with the following fuzzy relation:
F B ¼
0:213 0:264 0:431

0:368 0:453 0:486

0:501 0:671 0:521

2
64

3
75;
which we can denormalize by deducing the following matrix:
54 67 110

94 116 124

128 171 133

2
64

3
75:
The block FB is decompressed to a block RF
nðBÞmðBÞ of sizes 8 · 8 via formula (15) by obtaining the following

fuzzy relation:
RF
nðBÞmðBÞ ¼

0:213 0:223 0:244 0:261 0:272 0:329 0:399 0:431

0:242 0:253 0:277 0:297 0:307 0:355 0:415 0:441

0:308 0:321 0:352 0:376 0:384 0:413 0:449 0:464

0:360 0:376 0:411 0:440 0:446 0:459 0:476 0:483

0:374 0:391 0:429 0:460 0:465 0:473 0:483 0:488

0:419 0:442 0:492 0:532 0:536 0:523 0:507 0:500

0:476 0:505 0:570 0:622 0:624 0:585 0:536 0:515

0:501 0:533 0:605 0:662 0:663 0:613 0:549 0:521

2
66666666666666664

3
77777777777777775

;

whose denormalization gives the following relation:
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54 57 62 67 69 84 102 110

62 64 71 76 78 90 106 113

78 82 90 96 98 105 114 119

92 96 105 112 114 117 121 123

95 100 110 117 119 121 123 124

107 113 126 136 137 134 129 128

121 129 146 159 159 149 137 131

128 136 154 169 169 156 140 133

2
666666666666666664

3
777777777777777775

;

which corresponds to the successive image of Fig. 2.
The related PSNR, calculated with formula (16), is equal to 19.4789. Indeed, we see that the PSNR

increases if the compression rate q increases as shown in Fig. 3 (in which, for sake of completeness, we have
q = 0.1463 = (3 · 3)/(8 · 8), q = 0.25 = (4 · 4)/(8 · 8), q = (5 · 5)/(8 · 8) = 0.39, q = 0.56 = (6 · 6)/(8 · 8),
q = 0.77 = (7 · 7)/(8 · 8)).

We compare the results with those ones obtained by coding/decoding images with the FEQ method, that is
with fuzzy relation equations under triangular norms [5,8]. In accordance to the papers [1,2], we use the Luka-
siewicz triangular norm L : [0,1]2! [0, 1] defined, for all x,y 2 [0,1], as
xLy ¼ maxf0; xþ y � 1g:

In [1,2] any image R is subdivided in blocks RB of sizes N(B) · M(B) (pixels) as well. These blocks are com-
pressed to blocks GB of sizes n(B) · m(B) (pixels) via the following equation of ‘‘max-t’’ type (cf. [5]):
GBðp; qÞ ¼
[NðBÞ
i¼1

[MðBÞ
j¼1

½ðApðiÞLBqðjÞÞLRBði; jÞ�; ð18Þ
where the codebooks Ap : i 2 {1, . . . ,N(B)}! Ap 2 [0,1], p = 1, . . . ,n(B), and Bq : j 2 {1, . . . ,M(B)}!
Bq 2 [0,1], q = 1, . . . ,m(B), are fuzzy sets with Gaussian membership functions given by
ApðiÞ ¼ exp �a p
N B

nB
� i

� �2
" #

;

BqðjÞ ¼ exp �a q
MB

mB
� j

� �2
" #
Fig. 2. The decompressed image 8 · 8.
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being the parameter a (its range is the set {0.1, 0.2, . . . , 1}) optimized in such a way the RMSE is minimized on
the decompression of each block. Indeed, each block GB is decoded to a block DB of sizes N(B) · M(B) via the
following equation of ‘‘min-!t’’ type (cf. [5]):
DBði; jÞ ¼
\nðBÞ
p¼1

\mðBÞ
q¼1

½ðApðiÞLBqðjÞÞ!LGBðp; qÞ�; ð19Þ
where ‘‘!L’’ is the residuum operator of the Lukasiewicz triangular norm given, for all x,y 2 [0,1], by
x!L y ¼ minf1; 1� xþ yg:

