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Abstract

A 2-matching in a simple graph is a subset of edges such that every node of the graph is incident with
at most two edges of the subset. A maximum 2-matching is a 2-matching of maximum size. The problem
of finding a maximum 2-matching is a relaxation of the problem of finding a Hamilton tour in a graph.
In this paper we study, in bipartite graphs, a problem of intermediate difficulty: The problem of finding a
maximum 2-matching that contains no 4-cycles. Our main result is a polynomial time algorithm for this
problem. We also present a min–max theorem.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

All graphs considered in this paper are simple (i.e., they contain no multiple edges) and undi-
rected. A 2-matching of a graph G = (V ,E) is a subset of E such that every node of G is incident
with at most two edges of the subset. (Hence a 2-matching induces simple paths and cycles in G

that are pairwise node disjoint. In the literature, this is often referred to as a “simple” 2-matching;
for the sake of conciseness, we drop the adjective “simple.”) A 2-matching M of G is called a
2-factor if every node of G is incident with exactly two edges of M . A maximum 2-matching in
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G is a 2-matching of maximum size or cardinality. Observe that if a graph has a 2-factor, then
any maximum 2-matching is a 2-factor.

A k-restricted 2-matching, for k � 2 and integer, is a 2-matching with no induced cycles
of length k or less. Let us denote by Pk the problem of finding a k-restricted 2-matching of
maximum size. Thus P2 is the problem of finding a maximum 2-matching in a graph. Note that
Pk , for n/2 � k � n − 1 (where n is the number of nodes in the graph), includes the problem
of finding a Hamilton cycle in a graph. (This matching generalization was first developed and
studied in [3,9].)

The basic problem P2 has been extensively studied. A polynomial-time algorithm exists due
to a reduction (see Tutte [23]) to the classical matching problem (see Edmonds [8]). Also well
known is a “good” characterization of those graphs that have a 2-factor (due to Tutte [22]) and
a polyhedral characterization of the convex hull of incidence vectors of 2-matchings (which can
also be obtained using Tutte’s reduction and Edmonds’ polyhedral result for matchings [7]). For
a more complete history of this problem see Schrijver [20].

Of course a polynomial-time algorithm for Pk , for n/2 � k � n−1, is unlikely since the prob-
lem of deciding if a graph has a Hamilton cycle is NP-complete. In fact, Papadimitriou (see [3])
showed that deciding if a graph has a k-restricted 2-matching for k � 5 is NP-complete. Com-
plexity results for other variations on this problem appear in [14]. A polynomial-time algorithm
for P3 was given in [12]. (The algorithm is quite complex.) This leaves P4 whose status is open.
(A polynomial-time algorithm for a special case appears in [17]; this algorithm is also quite
complex.)

In this paper we consider the problems Pk on bipartite graphs. Observe that for bipartite graphs
the problems Pk of interest are for k � 2 and even. Again, for n/2 � k � n − 1, a polynomial-
time algorithm is unlikely since the problem of deciding if a bipartite graph has a Hamilton cycle
is NP-complete (see Krishnamoorty [16]). Indeed, Geelen [11] has shown that P6 is NP-hard for
bipartite graphs. Hence we focus our attention in this paper on the problem P4 in bipartite graphs.
(The idea of studying this problem was suggested to the author by Cunningham and Geelen [5].)
We refer to a cycle with four edges as a square, hence we refer to the problem P4 on bipartite
graphs as the problem of finding a maximum square-free 2-matching in a bipartite graph.

Our main result is a polynomial-time algorithm for finding maximum square-free 2-matchings
in bipartite graphs. The algorithm uses techniques similar to those used for the problem P3 on
general graphs, but the resulting algorithm is simpler (it is hoped that some of the ideas developed
in this paper will result in a simpler algorithm for P3 in general graphs). A key idea that is
used in the algorithm is an operation called square-shrinking (where a square is “shrunk” to an
edge). We also present a min–max theorem that characterizes the size of a maximum square-
free 2-matching. This theorem is in the spirit of the so-called Tutte–Berge theorem for classical
matchings due to Berge [2] (which builds on a theorem of Tutte [21]). The statement of the
min–max theorem in this paper is an improvement on a related theorem that appeared in [13]
and is due to Kiraly. (He gives a direct, non-algorithmic proof in [15].) The proof in this paper is
algorithmic. It is essentially a bi-product of the proof of the algorithm’s validity. A generalization
of this result due to Frank appears in [10]. (He also gives a direct, non-algorithmic proof.)

Let us briefly mention a related class of problems: The “weighted” versions of the problems
Pk . That is, given a graph with non-negative edge weights, let weighted-Pk be the problem of
finding a k-restricted 2-matching such that the sum of the weights of its edges is a maximum.
Vornberger [24] showed that weighted-P4 is NP-hard. Thus, for general graphs, only the com-
plexities of P4 and weighted-P3 are unknown. Furthermore, it has been observed in [4,19], and
by Kiraly (see [10]), that Vornberger’s approach can be used to show that weighted-P4 is NP-hard
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in bipartite graphs. Therefore, with this paper, the complexities of the weighted and unweighted
problems Pk in bipartite graphs are resolved. Finally, Cunningham and Wang [6] have studied,
in general graphs, the polytopes given by the convex hull of incidence vectors of k-restricted
2-factors.

The paper is organized as follows. We state our min–max theorem in Section 2. In Section 3,
we present our algorithm for finding maximum square-free 2-matchings in bipartite graphs.
Proofs of the algorithm’s validity and complexity, and the min–max theorem, are given in Sec-
tion 4.

2. Min–max theorem

The main purpose of this section is to state a min–max theorem for the maximum size of a
square-free 2-matching in a bipartite graph. As a corollary we obtain a theorem that characterizes
those bipartite graphs that have a square-free 2-factor. This corollary is in the spirit of Tutte’s
theorem in [21] for classical matchings.

The necessity of the condition in the min–max theorem is straightforward to establish. How-
ever, the sufficiency appears to be considerably more difficult; a proof based on the algorithm is
presented in Section 4.

For a graph H = (V ,E), let q(H) denote the number of connected components of H that
consist of either a single node, two nodes connected by an edge, or a square. For S ⊆ V , we let
H [S] denote the subgraph of H induced by S.

Theorem 1. Let G = (V ,E) be a bipartite graph. Then the maximum size a square-free
2-matching in G is

min
V ′⊆V

{|V | + |V ′| − q
(
G[V \ V ′])}.

This theorem immediately implies the following corollary.

Corollary 2. A bipartite graph G = (V ,E) has a square-free 2-factor if and only if for every
subset V ′ ⊆ V ,

|V ′| � q
(
G[V \ V ′]).

3. An algorithm for finding square-free 2-matchings in bipartite graphs

In this section we present our algorithm for finding square-free 2-matchings in bipartite
graphs. We prove its validity and study its complexity in the next section. We begin with a few
definitions.

Consider a simple bipartite graph G = (A∪B,F) with a 2-matching M . A node in G is called
saturated if it is incident with two edges of M ; otherwise, it is called deficient.

We next define a new operation, whose application appears to significantly simplify the state-
ment of the algorithm. Let Q be a subgraph of G that is a square and contains exactly three edges
in M . Suppose the nodes in Q are, in cyclic order, a, b, c, d , where ab is the edge not in M (see
Fig. 1 for an example). Then the square-shrinking of Q is an operation that results in a new
graph, say G′, with a new 2-matching, say M ′. To perform this operation, identify the nodes a

and c to get the node a′ and identify the nodes b and d to get the node b′; call this graph G′′. Ob-
serve that G′′ contains multiple edges; for example, G′′ has four edges between a′ and b′, and if
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Fig. 1. The square-shrinking operation.

a node v in G (but not in Q) was adjacent to a and c, then there are two edges in G′′ from v to a′.
Let M ′′ denote the edges of G′′ that were in M (M ′′ is not a 2-matching). G′ is now obtained
from G′′ by replacing all multiple edges with single edges. Any edge in G′ that was a multiple
edge in G′′, except a′b′, is called a multi-edge in G′. M ′ is obtained from M ′′ as follows: If xy

is an edge in G′ and if one or more of the edges from x to y in G′′ is in M ′′, then we add xy

to M ′. Observe that M ′ is a 2-matching. We call the edge a′b′ in G′ a shrunk square. The reverse
operation of returning a shrunk square to its original state is called expanding a shrunk square
and the resulting square is called expanded.