We evaluate the PSNR (16) for the final image D (obtained with the recomposition of all the blocks DB), where
the RMSE is given from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

PM
j¼1ðRði; jÞ � Dði; jÞÞ2

N �M

s
ð20Þ
and we compare it with the PSNR calculated with the FTR method and the DCT method by using compres-
sion rates whose values are close to those ones utilized in FEQ and FTR methods. For sake of completeness,
we also evaluate PSNR and RMSE in the JPEG method and we take into account also the Sum of Absolute
Differences (shortly, SAD) defined as
XN

i¼1

XM

j¼1

jRði; jÞ � Dði; jÞj; ð21Þ
which we compare with the same quantity calculated in the FTR and FEQ methods in correspondence of the
(approximately) same compression rates.
5. Simulation results

For our tests we have considered 100 images extracted from Image Database of the University of Southern
California (http://sipi.usc.edu/database/) with N = M = 256.

For brevity of presentation, here we present our results only for four gray level images ‘‘Bridge’’ (Fig. 4a),
‘‘Camera’’ (Fig. 5a), ‘‘Lena’’ (Fig. 6a) and ‘‘House’’ (see Fig. 7a).

The values of M(B) = N(B) and m(B) = n(B) used in each compression rate in the FTR and FEQ methods
are scheduled in Table 1.

The corresponding values of the PSNR for ‘‘Bridge’’, ‘‘Camera’’, ‘‘Lena’’ and ‘‘House’’ are given in Tables
2–5, respectively.

http://sipi.usc.edu/database/


Fig. 4. (a) ‘‘Bridge’’; (b) FEQ, q = 0.44444; (c) FTR, q = 0.44444; (d) JPEG, q = 0.430832; (e) FEQ, q = 0.25; (f) FTR, q = 0.25; (g)
JPEG, q = 0.244705.
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As shown in Tables 2–5, the PSNR calculated in the FTR method is superior than PSNR evaluated in the
FEQ and DCT methods. The successive Tables 6–9 give a precise idea about the coding and decoding times in



Fig. 5. (a) ‘‘Camera’’; (b) FEQ, q = 0.44444; (c) FTR, q = 0.44444; (d) JPEG, q = 0.436127; (e) FEQ, q = 0.25; (f) FTR, q = 0.25; (g)
JPEG, q = 0.249496.
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Fig. 6. (a) ‘‘Lena’’; (b) FEQ, q = 0.44444; (c) FTR, q = 0.44444; (d) JPEG, q = 0.439859; (e) FEQ, q = 0.25; (f) FTR, q = 0.25; (g) JPEG,
q = 0.240500.
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Fig. 7. (a) ‘‘House’’; (b) FEQ, q = 0.44444; (c) FTR, q = 0.44444; (d) JPEG, q = 0.434868; (e) FEQ, q = 0.25; (f) FTR, q = 0.25; (g)
JPEG, q = 0.240472.
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Table 1
Compression rates used in the experiments

q(B) M(B) N(B) m(B) n(B)

0.035156 16 16 3 3
0.062500 8 8 2 2
0.140625 8 8 3 3
0.250000 8 8 4 4
0.444444 3 3 2 2

Table 2
Values of PSNR for ‘‘Bridge’’

q(B) PSNR in FTR PSNR in FEQ q in DCT PSNR in DCT

0.035156 20.7262 11.0283 0.034668 18.6115
0.062500 21.4833 14.2812 0.058304 19.4849
0.140625 23.2101 16.4632 0.140305 20.8430
0.250000 24.6975 19.7759 0.244705 22.5470
0.444444 27.0960 23.7349 0.430832 26.1490

Table 3
Values of PSNR for ‘‘Camera’’

q(B) PSNR in FTR PSNR in FEQ q in DCT PSNR in DCT

0.035156 20.6304 11.8273 0.034561 18.1489
0.062500 21.5427 15.4535 0.060745 19.4447
0.140625 23.5428 17.4869 0.139465 22.1506
0.250000 25.0676 20.5530 0.249496 24.0288
0.444444 27.4264 23.7706 0.436127 25.5431