Note. In all figures, bold lines represent edges in the 2-matching and non-bold lines represent
edges not in the 2-matching.

In the course of the algorithm for finding a maximum square-free 2-matching in G, a bipartite
surface graph G̃ = (Ã ∪ B̃, F̃ ) is obtained from G by performing square-shrinkings on a set of
pairwise node-disjoint squares of G (each with three edges in M). We let Ã denote the nodes of
G̃ that correspond to A in G. We define B̃ similarly. (This correspondence is well defined by the
definition of square shrinking.)

During the algorithm, we also construct a subgraph S of G̃ called an alternating forest (hence
S is the union of node disjoint trees). Each tree in S has a unique node called its root. Let v be
a non-root node of the tree and let P be the unique path from v to a root. If P contains an even
(odd) number of edges, then v and the edge of P that contains v are called even (odd). Roots are
also called even. Let M recursively denote the original matching as it appears in G̃ (this is what
we do in the algorithm). We next describe some additional properties of S, with respect to M and
the shrunk squares, that hold at the end of every step of the algorithm.

Properties of the alternating forest S:

(1) The roots are precisely the deficient nodes in Ã.
(2) Every even edge is in M , and every odd edge is not in M .
(3) For every edge uv in M : If u is odd, then v is even.
(4) No shrunk square occurs in S.
(5) Precisely one endnode of each shrunk square is even.

From these definitions and properties, we can deduce the following:

(6) Odd nodes are incident with exactly one edge of S that is not in M . Odd nodes are incident
with two edges of M (zero, one, or two of these edges can be in S); the other endnodes of
these edges are even.
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(7) Even nodes may be saturated or deficient. If an even node is saturated, then exactly one of
these two edges of M must be in S; furthermore, the other endnode of this edge in S must
be odd.

(8) Consider an arbitrary (non-trivial) path in S that contains a root as an endnode. Then the
edges of the path are alternately in and not in M (and the edge incident with the root is not
in M).

(9) No two shrunk squares are adjacent.

Algorithm (Square-free 2-matchings in bipartite graphs).

Input: A simple bipartite graph G = (A ∪ B,F).
Output: A maximum square-free 2-matching of G.
Step 0: Let M be any square-free 2-matching of G.
Step 1: If M is a 2-factor, done. Otherwise, let S consist of the set of deficient nodes of G̃ := G

in Ã := A.
Step 2: If every edge of G̃ that is incident with an even node is either an edge of M or has an

odd node as its other endnode, then M (in G) is maximum; done. Otherwise, select an
edge vw /∈ M where v is an even node and w /∈ S.

Case 1: w is saturated and � a path of three edges (all non-shrunk) of M from v to w

in G̃. Go to Step 3.
Case 2: w is saturated and ∃ a path P of three edges (all non-shrunk) of M from v to

w in G̃. Go to Step 4.
Case 3: w is deficient and � a path of three edges (all non-shrunk) of M from v to w

in G̃. Go to Step 5.
Case 4: w is deficient and ∃ a path P of three edges (all non-shrunk) of M from v to

w in G̃. Go to Step 6.

Step 3: [Grow the forest.] Let wu1 and wu2 be the two edges of M incident with w. Since G̃ is
bipartite, each ui is either even or /∈ S. Add vw to S. If ui /∈ S, then add wui to S. Go
to Step 2.

Step 4: Let P contain the edges wu2, u2u3, and u3v, which are in M and non-shrunk. For an
example, see Fig. 2. Let wu1 and wu2 be the two edges of M incident with w. Since G̃

is bipartite, each ui is either even or /∈ S. If u1 is even, then go to Step 3 (this includes
the case that wu1 is shrunk). If the path from v to its root goes immediately to u3, then
go to Step 3. So we may assume that u1 /∈ S (hence wu1 is not shrunk, by property (5))
and that either v is deficient and a root, or the path from v to its root goes immediately
through an edge vu4 ∈ M (where u4 �= u3; see Fig. 2). Note that vu4 is not shrunk (by
property (4)).

Note that, since G̃ is bipartite, u2 is either even or /∈ S. If u2 is even, then u3 must be
odd (by property (7)). If u2 /∈ S, then u3 /∈ S. (If u3 were odd, then u2 would be even, by
property (3); u3 cannot be even, since G̃ is bipartite.) In either case, shrink the square
(with nodes v,w,u2, u3) and let G̃ denote the new graph; let v′ be the node resulting
from the identification of u2 and v; let w′ be the node resulting from the identification
of u3 and w; and let M denote the new 2-matching.

We next update S. First, all nodes not in the square, and all edges not incident with a
node in the square, that were in S before the shrinking, remain in S after the shrinking. If
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Fig. 2. Example for Step 4.

an edge of S was incident with v, u3, or u2 before the shrinking (and not in the square),
then the corresponding edge after the shrinking is in S (now incident with v′ or w′). If
v was a root before the shrinking, then v′ is a root after the shrinking.

Finally, if u2 was even and u3 was odd: Add w′u1 to S. (Hence, w′u1 becomes part
of the tree of S that contained u3, w′ becomes odd, and u1 becomes even.) (See Fig. 2.)

Go to Step 2.

Note 1. In Figs. 2–5, even nodes are white, odd nodes are black, and all other nodes are grey.

Step 5: [Augment the matching.] Consider the path consisting of the path from v to the root
of its tree plus the edge vw (for an example, see Fig. 3). The edges along this path are
alternately in and not in M ; the endedges are not in M and the endnodes are deficient
(see property (8)). Interchange edges in and out of the matching along this path to get a
new 2-matching M . Expand the shrunk squares of G̃. If a multi-edge was in M before
expanding, then, after expanding, arbitrarily put one of the resulting two edges into M ;
otherwise put neither resulting edge into M . Rematch each resulting square with three
edges to obtain a square-free 2-matching, again called M . “Throw away” S and go to
Step 1.

Step 6: Let P contain the edges wu1, u1u2, and vu2. If the path from v to its root goes imme-
diately to u2, then go to Step 5.

So let us assume that v is deficient and a root, or the path from v to its root goes
immediately through a matching edge, say vu3, where u3 �= u2 (hence vu3 is not shrunk,
by property (4)). (For an example, see Fig. 4.)
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Fig. 3. Example for Step 5.

Fig. 4. Example for Step 6.
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Shrink the square (with nodes v, w, u1, u2) and let G̃ denote the new graph; let v′ be
the node resulting from the identification of u1 and v; let w′ be the node resulting from
the identification of u2 and w; and let M denote the new 2-matching.

We next update S. First, all nodes not in the square, and all edges not incident with a
node in the square, that were in S before the shrinking, remain in S after the shrinking.
If an edge of S was incident with v, w, u1, or u2 before the shrinking (and not in the
square), then the corresponding edge after the shrinking is in S (now incident with v′
or w′). If v was a root before the shrinking, then v′ is a root after the shrinking.

Note that, before the shrinking, u1 was either even or /∈ S, since G̃ is bipartite; fur-
thermore, u1 was even if and only if u2 was odd (by properties (3) and (7)). Hence, we
do the following:

If u1 was even and u2 was odd: Let u2u
′
2 be the unique non-matching edge in S that

was incident with u2 (see property (6)). Then u′
2 is even. Remove w′u′

2 from S and go
to Step 5 with u′

2 and w′ playing the roles of v and w, respectively.
Otherwise, go to Step 2.

4. Proofs

We begin this section by showing, in Proposition 3, that the algorithm outputs a square-free
2-matching (i.e., that augmentations in Step 5 can be implemented). We then show that the algo-
rithm has polynomial-time worst case time complexity. After this, we prove two key propositions
(6 and 7), which elaborate on the properties of the alternating forest. Finally, we prove that the
square-free 2-matching output by the algorithm is maximum. This proof is similar in style to Ed-
monds’ proof of the validity of the matching algorithm. We simultaneously prove the min–max
theorem.

Proposition 3. Let G be a bipartite graph and let M be a square-free 2-matching in G, which is
not a 2-factor. Input G and M into the algorithm. Then we have the following:

(1) before making a pass through Step 5, the alternating forest S that is constructed by the
algorithm satisfies properties (1)–(9);

(2) if the algorithm enters Step 5, then the expanded squares can be rematched so that the
resulting set M ′ is a square-free 2-matching.