Table 4
Values of PSNR for ‘‘Lena’’

q(B) PSNR in FTR PSNR in FEQ q in DCT PSNR in DCT

0.035156 23.5685 12.6959 0.034810 21.9341
0.062500 24.5514 17.1275 0.061127 23.0445
0.140625 26.8100 19.7528 0.130330 24.8803
0.250000 28.4310 23.2983 0.240500 27.4874
0.444444 30.8003 26.9285 0.439859 29.7911

Table 5
Values of PSNR for ‘‘House’’

q(B) PSNR in FTR PSNR in FEQ q in DCT PSNR in DCT

0.035156 22.9525 11.8965 0.034494 20.2155
0.062500 23.8517 16.5426 0.062360 21.2327
0.140625 26.4038 19.9876 0.137035 23.2612
0.250000 28.1763 23.8031 0.240472 26.5368
0.444444 31.5114 28.7464 0.434868 30.7693
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three methods for ‘‘Bridge’’, ‘‘Camera’’, ‘‘Lena’’ and ‘‘House’’, respectively, under the above compression
rates.

Tables 6–9 show that the coding (resp. decoding) times in the FTR (resp. DCT) method are lower than the
analogous times in the FEQ and DCT (resp. FTR) methods under the above compression rates. For sake of
completeness, we report in Tables 10–13 the values of the PSNR (16) evaluated in the JPEG method under the



Table 10
PSNR and % gain parameters for ‘‘Bridge’’

q(B) q in JPEG PSNR in JPEG % Gain FTR over FEQ % Gain JPEG over FTR

0.035156 0.034668 22.6985 87.9364 9.5159
0.062500 0.058304 24.7253 50.4306 15.0907
0.140625 0.140305 28.1149 65.5220 21.1321
0.250000 0.244705 31.2148 24.8868 26.3885
0.444444 0.430832 37.2367 14.1610 37.4250

Table 6
Coding and decoding times for ‘‘Bridge’’

q(B) FTR coding
time

FTR decoding
time

FEQ coding
time

FEQ decoding
time

q in DCT DCT coding
time

DCT decoding
time

0.035156 2.13 5.53 45.68 5.15 0.034668 2.45 2.11
0.062500 1.19 4.19 20.21 2.82 0.058304 6.78 2.36
0.140625 3.59 5.59 54.98 4.52 0.140305 4.02 2.45
0.250000 2.32 4.32 20.36 3.62 0.244705 4.65 2.68
0.444444 3.39 4.40 19.07 4.50 0.430832 4.77 2.54

Table 7
Coding and decoding times for ‘‘Camera’’

q(B) FTR coding
time

FTR decoding
time

FEQ coding
time

FEQ decoding
time

q in DCT DCT coding
time

DCT decoding
time

0.035156 2.16 5.59 23.50 4.15 0.034561 2.36 1.94
0.062500 1.20 4.25 10.87 2.59 0.060745 5.54 2.09
0.140625 3.41 5.49 27.96 4.24 0.139465 18.29 2.40
0.250000 2.11 4.31 10.83 3.18 0.249496 3.07 2.68
0.444444 3.34 5.09 10.80 3.78 0.436127 3.46 2.85

Table 8
Coding and decoding times for ‘‘Lena’’

q(B) FTR coding
time

FTR decoding
time

FEQ coding
time

FEQ decoding
time

q in DCT DCT coding
time

DCT decoding
time

0.035156 4.10 14.82 97.74 15.90 0.034810 4.13 3.31
0.062500 4.38 11.55 57.09 9.54 0.061127 5.11 3.14
0.140625 5.46 14.93 146.94 14.26 0.130330 5.87 3.61
0.250000 6.09 11.34 58.11 11.15 0.240500 6.18 4.11
0.444444 6.21 11.72 55.25 13.66 0.439859 6.24 4.28