Proof. Part (1) follows immediately from the design of the algorithm, hence we focus on the
proof of part (2). We consider the first pass of the algorithm through Step 5. We state and then
prove three claims from which the result follows.

Claim 1. In Step 5 the expanded squares can be rematched, each with three edges, so that the
resulting subgraph M ′ is a 2-matching.

Claim 2. Consider any rematching M ′ of the expanded squares as described in Claim 1. Then,
no edge in an expanded square can be contained in a square of M ′.

Claim 3. Consider any rematching M ′ of the expanded squares as described in Claim 1. Then,
M ′ is square-free.



D. Hartvigsen / Journal of Combinatorial Theory, Series B 96 (2006) 693–705 701
Fig. 5. Proof of Claim 3.

Proof of Claim 1. Consider the point in Step 5 after interchanging edges along the path, but
before expanding the shrunk squares. Let M ′′ denote the matching at this point. Because the
edges in the path alternated in and out of the matching and because the endnodes of the path were
deficient, M ′′ is a 2-matching. Also, because shrunk squares do not occur in S, M ′′ contains all
of the shrunk squares. Let a′b′ be an arbitrary shrunk square. Then a′ is incident with one or
two edges of M ′′ (similarly for b′). Let M ′ equal M ′′ minus the edge a′b′. Expand a′b′ to get a
square with nodes a, b, c, d , where a and c were identified to give a′; b and d were identified to
give b′; and ab was the edge not in M . Let G′ denote the graph so obtained from G̃. (Note that
this expansion is well defined since no two shrunk squares are adjacent in G̃, by property (9).)
Consider any multi-edges that are split into two edges by this unshrinking. If such a multi-edge
was in M , then arbitrarily put one of the resulting two edges into M ′; otherwise put neither
resulting edge into M ′. If a′ and b′ were each incident with only one edge in M (i.e., a′b′ itself),
then we may put any three edges of the square into M ′ to obtain a 2-matching of G′ (let us
arbitrarily choose to replace the original three edges of M). Suppose a′ was incident with two
edges of M . Then we may assume, without loss of generality, that there is an edge ae of G′ in M ′
(where e is not in the square). If b′ was incident with one edge of M , then we may add the edges
ab, bc, cd , or the edges ad , cd , bc to M ′ to obtain a 2-matching of G′ (let us arbitrarily choose
to add those edges to M ′′ so that both b and d are incident with the same number of edges of M ′
as they were in G). Finally, if b′ was incident with two edges of M , then there is a unique set of
three edges in the square that we can add to M ′ to obtain a 2-matching of G′. We can recursively
apply this same approach to any remaining shrunk squares in G′; the result follows. �
Proof of Claim 2. Consider an expanded square in G. By Claim 1, it contains precisely three
edges of M ′. Hence the only square of M that could contain one of these edges is the expanded
square itself. The result follows. �
Proof of Claim 3. Consider a 2-matching M ′ of G as described in Claim 1. By Claim 2, if M ′
contains a square, then none of its edges is contained in an expanded square. Hence it was created
in Step 5 immediately after the interchange along the path, call it P . In particular, the square,
before the interchange, contained from zero to three edges in M and none of these edges was
shrunk. In fact, because P is simple, no two adjacent edges of this square could be out of M

before the interchange; thus the square must look like one of the two cases in Fig. 5.
Case 1: (See Fig. 5.) Every edge in P has the property that one endnode is even and the other

is odd, except for vw, since w is not in S. Thus, at most one of the nodes a, b, c, d is not in S.
Case 1a: Assume a, b, c, d are all in S. Let us assume, without loss of generality, that a and c

are even, and b and d are odd. Finally, let us assume that ab occurs closer to the root of this tree
than cd . Then when the tree was being grown, the edge ab was considered in Step 2 before cd .
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Thus, the edge bc was added to the tree when ab was considered. But this implies that ab, bc,
cd are in P , which contradicts abcd becoming a square when augmenting.

Case 1b: Assume b = w. Then a = v, which implies that a and c are even and d is odd (by
bipartiteness). Also, cd must be in the same tree as a. Thus, when this tree was being grown, cd

was considered before a became even. But then da must have been added to the tree when cd

was considered, which contradicts abcd becoming a square when augmenting.
Case 2: (See Fig. 5.) This case cannot occur since we would have shrunk the square during

the algorithm.
This completes the proof of Claim 3 and the proposition. �

Proof that the algorithm has polynomial-time worst case time complexity. By Proposition 3,
the algorithm maintains a 2-matching M throughout. Hence, the algorithm makes O(|V |) passes
through Step 1 since each such pass (except the first) in preceded by a pass through Step 5 where
the number of edges in M is increased by 1. (Note that the worst case complexity of Step 5 is
O(|V |), which is dominated by the remaining work in the algorithm.) In between passes through
Step 1 the algorithm passes repeatedly through Step 2. Each pass through Step 2 requires looking
at O(|V |2) edges. Each such pass is preceded by a pass through Steps 3, 4, or 6 (except the first
pass in each iteration of Step 1). Each pass through Steps 3, 4, or 6 requires only constant time.
Each pass through Step 4 or 6 results in a square-shrinking. From the cases of the algorithm
we know that no shrunk square is contained in a square that is later shrunk and we know from
Proposition 3 that no two shrunk squares are adjacent. Thus, the number of times, between passes
through Step 1, that the algorithm shrinks a square is O(|V |). With every pass through Step 3 the
forest S is enlarged by one edge. This also can happen only O(|V |) times. Thus, the amount of
work between passes through Step 1 is O(|V |3). Hence, the worst case time complexity of the
algorithm is O(|V |4). Note that by keeping track of the edges that have been looked at in Step 2,
the time required in this step can be reduced to O(|V |), which reduces the overall complexity to
O(|V |3). �

For the remainder of our proofs we make use of the following set up and terminology. Suppose
we run the algorithm on a bipartite graph G and that the algorithm stops in Step 2 (hence a
2-factor has not been found). Let us run the algorithm one more time where, in Step 1, we let S

be the alternating forest at the end of the first run together with the deficient nodes in B̃ (which
become roots). It is easy to see that no augmentations occur in Step 5 since this would imply
that S was not completely grown in the previous run. It is easy to see that the final forest S still
satisfies properties (1)–(9), except properties (1) and (5) become the following, respectively:

(1′) The roots are precisely the deficient nodes in Ã ∪ B̃ .
(5′) At least one endnode of each shrunk square is even.

Let G̃ = (Ã ∪ B̃, F̃ ) denote the bipartite surface graph at the end of the algorithm. Let Õ

denote the set of odd nodes and let Ẽ denote the set of even nodes. Let R̃ denote the nodes that
are neither odd nor even. Let R̃′ denote those nodes in R̃ that are adjacent to two even nodes via
edges in M . Let Ã′ = Ã ∩ R̃. (Note that Ã′ ∩ R̃′ may or may not be empty.) Let

G̃′ = G̃
[{Ã ∪ B̃} \ {Õ ∪ R̃′ ∪ Ã′}].

That is, G̃′ is the graph obtained from G̃ by deleting the nodes in {Õ ∪ R̃′ ∪ Ã′}. In G̃′ we let M

denote the edges that were contained in M of G̃.
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Observe that every node in G has a corresponding node in G̃. In particular, if x and y are two
nodes in G that were identified to give a node w in G̃, then x and y correspond to w. Let O ,
R′, and A′ denote the sets of nodes in G that correspond to the sets Õ , R̃′, and Ã′, respectively,
in G̃. We let M in G denote the final square-free 2-matching output by the algorithm. We let

G′ = G
[{A ∪ B} \ {O ∪ R′ ∪ A′}].

Proposition 4. Each component of G̃′ is an isolated node or isolated edge. Furthermore, each
isolated edge of G̃′ is in M .

Proposition 5. Every node of G̃ in {Õ ∪ R̃′ ∪ Ã′} is adjacent to two nodes in {Ã ∪ B̃} \ {Õ ∪
R̃′ ∪ Ã′} via edges in M .

Proposition 6. Each component of G′ is an isolated node, isolated edge, or isolated square.
Furthermore, each isolated edge of G′ is in M and each isolated square of G′ contains three
edges in M .

Proposition 7. Every node of G in {O ∪ R′ ∪ A′} is adjacent to two nodes in {A ∪ B} \ {O ∪
R′ ∪ A′} via edges in M .