Table 9
Coding and decoding times for ‘‘House’’

q(B) FTR coding
time

FTR decoding
time

FEQ coding
time

FEQ decoding
time

q in DCT DCT coding
time

DCT decoding
time

0.035156 4.10 14.82 97.74 15.90 0.034494 4.13 3.31
0.062500 4.38 11.55 57.09 9.54 0.062360 5.11 3.14
0.140625 5.46 14.93 146.94 14.26 0.137035 5.87 3.61
0.250000 6.09 11.34 58.11 11.15 0.240472 6.18 4.11
0.444444 6.21 11.72 55.25 13.66 0.434868 6.24 4.28
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same compression rates for ‘‘Bridge’’, ‘‘Camera’’, ‘‘Lena’’ and ‘‘House’’, respectively. We have also given in
these tables the following parameters:



Table 11
PSNR and % gain parameters for ‘‘Camera’’

q(B) q in JPEG PSNR in JPEG % Gain FTR over FEQ % Gain JPEG over FTR

0.035156 0.034561 25.5207 74.4303 23.7043
0.062500 0.060745 28.4293 39.4033 31.9672
0.140625 0.139465 33.4379 52.3460 42.0302
0.250000 0.249496 38.8007 21.9656 54.7842
0.444444 0.436127 45.5878 15.3795 66.2186

Table 12
PSNR and % gain parameters for ‘‘Lena’’

q(B) q in JPEG PSNR in JPEG % Gain FTR over FEQ % Gain JPEG over FTR

0.035156 0.034810 29.8727 85.6387 26.74841
0.062500 0.061127 32.4369 43.3449 32.11833
0.140625 0.130330 35.7345 35.7275 33.28795
0.250000 0.240500 37.5461 22.0303 32.06043
0.444444 0.439859 38.4881 14.3780 24.96015

Table 13
PSNR and % gain parameters for ‘‘House’’

q(B) q in JPEG PSNR in JPEG % Gain FTR over FEQ % Gain JPEG over FTR

0.035156 0.034494 30.0249 92.9349 30.8132
0.062500 0.062360 32.0180 44.1835 34.2378
0.140625 0.137035 34.2460 32.1009 29.7010
0.250000 0.240472 35.1001 18.3724 24.5731
0.444444 0.434868 35.7719 9.6185 13.5205
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(% Gain FTR over FEQ) = [(PSNR in FTR) � (PSNR in FEQ)] Æ 100/(PSNR in FEQ),
(% Gain JPEG over FTR) = [(PSNR in JPEG) � (PSNR in FTR)] Æ 100/(PSNR in FTR),

in order to obtain the variation in percentage of the PSNR in the JPEG (resp. FTR) method with respect to
the PSNR evaluated in the FTR (resp. FEQ) method.

For completeness, we limit ourselves to show only ‘‘Bridge’’ in Fig. 1b–g, ‘‘Camera’’ in Fig. 2b–g, ‘‘Lena’’
in Fig. 3b–g, ‘‘House’’ in Fig. 4b–g reconstructed under the three methods with the compression rates
q = 0.444444,0.25 for FTR and FEQ with Eqs. (18) and (19) and with the same (approximately equal) values
of q for JPEG.

The successive Tables 14–17 give the values of the RMSE (17) and of the SAD (21) in three methods for the
same images under the above compression rates.

In Table 18 (resp. Table 19) we report the values of the coding and decoding time, with approximately equal
compression rates, for ‘‘Bridge’’ and ‘‘Camera’’ (resp. ‘‘Lena’’ and ‘‘House’’) in the JPEG method to be com-
pared with Tables 6–9 which contain the analogous values in the FEQ and FTR methods for the same images.
Table 14
RMSE and SAD for ‘‘Bridge’’

q(B) RMSE in FEQ RMSE in FTR SAD in FEQ SAD in FTR q in JPEG RMSE in JPEG SAD in JPEG

0.035156 71.6349 23.4548 3883022 1145018 0.034668 18.6903 944097
0.062500 49.2584 21.4968 2455725 1034990 0.058304 14.8005 737776
0.140625 38.3160 17.6211 1574219 835993 0.140305 10.0183 494429
0.250000 26.1665 14.8479 1076978 689872 0.244705 7.0113 348847
0.444444 16.5880 11.2652 567366 511329 0.430832 3.5051 177114