Proof of Proposition 4. Note that the nodes in G̃′ were either even nodes of G̃ or nodes in the
set R̃ \ {Ã ∪ R̃′}. Due to the stopping criterion of the algorithm (in Step 2), every edge incident
with an even node of G̃′ must be in M . Because the nodes in R̃ \ {Ã ∪ R̃′} are all contained in B̃

in G̃, there are no edges in G̃′ between any pair of nodes in R̃ \ {Ã ∪ R̃′}. Thus all the edges in
G̃′ are in M . Furthermore, every node in R̃ \ {Ã ∪ R̃′} must have degree 0 or 1 in G̃′ since the
only nodes in R̃ that were adjacent to two even nodes via edges in M were in R̃′.

Consider an edge ab in G̃′ where a is even and b ∈ R̃ \ {Ã ∪ R̃′}. By property (7) of the
alternating structure, if a was adjacent in G̃ to a second node, say c, via an edge in M , then c

must have been odd in G̃. Thus ab must be an isolated edge in G̃′. Finally, consider an edge ab

in G̃′, where a and b are both even. Again by property (7), if a (respectively b) was adjacent in
G̃ to a second node, say c, via an edge in M , then c must have been odd in G̃. Thus, again, ab

must be an isolated edge in G̃′. �
Proof of Proposition 5. The property clearly holds for nodes in Õ by property (6) of the alter-
nating structure and it holds for nodes in R̃′ by definition. So, let v be a node in Ã′ \ R̃′. v is
incident with two edges in M since otherwise v would be in Ẽ. No such edge can be incident
with a node in Õ or R̃′ since all edges in M that are incident with an edge in Õ or R̃′ are also
incident with a node in Ẽ. Since G̃ is bipartite, and since Ã′ ⊆ Ã, no such edge can be incident
with a second node in Ã′. The result follows. �
Proof of Proposition 6. This follows immediately from Proposition 4 where any isolated edge
in G̃′ that was a shrunk square in G̃ corresponds to an isolated square in G′ with three edges
in M . �
Proof of Proposition 7. This follows immediately from Proposition 5 and the structure of the
squares that are shrunk during the algorithm. �
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Proof of validity of the algorithm and Theorem 1. We first show that for any square-free
2-matching M in G and any V ′ ⊆ V ,

|M| � |V | + |V ′| − q
(
G[V \ V ′]). (1)

We then show that the matching M produced at the end of the algorithm satisfies this inequality at
equality for a special V ′. Hence the algorithm produces a maximum matching and the min–max
theorem holds.

Consider an arbitrary square-free 2-matching M in the graph G. The deficiency of a node in G

is defined to be 2 minus the number of edges of M that are incident with the node. The deficiency
of M is defined to be the sum of the deficiencies at the nodes and is denoted df G(M). Observe
that |M| = |V | − 1

2 df G(M), hence inequality (1) is equivalent to

df G(M) � 2q
(
G[V \ V ′]) − 2|V ′|. (2)

To see that this inequality is true, observe that each component counted in q(G[V \ V ′]) has
a deficiency of at least 2 (when M is restricted to it), that these deficiencies can be satisfied only
by edges of M with one endnode in V ′, and that there are at most 2|V ′| such edges.

By Proposition 3, the algorithm outputs a square-free 2-matching M . If M is a 2-factor, then
clearly the algorithm has worked. Furthermore, if we take V ′ = ∅, then inequality (2) is satisfied
at equality. So let us assume that M is not a 2-factor. Let O , R′, A′, and G′ be defined as above
and set V ′ = {O ∪ R′ ∪ A′}. By Proposition 6 we know that each component of G′ = G[V \ V ′]
is an isolated node, isolated edge (in M), or an isolated square (with three edges in M); and,
hence, each component of G′ has deficiency 2. By Proposition 7 we know that every node in V ′
is incident with two edges of M whose other endnodes are in V \ V ′. Hence inequality (2) is
satisfied at equality, which finishes the proof. �
Remark 1. A well-known theorem due to Petersen [18] and Berge [1] characterizes maximum
matchings in terms of augmenting paths. Using the algorithm in this paper one can prove a
similar-style theorem for square-free 2-matchings (see [13]). A theorem of this type for square-
free 2-matchings in general graphs appears in [19].
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