Table 15
RMSE and SAD for ‘‘Camera’’

q(B) RMSE in FEQ RMSE in FTR SAD in FEQ SAD in FTR q in JPEG RMSE in JPEG SAD in JPEG

0.035156 65.3394 23.7148 2560925 816695 0.034561 13.5054 561273
0.062500 43.0393 21.3504 1415428 703207 0.060745 9.6621 388303
0.140625 34.0561 16.9590 1134652 544050 0.139465 5.4281 227029
0.250000 23.9271 14.2285 632856 443017 0.249496 2.9275 133504
0.444444 16.5200 10.8448 358033 325692 0.436127 1.3401 63760

Table 16
RMSE and SAD for ‘‘Lena’’

q(B) RMSE in FEQ RMSE in FTR SAD in FEQ SAD in FTR q in JPEG RMSE in JPEG SAD in JPEG

0.035156 59.1218 16.9090 2860780 696303 0.034810 8.1829 394796
0.062500 35.4950 15.0998 1503574 593984 0.061127 6.0911 298826
0.140625 26.2361 11.6423 610129 441547 0.130330 4.1669 205918
0.250000 17.4431 9.6603 603278 354249 0.240500 3.3825 156163
0.444444 11.4845 7.354 329571 258131 0.439859 3.0348 124182

Table 17
RMSE and SAD for ‘‘House’’

q(B) RMSE in FEQ RMSE in FTR SAD in FEQ SAD in FTR q in JPEG RMSE in JPEG SAD in JPEG

0.035156 64.8209 18.1515 11963262 2936833 0.034494 8.0407 1460981
0.062500 37.9673 16.3665 6259591 2581496 0.062360 6.3921 1091999
0.140625 25.5364 12.1997 3568132 1873294 0.137035 4.9459 736445
0.250000 16.4583 9.9478 2287157 1451945 0.240472 4.4827 574576
0.444444 9.3158 6.7760 1092637 932965 0.434868 4.1490 502499

Table 18
Coding and decoding times for ‘‘Bridge’’ and ‘‘Camera’’ in JPEG

q (Bridge) Coding time bridge Decoding time bridge q (Camera) Coding time camera Decoding time camera

0.034668 3.94 2.48 0.034561 3.91 2.46
0.058304 16.67 2.79 0.060745 13.38 2.61
0.140305 5.32 3.10 0.139465 42.05 2.99
0.244705 5.72 3.25 0.249496 5.74 3.33
0.430832 7.05 3.57 0.436127 6.61 3.55

Table 19
Coding and decoding times for ‘‘Lena’’ and ‘‘House’’ in JPEG

q (Lena) Coding time lena Decoding time lena q (House) Coding time house Decoding time house

0.034810 6.26 3.99 0.034494 16.98 9.25
0.061127 6.87 4.25 0.062360 19.07 10.00
0.130330 8.16 4.58 0.137035 23.39 11.34
0.240500 9.6 5.15 0.240472 28.64 13.09
0.439859 10.6 5.26 0.434868 33.34 15.15
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Then our tests show that the PSNR in the FTR method is less than the PSNR obtained by using the JPEG
method. The gain of PSNR obtained with FTR method respect to the PSNR obtained with FEQ method is
more evident in images with low compression rate. For these low values of the compression rate, the PSNR
obtained with the FTR method has a value close to the PSNR obtained in the JPEG method. Fig. 8 (resp.
Figs. 9–11) shows the behaviour of the PSNR obtained in the methods FTR, FEQ and JPEG with respect
to the compression rate for ‘‘Bridge’’ (resp. ‘‘Camera’’, ‘‘Lena’’, ‘‘House’’).



Lena

0

5

10
15

20

25

30
35

40

45

0 0.2 0.4 0.6
compression rate

PS
N

R FEQ

FTR

JPEG

Fig. 10. PSNR in the FTR, FEQ, JPEG methods for ‘‘Lena’’.
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Fig. 8. PSNR in the FTR, FEQ, JPEG methods for ‘‘Bridge’’.
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Fig. 9. PSNR in the FTR, FEQ, JPEG methods for ‘‘Camera’’.
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In Fig. 12 (resp. Figs. 13–15) we represent, with respect to the compression rate, the decreasing curve of the
gain in percentage of the PSNR obtained by using the FTR method over the PSNR calculated in the FEQ
method based on Eqs. (18) and (19) for ‘‘Bridge’’ (resp. ‘‘Camera’’, ‘‘Lena’’, ‘‘House’’) as shown in Table
10 (resp. Tables 11–13). There is analogous representation, with an increasing curve, of the gain in percentage
of the PSNR obtained by using the JPEG method over the PSNR calculated in the FTR method.
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Fig. 11. PSNR in the FTR, FEQ, JPEG methods for ‘‘House’’.
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Fig. 12. % Gain of FTR over FEQ and JPEG over FTR for ‘‘Bridge’’.
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Fig. 13. % Gain of FTR over FEQ and JPEG over FTR for ‘‘Camera’’.
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Fig. 14. % Gain of FTR over FEQ and FTR for ‘‘Lena’’.
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Fig. 15. % Gain of FTR over FEQ and JPEG over JPEG over FTR for ‘‘House’’.
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6. Conclusions

The preponderant existence of computer networks used for video conference sessions and multimedia appli-
cations makes the research on fast efficient image compression algorithms an issue of vital importance. Thanks
to the advent of the Internet, most of the communication tools based on visual interaction are widely exploited
for professional and personal needs for which the goal in achieving efficiency is more crucial than precision
and detail. In this case, the natural power of the human eye is somehow capable of recovering or integrating
the missing information without affecting the overall perception phenomena. In addition to ‘‘native’’ Internet
applications where video conferencing may be done by accepting a lost of information, we believe that inter-
esting results can be obtained from our approach if we consider mobile video applications. Ten years ago, it
was the internet that threw the telecom, media and marketing worlds into ferment . Nowadays we are observ-
ing a counter-tendency: many cable companies deal that will result in co-branded phones allowing consumers
to download entertainment programs to their mobile phone and even remotely program their home digital
video recorder. This trend opens new scenarios for marketers: if online video e-advertising is ramping up fast
then mobile video advertising will follow it closely. For most mobile music and video applications the speed
plays a key role; of course the technology will provide more bandwidth, but in the same way the media inte-
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gration becomes more complex. Within this scenario, our compression/decompression approach can be useful
considering the simplicity in implementing the operational framework.

We have shown that compression/decompression of images based on the FTR method gives best results
with respect to the FEQ method based on Eqs. (18) and (19): indeed the quality of the image, measured by
PSNR, reconstructed with the first method is quite superior with respect to that one of the image decoded with
the second method. Further the PSNR of the image deduced with the FTR method is close to the PSNR value
obtained with the JPEG method for low values of the compression rate. Moreover, the compression time in
the FTR method is minor with respect to the FEQ method. Other studies are necessary: among others, a com-
parison with other types of fuzzy relation equations used for coding/decoding processes of images (see, e.g.,
[7,14,15,17]) and applications of the FTR method to other topics like digital watermarking [4], coding/decod-
ing of videos [12], image information retrieval [3].
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[22] M. Stepnicka, R. Valàsek, Fuzzy transforms for functions with two variables, in: J. Ramik, V. Novak (Eds.), Methods for Decision
Support in Environment with Uncertainty – Applications in Economics, Business and Engineering, IRAFM, Ostrava, Czech
Republic, 2003, pp. 96–102.

[23] G.E. Tsekouras, A fuzzy vector quantization approach to image compression, Applied Mathematics and Computation 167 (5) (2005)
539–560.


	An image coding/decoding method based on direct and inverse fuzzy transforms
	Introduction
	F-transforms in one variable
	F-transforms in two variables
	By coding/decoding images
	Simulation results
	Conclusions
	Acknowledgement
	References


